Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99216Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 江昭皚 | zh_TW |
| dc.contributor.advisor | Joe-Air Jiang | en |
| dc.contributor.author | 林劭霖 | zh_TW |
| dc.contributor.author | Shao-Lin Lin | en |
| dc.date.accessioned | 2025-08-21T16:50:47Z | - |
| dc.date.available | 2025-08-22 | - |
| dc.date.copyright | 2025-08-21 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-08-05 | - |
| dc.identifier.citation | 江昭皚、賴胤皓、黃宇賢、林劭霖 (2025)。結合智慧養殖系統與人工飼料應用於臺灣原生種大型瓢蟲 – 小十三星瓢蟲之商用量產技術開發 (NSTC 113-2313-B-002-039-MY3) [研究報告]。國家科學及技術委員會。
余志儒、呂椿堂 (2012)。東方果實蠅(Bactrocera dorsalis)卵為小十三星瓢蟲(Harmonia dimidiata)食物之合適性。植物保護學會會刊,54(4),91-102。https://doi.org/10.6715/PPB.201212_54(4).0001 陳志輝、欽俊德、申春玲 (1989)。改變人工飼料組成分對七星瓢蟲幼蟲生長發育的影響。中國昆蟲學報,32(4),385-392。https://www.sciengine.com/AESK/doi/10.16380/j.kcxb.1989.32.4.385392 黃宇賢 (2025)。瓢蟲產卵誘導與卵處理之AI驅動自動化系統開發:以飼養為應用導向。未出版之碩士論文,國立臺灣大學,生物機電工程學系,台北市。 農業部動植物防疫檢疫署 (2025)。化學農藥十年減半行動方案。https://www.aphia.gov.tw/ws.php?id=21408 蕭家泓 (2024)。智慧化甜菜夜蛾蟲蛹性別辨識系統之開發。〔碩士論文。國立臺灣大學〕臺灣博碩士論文知識加值系統。https://hdl.handle.net/11296/jdk4an 簡嘉俊 (2024)。瓢蟲的自動化雌雄分離系統應用於六條瓢蟲。〔碩士論文。國立臺灣大學〕臺灣博碩士論文知識加值系統。https://hdl.handle.net/11296/4asfvy Abhilash, P.C., & Singh, N. (2009). Pesticide use and application: An Indian scenario. Journal of Hazaedous Materials, 165(1-3), 1-12. https://doi.org/10.1016/j.jhazmat.2008.10.061 Ali, I., Zhang, S., Luo, J.-Y., Wang, C.-Y., Lv, L.-M., & Cui, J.-J. (2016). Artificial diet development and its effect on the reproductive performances of Propylea japonica and Harmonia axyridis. Journal of Asia-Pacific Entomology, 19(2), 289-293. https://doi.org/10.1016/j.aspen.2016.03.005 Atallah, Y.H., & Newsom, L. D. (1966). Ecological and Nutritional Studies on Coleomegilla mucalata De Geer (Coleoptera: Coccinellidae). III. The Effect of DDT, Toxaphene, and Endrin on the reproductive and Survival Potentials. Journal of Economic Entomology, 59(5), 1173-1179. https://doi.org/10.1093/jee/59.5.1173 Buchsbaum, G. (1980). A spatial processor model for object colour perception. Journal of the Franklin Institute, 310(1), 1-26. https://doi.org/10.1016/0016-0032(80)90058-7 Candelier, R., Bois, A., Tronche, S., Mahieu, J., Mannioui, A. (2019). A Semi-Automatic Dispenser for Solid and Liquid Food in Aquatic Facilities. Journal of Zebrafish, 16(4), 401-407. https://doi.org/10.1089/zeb.2019.1733 Chen, P., Liu, J., Chi, B., Li, D., Li, J., & Liu, Y. (2020). Effect of different diets on the growth and development of Harmonia axyridis (Pallas). Journal of Applied Entomology, 144(10), 911-919. https://doi.org/10.1111/jen.12802 Cheng, Y., Zhi, J. R., Li, F. L., Li, W. H., & Zhou, Y. H. (2018). Improving the artificial diet for adult of seven spotted ladybird beetle Coccinella septempunctata L.(Coleoptera: Coccinellidae) with orthogonal design. Bulletin of entomological research, 108(3), 337-343. https://doi.org/10.1017/s0007485317000797 Cheng, Y., Yu, Y., Zhou, Y.H., & Li, F.L. (2022). An improved artificial diet for larvae of the seven-spotted ladybird beetle Coccinella septempunctata L. Journal of Biological Control, 171, 104949. https://doi.org/10.1016/j.biocontrol.2022.104949 Cortes Ortiz, J. A., Ruiz, A. T., Morales-Ramos, J. A., Thomas, M., Rojas, M. G., Tomberlin, J. K., Yi, L., Han, R., Giroud, L., & Jullien, R. L. (2016). Chapter 6 Insect Mass Production Technologies. Insects as Sustainable Food Ingredients, 153-201. https://doi.org/10.1016/B978-0-12-802856-8.00006-5 Florian, D. C., Odziomek, M., Ock, C. L., Chen, H., & Guelcher, S. A. (2020). Principles of computer-controlled linear motion applied to an open-source affordable liquid handler for automated micropipetting. Journal of Scientific Reports, 10, 13663. https://doi.org/10.1038/s41598-020-70465-5 Girshick, R., Donahue, J., Darrell, T., & Malik, J. (2014). Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 580-587. https://doi.org/10.1109/CVPR.2014.81 Girshick, R. (2015). Fast R-CNN. In Proceedings of the IEEE International Conference on computer vision, 1440-1448. https://doi.org/10.48550/arXiv.1504.08083 Gu, J., Wang, Z., Kuen, J., Ma, L., Shahroudy, A., Shuai, B., Liu, T., Wang, X., Wang, G., Cai, J., & Chen, T. (2018). Recent advances in convolutional neural networks. Journal of Pattern Recognition, 77, 354-377. https://doi.org/10.1016/j.patcog.2017.10.013 Handa, N., Kaushik, Y., Sharma, N., Dixit, M., & Garg, M. (2021). Image Classification Using Convolutional Neural Networks. In Proceedings of the international conference of Advanced Informatics for Computing Research, 510-517. https://doi.org/10.1007/978-981-16-3660-8_48 Hartbauer, M. (2024). Artificial neuronal networks are revolutionizing entomological research. Journal of Applied Entomology, 148(2), 232-251. https://doi.org/10.1111/jen.13227 Hejazi, M., Grant, J. H., & Peterson, E. (2022). Trade impact of maximum residue limits in fresh fruits and vegetables. Journal of Food Policy, 106, 102203. https://doi.org/10.1016/j.foodpol.2021.102203 Hesler, L. S., McNickle, G., Catangui, M. A., Losey, J. E., Leonard Stellwag, E. A., Brandt, D. M., & Bartlett, P. B. (2012). Method for Continuously Rearing Coccinella Lady Beetles (Coleoptera: Coccinellidae). The Open Enotomology Journal, 6, 42-48. http://dx.doi.org/10.2174/1874407901206010042 Khan, J., Haq, E. U., Mehmood, T., Blouch, A., Rafi, M. A., & Fateh, J. (2016). Effect of Temperature on the Biology and Predatory Potential, of Harmonia Dimidiata (Fab.) (Coleoptera: Coccinellidae) Feeding on Myzus Persicae (Sulzer) (Hemiptera: Aphididae) Aphid. International Journal of Environment, Agriculture and Biotechnology (IJEAB), 1(3), 342-349. http://dx.doi.org/10.22161/ijeab/1.3.5 Khan, J., Haq, E. U., Rehman Saljoki, A. U., Mahmood, T., Blouch, A., Rasool, A., Ahmad, B., & Ali, R. (2018). Effect of photoperiod on biological attributes of Harmonia dimidiata (Fab) (Coleoptera: Coccinellidae) fed on Schizaphus graminum (Rond.) (Homoptera: Aphididae) aphid. International Journal of Biosciences (IJB), 12(1), 212-218. http://dx.doi.org/10.12692/ijb/12.1.212-219 Koch, R. L., & Galvan, T. L. (2007). Bad side of a good beetle: the North American experience with Harmonia axyridis. From Biological Control to Invasion: the Ladybird Harmonia axyridis as a Model Species. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6939-0_3 Krishnan, N. (2024). Endocrine Control of Lipid Metabolism. In: Advances in Experimental Medicine and Biology. Springer, Cham. https://doi.org/10.1007/5584_2024_807 Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.-Y., & Berg, A. C. (2016). SSD: Single Shot Multibox Detector. In Proceedings of the European Conference on Computer Vision, 21-37. https://doi.org/10.1007/978-3-319-46448-0_2 Majewski, P., Zapotoczny, P., Lampa, P., Burduk, R. & Reiner, J. (2022). Multipurpose monitoring system for edible insect breeding based on machine learning. Scientific reports, 12, 7892. https://doi.org/10.1038/s41598-022-11794-5 Martineau, C., Conte, D., Raveaux, R., Arnault, I., Munier, D., & Venturini, G. (2017). A survey on image-based insect classification. Journal of Pattern Recognition, 65, 273-284. https://doi.org/10.1016/j.patcog.2016.12.020 Michaud, J. P. (2002). Invasion of the Florida citrus ecosystem by Harmonia axyridis (Coleoptera: Coccinellidae) and asymmetric competition with a native species, Cycloneda sanguinea. Journal of Environmental Entomology, 31(5), 827-835. https://doi.org/10.1603/0046-225X-31.5.827 Michaud, J. P. (2003). A comparative study of larval cannibalism in three species of ladybird. Journal of Ecological Entomology, 28(1), 92-101. https://doi.org/10.1046/j.1365-2311.2002.00481.x Nawoya, S., Geissmann, Q., Karstoft, H., Bjerge, K., Akol, R., Katumba, A., Mwikirize, C., & Gebreyesus, G. (2025). Prediction of black soldier fly larval sex and morphological traits using computer vision and deep learning. Journal of Smart Agricultural Technology, 11(7), 100953. http://dx.doi.org/10.2139/ssrn.4853544 Obrycki, J. J., Harwood, J. D., Kring, T. J., & O’Neil, R. J. (2009). Aphidophagy by Coccinellidae: Application of biological control in agroecosystems. Journal of Biological Control, 51(2), 244-254. https://doi.org/10.1016/j.biocontrol.2009.05.009 Pickering, G. J., Lin, Y., Reynolds, A., Soleas, G., Riesen, R., & Brindle, I. (2005). The influence of Harmonia axyridis on wine composition and aging. Journal of Food Science, 70(2), S128–S135. http://dx.doi.org/10.1111/j.1365-2621.2005.tb07117.x Poorani, J. (2023) An illustrated guide to lady beetles (Coleoptera: Coccinellidae) of the Indian Subcontinent. Part 1. Tribe Coccinellini. Zootaxa, 5332(1), 1–307. https://www.mapress.com/zt/article/view/zootaxa.5332.1.1 Redmon, J., Divvala, S., Girshick, R., & Farhadi, A. (2016). You only look once: Unified, real-time object detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 779-788. https://doi.org/10.1109/CVPR.2016.91 Ren, S., He, K., Girshick, R., & Sun, J. (2016). Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39(6), 1137-1149. https://doi.org/10.1109/TPAMI.2016.2577031 Richards, O. W., & Thomson, W. S. (1932). A Contribution to the Study of the Genera Ephestia, Gn. (including Strymax, Dyar), and Plodia, Gn. (Lepidoptera, Phyeitidae), with Notes on Parasites of the Larvae. Transactions of the Royal Entomological Society of London, 80(2), 169-250. https://doi.org/10.1111/j.1365-2311.1932.tb03306.x Rondoni, G., Borges, I., Collatz, J., Conti, E., Costamagna, A. C., Dumount, F., Evans, E. W., Grez, A. A., Howe, A. G., Lucas, E., Maisonhaute, J.- É., Soares, A. O., Zaviezo, T., & Cock, M. J.W. (2020). Exotic ladybirds for biological control of herbivorous insects – a review. Journal of Entomophagous Insects Conference, 169(1), 6-27. https://doi.org/10.1111/eea.12963 Sharma, P. L., Verma, S. C., Chandel, S. C., Shah, M. A., & Gavkare, O. (2017). Functional response of Harmonia dimidiata (fab.) to melon aphid, Aphis gossypii Glover under laboratory conditions. Journal of Phytoparasitica, 45, 373-379. https://link.springer.com/article/10.1007/s12600-017-0599-5 Sultana, F., Sufian, A., & Dutta, P. (2020). A Review of Object Detection Models Based on Convolutional Neural Network. Journal of Intelligent Computing: Image Processing Based Applications, 1-16. https://link.springer.com/chapter/10.1007/978-981-15-4288-6_1 Ultralytics. (2023). Ultralytics YOLOv8 [Computer software]. Github. https://github.com/ultralytics/ultralytics Xiao, Y., Tian, Z., Yu, J., Zhang, Y., Liu, S., Du, S., & Lan, X. (2020). A review of object detection based on deep learning. Journal of Multimedia Tools and Applications, 79, 23729-23791. https://link.springer.com/article/10.1007/s11042-020-08976-6 Yu, J.-Z., Chi, H., & Chen, B.-H. (2013). Comparison of the life tables and predation rates of Harmonia dimidiata (F.) (Coleoptera: Coccinellidae) fed on Aphis gossypii Glover (Hemiptera: Aphididae) at different temperatures. Journal of Biological Control, 64(1), 1-9. https://doi.org/10.1016/j.biocontrol.2012.10.002 Yu, J.-Z., Chen, B. H., Güncan, A., Atlıhan, R., Gökçe, A., Smith, C. L., Gümüş E. & Chi, H. (2018). Demography and mass-rearing Harmonia dimidiata (Coleoptera: Coccinellidae) using Aphis gossypii (Hemiptera: Aphididae) and eggs of Bactrocera dorsalis (Diptera: Tephritidae). Journal of economic entomology, 111(2), 595-602. https://doi.org/10.1093/jee/toy031 Zou, Z., Chen, K., Shi, Z., Guo, Y., & Ye, J. (2023). Object Detection in 20 Years: A Survey. Proceedings of the IEEE, 111(3), 257-276. https://ieeexplore.ieee.org/abstract/document/10028728 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99216 | - |
| dc.description.abstract | 儘管農藥的使用為糧食生產帶來了顯著效益,但近年來其衍生之環境問題與健康問題,逐漸引發社會與學界的關注。因此,發展環境友善且具永續性的病蟲害管理策略已成為當前農業的重要課題。其中,應用捕食性天敵進行生物防治已被視為替代化學農藥的可行方案。然而,有效的生物防治需仰賴釋放足夠數量的捕食性昆蟲,使得其大規模飼養成為實現生物防治的一大挑戰。以常作為防治材料的瓢蟲為例,雖多以成蟲釋放,但其幼蟲階段的飼養卻佔據主要生產成本。
為了因應大規模飼養的需求,本研究設計並開發一套整合式自動化餵食系統,應用於小十三星瓢蟲(Harmonia dimidiata)幼蟲之獨居式飼養流程,以降低飼養流程中所需之人力與飼料成本。該系統硬體使用高精度之滾珠螺桿建立工作平台,並搭載以振動馬達與螺桿-活塞為驅動機構的天然與人工飼料餵食模組,能精準定位並完成餵食動作,在定位餵食的準確率上達100%,餵食量亦經由Bayesion假設檢定證實具高度一致性(Bayesian Factor ≪ 1)。此外,系統整合影像辨識功能,利用YOLOv8模型辨識幼蟲齡期與輪廓分割,盲測階段之分割成功率達99.44%。透過分割結果可提取六項幾何特徵,進而建立生產曲線,以評估幼蟲生長趨勢。在人工飼料方面,研究比較不同蛾卵比例之飼料配方,結果顯示人工飼料添加30%地中海粉螟蛾卵之組別,不僅發育時間與純地中海粉螟蛾卵組之差異低於兩天,存活率更達87.50%,並具成本優勢(僅為純蛾卵餵食之90.22%)。最終,建構餵食決策演算法,修正不合理之齡期預測,並排除發育遲緩之個體,以提升飼料利用效率。該演算法於餵食次數與飼料選擇之正確率分別為98.70%與99.03%,整體餵食正確率達97.74%。本研究所開發之系統提供了自動化且智慧化的昆蟲生產技術,可有助於提升飼養的規模。後續可持續優化其影像辨識模型與餵食決策,以提升其泛用性。未來可望應用此系統架構於其他昆蟲物種,以此作為昆蟲生產規模化且標準化之工具。 | zh_TW |
| dc.description.abstract | Although Pesticides have greatly enhanced global food production, the associated environmental and health concerns have increasingly drawn attention from both the public and academia. As a result, the development of environmentally friendly and sustainable pest management strategies has become a critical issue in modern agriculture. Among these, the use of predatory natural enemies for biological control has emerged as a viable alternative to chemical pesticides. However, effective biological control relies on the release of sufficient numbers of predatory insects, making their large-scale rearing a key challenge. In the case of ladybird beetles, although adults are typically released in the field, the rearing of larvae accounts for the majority of production costs.
To meet the demands of large-scale rearing, this study developed an integrated automated feeding system for the individual rearing of Harmonia dimidiata larvae, aiming to reduce labor and feed costs. The system incorporates a high precision ball screw-driven platform equipped with two feeding modules: a vibration motor-based natural feed dispenser and a screw-piston-based artificial feed dispenser. The system achieves 100% accuracy in positioning and feeding, and Bayesian hypothesis testing confirmed high consistency in the amount of feed delivered (Bayesian Factor ≪ 1). A machine vision module system employing YOLOv8 was developed for larval instar recognition and contour segmentation, achieving a segmentation accuracy of 99.44% in blind tests. From the segmented contours, six geometric features were extracted to construct larval growth curves, enabling the assessment of developmental trends. In terms of artificial diet, experimental results showed that artificial diet with 30% Ephestia kuehniella eggs shortened development time to within two days of the pure egg group, achieved an 87.5% survival rate, and reduced feeding cost to 90.22% of the pure egg diet. A feeding decision algorithm was also developed to correct unreasonable instar predictions and eliminate underdeveloped individuals, thereby improving feed efficiency. The algorithm achieved 98.70% accuracy in feeding decision and 99.03% accuracy in feed selection, with an overall feeding accuracy of 97.74%. The system developed in this study offers an automated and intelligent approach to insect production, supporting scalable and standardized production. Future work may focus on enhancing the versatility of the system through improvements in image recognition models and feeding decision algorithms. This framework could also be adapted for other insect species and serve as a foundational tool for the standardization and industrialization of insect rearing. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-21T16:50:47Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-08-21T16:50:47Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 致謝 i
摘要 ii ABSTRACT iii 目錄 iv 圖目錄 vi 表目錄 ix 第1章 前言 1 1.1 研究背景 1 1.2 研究目的 4 1.3 論文架構 5 第2章 文獻探討 6 2.1 瓢蟲飼養 6 2.1.1 傳統養殖流程 6 2.1.2 小十三星瓢蟲飼養環境條件 7 2.2 瓢蟲人工飼料的開發 9 2.2.1 針對七星瓢蟲 (Coleomegilla septempunctata)之人工飼料配方 9 2.2.2 針對異色瓢蟲 (Harmonia axyridis)之人工飼料配方 10 2.3 自動化控制技術的運用 11 2.4 影像辨識模型 17 2.4.1 卷積神經網路(Convolutional neural networks, CNN) 17 2.4.2 物件偵測模型(Object Detection Model) 18 2.5 昆蟲生長監測 22 第3章 材料與方法 25 3.1 自動化餵食系統架構 25 3.2 小十三星瓢蟲與飼養環境 27 3.3 飼料餵食機台 30 3.3.1 移動平台硬體與電控元件配置 30 3.3.2 飼料餵食單元 32 3.3.3 視覺辨識硬體 34 3.4 建立幼蟲齡期辨識與影像分割模型 35 3.4.1 訓練資料集建構與影像前處理 36 3.4.2 訓練幼蟲齡期辨識模型與輪廓分割模型 38 3.5 幼蟲外觀特徵擷取 40 3.6 小十三星瓢蟲幼蟲人工飼料 43 3.6.1 人工飼料配製 43 第4章 結果與討論 45 4.1 幼蟲齡期辨識與輪廓分割結果 45 4.1.1 幼蟲齡期辨識結果 45 4.1.2 幼蟲輪廓分割結果 47 4.2 建立幼蟲生長曲線 49 4.2.1 天然飼料餵食生長曲線 49 4.2.2 人工飼料餵食生長曲線 52 4.3 自動餵食機台定位餵食準確性與餵食量試驗 58 4.3.1 天然飼料餵食器 59 4.3.2 人工飼料餵食器 61 4.4 自動餵食結合預測模型盲測結果 64 4.5 成本分析 67 4.5.1 人工飼料 67 4.5.2 自動化機台 68 第5章 結論 70 參考文獻 71 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 自動化養殖系統 | zh_TW |
| dc.subject | 人工智慧 | zh_TW |
| dc.subject | YOLOv8 | zh_TW |
| dc.subject | 人工飼料 | zh_TW |
| dc.subject | 生長曲線 | zh_TW |
| dc.subject | 餵食決策 | zh_TW |
| dc.subject | 小十三星瓢蟲 | zh_TW |
| dc.subject | 機器視覺 | zh_TW |
| dc.subject | Growth Curve | en |
| dc.subject | YOLOv8 | en |
| dc.subject | Artificial Intelligence | en |
| dc.subject | Machine Vision | en |
| dc.subject | Automated Cultivation System | en |
| dc.subject | Artificial Diet | en |
| dc.subject | Harmonia dimidiate | en |
| dc.subject | Feeding Decision | en |
| dc.title | 應用自動化與人工智慧技術於瓢蟲規模化養殖 - 以小十三星瓢蟲幼蟲之影像辨識與餵食系統為例 | zh_TW |
| dc.title | Automated Rearing of Harmonia dimidiata Larvae Using AI and Mechatronics: Development of a Feeding and Monitoring System | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 楊恩誠;周呈霙;王永鐘;王人正 | zh_TW |
| dc.contributor.oralexamcommittee | En-Cheng Yang;Cheng-Ying Chou;Yung-Chung Wang;Jen-Cheng Wang | en |
| dc.subject.keyword | 小十三星瓢蟲,自動化養殖系統,機器視覺,人工智慧,YOLOv8,人工飼料,生長曲線,餵食決策, | zh_TW |
| dc.subject.keyword | Harmonia dimidiate,Automated Cultivation System,Machine Vision,Artificial Intelligence,YOLOv8,Artificial Diet,Growth Curve,Feeding Decision, | en |
| dc.relation.page | 76 | - |
| dc.identifier.doi | 10.6342/NTU202503885 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2025-08-10 | - |
| dc.contributor.author-college | 生物資源暨農學院 | - |
| dc.contributor.author-dept | 生物機電工程學系 | - |
| dc.date.embargo-lift | 2030-08-05 | - |
| Appears in Collections: | 生物機電工程學系 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| ntu-113-2.pdf Restricted Access | 8.68 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
