Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99212
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor楊志忠zh_TW
dc.contributor.advisorChih-Chung Yangen
dc.contributor.author楊少波zh_TW
dc.contributor.authorShaobo Yangen
dc.date.accessioned2025-08-21T16:49:50Z-
dc.date.available2025-08-22-
dc.date.copyright2025-08-21-
dc.date.issued2025-
dc.date.submitted2025-07-29-
dc.identifier.citation1. E. Jang, S. Jun, H. Jang, J. Llim, B. Kim, and Y. Kim, "White-Light-Emitting Diodes with Quantum Dot Color Converters for Display Backlights," Adv. Mater. 22, 3076-3080 (2010).
2. Y. M. Yin, Z. P. Hu, M. U. Ali, M. Duan, L. Gao, M. Liu, W. X. Peng, J. Geng, S. Pan, Y. W. Wu, J. Hou, J. Fan, D. Z. Li, X. Zhang, and H. Meng, "Full-Color Micro-LED Display with CsPbBr3 Perovskite and CdSe Quantum Dots as Color Conversion Layers," Adv. Mater. Technol. 5, 2000251 (2020).
3. T. Ma, J. Chen, Z. Y. Chen, L. M. Liang, J. N. Hu, W. L. Shen, Z. H. Li, and H. B. Zeng, "Progress in Color Conversion Technology for Micro-LED," Adv. Mater. Technol. 8, 2200632 (2023).
4. J. E. Ryu, S. Park, Y. Park, S. W. Ryu, K. Hwang, and H. W. Jang, "Technological Breakthroughs in Chip Fabrication, Transfer, and Color Conversion for High-Performance Micro-LED Displays," Adv. Mater. 35, 2204947 (2023).
5. G. J. Li, M. C. Tseng, Y. Chen, F. S. Y. Yeung, H. Y. He, Y. C. Cheng, J. H. Cai, E. G. Chen, and H. S. Kwok, "Color-conversion displays: current status and future outlook," Light Sci. Appl. 13, 301 (2024).
6. A. Dussaigne, F. Barbier, B. Damilano, S. Chenot, A. Grenier, A. M. Papon, B. Samuel, B. Ben Bakir, D. Vaufrey, J. C. Pillet, A. Gasse, O. Ledoux, M. Rozhavskaya, and D. Sotta, "Full InGaN red light emitting diodes," J. Appl. Phys. 128, 135704 (2020).
7. P. Chan, V. Rienzi, N. Lim, H. M. Chang, M. Gordon, S. P. DenBaars, and S. Nakamura, "Demonstration of relaxed InGaN-based red LEDs grown with high active region temperature," Appl. Phys. Express 14, 101002 (2021).
8. S. S. Pasayat, C. Gupta, M. S. Wong, R. Ley, M. J. Gordon, S. P. DenBaars, S. Nakamura, S. Keller, and U. K. Mishra, "Demonstration of ultra-small (<10 μm) 632 nm red InGaN micro-LEDs with useful on-wafer external quantum efficiency (>0.2%) for mini-displays," Appl. Phys. Express 14, 011004 (2021).
9. P. P. Li, H. J. Li, Y. F. Yao, N. Lim, M. T. Wong, M. Iza, M. J. Gordon, J. S. Speck, S. Nakamura, and S. P. DenBaars, "Significant Quantum Efficiency Enhancement of InGaN Red Micro-Light-Emitting Diodes with a Peak External Quantum Efficiency of up to 6%," ACS Photonics 10, 1899-1905 (2023).
10. Z. C. Lu, K. Zhang, J. B. Zhuang, J. J. Lin, Z. Lu, Z. Z. Jiang, Y. J. Lu, Z. Chen, and W. J. Guo, "Recent progress of InGaN-based red light emitting diodes," Micro and Nanostructures 183, 207669 (2023).
11. T. Forster, "Energiewanderung und fluoreszenz," Naturwissenschaften 33, 166-175 (1946).
12. D. L. Dexter, "A Theory of Sensitized Luminescence in Solids," J. Chem. Phys. 21, 836-850 (1953).
13. G. A. Jones, and D. S. Bradshaw, "Resonance Energy Transfer: From Fundamental Theory to Recent Applications," Front. Phys. 7, 100 (2019).
14. P. Ghenuche, M. Mivelle, J. de Torres, S. B. Moparthi, H. Rigneault, N. F. Van Hulst, M. F. García-Parajó, and J. Wenger, "Matching Nanoantenna Field Confinement to FRET Distances Enhances Forster Energy Transfer Rates," Nano Letters 15, 6193-6201 (2015).
15. I. L. Medintz, and H. Mattoussi, "Quantum dot-based resonance energy transfer and its growing application in biology," Phys. Chem. Chem. Phys. 11, 17-45 (2009).
16. C. A. J. Lin, R. A. Sperling, J. K. Li, T. Y. Yang, P. Y. Li, M. Zanella, W. H. Chang, and W. G. J. Parak, "Design of an amphiphilic polymer for nanoparticle coating and functionalization," Small 4, 334-341 (2008).
17. H. Wang, J. H. Jung, K. Chung, J. W. Lim, Y. You, J. S. Kim, and D. H. Kim, "Optimization of coupled plasmonic effects for viable phosphorescence of metal-free purely organic phosphor," J. Appl. Phys. 122, 153103 (2017).
18. A. F. Halbus, T. S. Horozov, and V. N. Paunov, "Surface-Modified Zinc Oxide Nanoparticles for Antialgal and Antiyeast Applications," ACS Applied Nano Materials 3, 440-451 (2020).
19. S. B. Yang, P. Y. Chen, C. C. Ni, J. C. Chen, Z. H. Li, Y. Kuo, C. C. Yang, T. C. Hsu, and C. L. Lee, "Enhancement of the Modulation Response of Quantum-Dot-Based Down-Converted Light through Surface Plasmon Coupling," Molecules 27, 1957 (2022).
20. J. C. Chen, Q. L. Zhao, B. H. Yu, and U. Lemmer, "A Review on Quantum Dot-Based Color Conversion Layers for Mini/Micro-LED Displays: Packaging, Light Management, and Pixelation," Adv. Opt. Mater. 12, 2300873 (2024).
21. Y. T. Wang, C. W. Liu, P. Y. Chen, R. N. Wu, C. C. Ni, C. J. Cai, Y. W. Kiang, and C. C. Yang, "Color conversion efficiency enhancement of colloidal quantum dot through its linkage with synthesized metal nanoparticle on a blue light-emitting diode," Opt. Lett. 44, 5691-5694 (2019).
22. C. J. Cai, Y. T. Wang, C. C. Ni, R. N. Wu, C. Y. Chen, Y. W. Kiang, and C. C. Yang, "Emission behaviors of colloidal quantum dots linked onto synthesized metal nanoparticles," Nanotechnology 31, 095201 (2020).
23. C. C. Ni, S. Y. Kuo, Z. H. Li, S. H. Wu, R. N. Wu, C. Y. Chen, and C. C. Yang, "Forster resonance energy transfer in surface plasmon coupled color conversion processes of colloidal quantum dots," Opt. Express 29, 4067-4081 (2021).
24. Y. Y. Huang, Z. H. Li, Y. C. Lai, J. C. Chen, S. H. Wu, S. B. Yang, Y. Kuo, C. C. Yang, T. C. Hsu, and C. L. Lee, "Nanoscale-cavity enhancement of color conversion with colloidal quantum dots embedded in the surface nano-holes of a blue-emitting light-emitting diode," Opt. Express 30, 31322-31335 (2022).
25. Y. C. Lai, S. B. Yang, H. Y. Feng, Y. C. Lee, Z. H. Li, S. H. Wu, Y. S. Lin, H. Y. Hsieh, C. J. Chu, W. C. Chen, Y. Y. Huang, Y. Kuo, and C. Yang, "Surface plasmon coupling effects on the photon color conversion behaviors of colloidal quantum dots in a GaN nanoscale hole with a nearby quantum-well structure," Opt. Express 31, 16010-16024 (2023).
26. B. Damilano, N. Grandjean, C. Pernot, and J. Massies, "Monolithic white light emitting diodes based on InGaN/GaN multiple-quantum wells," Jpn. J. Appl. Phys. 40, L918-L920 (2001).
27. Y. D. Qi, H. Liang, W. Tang, Z. D. Lu, and K. M. Lau, "Dual wavelength InGaN/GaN multi-quantum well LEDs grown by metalorganic vapor phase epitaxy," J. Cryst. Growth 272, 333-340 (2004).
28. C. F. Huang, C. F. Lu, T. Y. Tang, J. J. Huang, and C. C. Yang, "Phosphor-free white-light light-emitting diode of weakly carrier-density-dependent spectrum with prestrained growth of InGaN/GaN quantum wells," Appl. Phys. Lett. 90, 151122 (2007).
29. P. P. Li, H. J. Li, Y. F. Yao, K. S. Qwah, M. Iza, J. S. Speck, S. Nakamura, and S. P. Denbaars, "Hybrid tunnel junction enabled independent junction control of cascaded InGaN blue/green micro-light-emitting diodes," Opt. Express 31, 7572-7578 (2023).
30. K. Okuno, K. Goshonoo, and M. Ohya, "InGaN-based blue, green monolithic micro-LED display with n-type interlayer," Jpn. J. Appl. Phys. 63, 054001 (2024).
31. K. Goshonoo, K. Okuno, and M. Ohya, "Demonstration of InGaN full-color monolithic micro-LED display using stacking and selective removal of the light-emitting layer," Appl. Phys. Express 18, 022003 (2025).
32. C. F. Huang, T. Y. Tang, J. J. Huang, W. Y. Shiao, C. C. Yang, C. W. Hsu, and L. C. Chen, "Prestrained effect on the emission properties of InGaN/GaN quantum-well structures," Appl. Phys. Lett. 89, 051913 (2006).
33. C. F. Huang, C. Y. Chen, C. F. Lu, and C. C. Yang, "Reduced injection current induced blueshift in an InGaN/GaN quantum-well light-emitting diode of prestrained growth," Appl. Phys. Lett. 91, 051121 (2007).
34. C. F. Huang, T. C. Liu, Y. C. Lu, W. Y. Shiao, Y. S. Chen, J. K. Wang, C. F. Lu, and C. C. Yang, "Enhanced efficiency and reduced spectral shift of green light-emitting-diode epitaxial structure with prestrained growth," J. Appl. Phys. 104, 123106 (2008).
35. D. Iida, Z. Zhuang, P. Kirilenko, M. Velazquez-Rizo, M. A. Najmi, and K. Ohkawa, "633-nm InGaN-based red LEDs grown on thick underlying GaN layers with reduced in-plane residual stress," Appl. Phys. Lett. 116, 162101 (2020).
36. Z. Zhuang, D. Iida, M. Velazquez-Rizo, and K. Ohkawa, "630-nm red InGaN micro-light-emitting diodes (<20 μm x 20 μm) exceeding 1 mW/mm2 for full-color micro-displays," Photonics Res. 9, 1796-1802 (2021).
37. Z. Y. Chen, B. W. Sheng, F. Liu, S. F. Liu, D. Li, Z. X. Yuan, T. Wang, X. Rong, J. S. Huang, J. Y. Qiu, W. J. Liang, C. L. Zhao, L. Yan, J. S. Hu, S. P. Guo, W. K. Ge, B. Shen, and X. Q. Wang, "High-Efficiency InGaN Red Mini-LEDs on Sapphire Toward Full-Color Nitride Displays: Effect of Strain Modulation," Adv. Funct. Mater. 33, 2300042 (2023).
38. Z. Zhuang, D. Iida, and K. Ohkawa, "InGaN-based red light-emitting diodes: from traditional to micro-LEDs," Jpn. J. Appl. Phys. 61, SA0809 (2022).
39. H. S. Chen, C. F. Lu, D. M. Yeh, C. F. Huang, J. J. Huang, and C. C. Yang, "Orange-red light-emitting diodes based on a prestrained InGaN-GaN quantum-well epitaxy structure," IEEE Photonic Tech. L. 18, 2269-2271 (2006).
40. C. Altinkaya, R. S. Jalmood, M. A. Najmi, D. Iida, and K. Ohkawa, "650 nm emitting InGaN red micro-LEDs with ITO n-electrodes," Appl. Phys. Express 18, 061001 (2025).
41. M. Achermann, M. A. Petruska, D. D. Koleske, M. H. Crawford, and V. I. Klimov, "Nanocrystal-based light-emitting diodes utilizing high-efficiency nonradiative energy transfer for color conversion," Nano Letters 6, 1396-1400 (2006).’
42. S. Nizamoglu, E. Sari, J. H. Baek, I. H. Lee, and H. V. Demir, "White light generation by resonant nonradiative energy transfer from epitaxial InGaN/GaN quantum wells to colloidal CdSe/ZnS core/shell quantum dots," New J. Phys. 10, 123001 (2008).
43. S. Nizamoglu, E. Sari, J. H. Baek, I. H. Lee, and H. V. Demir, "Green/Yellow Solid-State Lighting via Radiative and Nonradiative Energy Transfer Involving Colloidal Semiconductor Nanocrystals," IEEE Journal of Selected Topics in Quantum Electronics 15, 1163-1170 (2009).
44. S. Chanyawadee, P. G. Lagoudakis, R. T. Harley, M. D. B. Charlton, D. V. Talapin, H. W. Huang, and C. H. Lin, "Increased Color-Conversion Efficiency in Hybrid Light-Emitting Diodes utilizing Non-Radiative Energy Transfer," Adv. Mater. 22, 602-606 (2010).
45. X. S. Xu, and H. Y. Wang, "Resonant energy transfer between patterned InGaN/GaN quantum wells and CdSe/ZnS quantum dots," Nanoscale 8, 342-347 (2016).
46. C. Y. Liu, T. P. Chen, J. K. Huang, T. N. Lin, C. Y. Huang, X. L. Li, H. C. Kuo, J. L. Shen, and C. Y. Chang, "Enhanced Color-Conversion Efficiency of Hybrid Nanostructured-Cavities InGaN/GaN Light-Emitting Diodes Consisting of Nontoxic InP Quantum Dots," IEEE Journal of Selected Topics in Quantum Electronics 23, 2000607 (2017).
47. L. Xu, J. Xu, Z. Y. Ma, W. Li, X. F. Huang, and K. J. Chen, "Direct observation of resonant energy transfer between quantum dots of two different sizes in a single water droplet," Appl. Phys. Lett. 89, 033121 (2006).
48. E. Mutlugün, S. Nizamoglu, and H. V. Demir, "Highly efficient nonradiative energy transfer using charged CdSe/ZnS nanocrystals for light-harvesting in solution," Appl. Phys. Lett. 95, 033106 (2009).
49. P. T. Snee, C. M. Tyrakowski, L. E. Page, A. Isovic, and A. M. Jawaid, "Quantifying Quantum Dots through Forster Resonant Energy Transfer," J. Phys. Chem. C 115, 19578-19582 (2011).
50. K. F. Chou, and A. M. Dennis, "Forster Resonance Energy Transfer between Quantum Dot Donors and Quantum Dot Acceptors," Sensors 15, 13288-13325 (2015).
51. J. B. Hoffman, R. Alam, and P. V. Kamat, "Why Surface Chemistry Matters for QD-QD Resonance Energy Transfer," ACS Energy Lett. 2, 391-396 (2017).
52. P. Roy, G. Devatha, S. Roy, A. Rao, and P. P. Pillai, "Electrostatically Driven Resonance Energy Transfer in an All-Quantum Dot Based Donor-Acceptor System," J. Phys. Chem. Lett. 11, 5354-5360 (2020).
53. S. B. Yang, S. H. Wu, Y. S. Lin, C. J. Chu, and C. C. Yang, "Surface plasmon coupling effects on the behaviors of radiative and non-radiative recombination in an InGaN/GaN quantum well," J. Appl. Phys. 133, 023104 (2023).
54. H. Y. Hsieh, P. W. Liou, S. B. Yang, W. C. Chen, L. P. Liang, Y. C. Lee, and C. C. Yang, "Behaviors of AlGaN Strain Relaxation on a GaN Porous Structure Studied with d-Spacing Crystal Lattice Analysis," Nanomaterials 13, 1617 (2023).
55. W. F. Tse, R. N. Wu, C. C. Lu, Y. C. Hsu, Y. P. Chen, S. Y. Kuo, Y. C. Su, P. H. Wu, Y. Kuo, Y. W. Kiang, and C. C. Yang, "Spatial range of the plasmonic Dicke effect in an InGaN/GaN multiple quantum well structure," Nanotechnology 31, 295001 (2020).
56. B. M. Garraway, "The Dicke model in quantum optics: Dicke model revisited," Philos. T. R. Soc. A 369, 1137-1155 (2011).
57. M. Achermann, M. A. Petruska, S. Kos, D. L. Smith, D. D. Koleske, and V. I. Klimov, "Energy-transfer pumping of semiconductor nanocrystals using an epitaxial quantum well," Nature 429, 642-646 (2004).
58. S. Kos, M. Achermann, V. I. Klimov, and D. L. Smith, "Different regimes of Forster-type energy transfer between an epitaxial quantum well and a proximal monolayer of semiconductor nanocrystals," Physical Review B 71, 205309 (2005).
59. T. N. Lin, L. T. Huang, G. W. Shu, C. T. Yuan, J. L. Shen, C. A. J. Lin, W. H. Chang, C. H. Chiu, D. W. Lin, C. C. Lin, and H. C. Kuo, "Distance dependence of energy transfer from InGaN quantum wells to graphene oxide," Opt. Lett. 38, 2897-2899 (2013).
60. J. B. Hoffman, H. Choi, and P. V. Kamat, "Size-Dependent Energy Transfer Pathways in CdSe Quantum Dot-Squaraine Light-Harvesting Assemblies: Forster versus Dexter," J. Phys. Chem. C 118, 18453-18461 (2014).
61. P. L. Hernández-Martínez, A. O. Govorov, and H. V. Demir, "Generalized Theory of Forster-Type Nonradiative Energy Transfer in Nanostructures with Mixed Dimensionality," J Phys. Chem. C 117, 10203-10212 (2013).
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99212-
dc.description.abstract福斯特共振能量轉移 (Förster resonance energy transfer, FRET) 是一種實現高效光色轉換的重要近場能量轉移機制,包括彩色顯示在内具有衆多應用價值。利用此機制製作元件時, 能量授者與受者之間的距離是最大化光色轉換效率的重要因素。在本研究中,我們設計實施了三個系列的實驗來探討FRET行爲, 特別是FRET效率對於授者與受者之間距離的變化關係。這三個系列實驗包括: (1) 一個藍光氮化銦鎵/氮化鎵量子井至鄰近的一個綠光量子井的FRET過程, (2) 溶液中的綠光膠體量子點至鄰近的紅光量子點的FRET過程, (3) 一個量子井至其上覆蓋量子點的FRET過程。在兩個鄰近量子井之間,不僅是它們的距離,還有量子井内的量子侷限斯達克效應 (quantum-confined Stark effect) 都會影響其FRET的行爲。在溶液中的相鄰量子點之間,FRET的行爲也由它們的相對表面電荷,相對量子點濃度以及它們的平均間距所控制。至於在一個量子井與其上鋪蓋的量子點之間,利用自組裝 (self-assembly) 技術所製作的樣品内,除了量子井覆蓋層非常薄的情況下,並未有明顯的能量轉移特徵,在這一情況下,電子直接轉移造成能量轉移可能發生。然而,當我們使用液滴塗布 (drop-cast) 的方法在樣品表面鋪蓋量子點時,就可觀察到隨距離變化的FRET行爲。從FRET效率隨距離變化的擬合結果來看,不易發現FRET效率隨距離變化與授者或受者的結構維度有什麽明顯的關係。zh_TW
dc.description.abstractThe Förster resonance energy transfer (FRET) is an important near-field energy transfer process for implementing effective color conversion, which can find many useful applications including color display. In fabricating such a device, the distance between the energy donor and acceptor is a crucial factor for maximizing the color conversion efficiency. In this research, three series of experiments are performed for studying the FRET behaviors, particularly the dependencies of FRET efficiency on the donor-acceptor distance. They include (1) the FRET process from a blue-emitting InGaN/GaN quantum well (QW) into a nearby green-emitting QW, (2) that from a green-emitting colloidal quantum dot (QD) into a nearby red-emitting QD in the solution, and (3) that from a QW into overlaid QDs. Between two neighboring QWs, not only their separation but also the quantum-confined Stark effect in the QWs can affect the FRET behavior. Between two neighboring QDs in a solution, the FRET behavior is also controlled by their relative surface charges and their relative QD concentrations besides their average spacing. Between a QW and overlaid QDs, the technique of self-assembly results in no clear energy transfer behavior except the condition of an extremely small QW capping layer thickness, under which a process of direct electron transfer occurs. However, based on the technique of drop-casting for overlaying QDs, a distance-dependent FRET behavior is observed. From the fitting results of FRET efficiency, it is difficult to find a close relation between the distance dependence of FRET efficiency and the structure dimension of the donor or acceptor.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-21T16:49:50Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-08-21T16:49:50Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents摘要 I
Abstract II
Contents III
List of Figures VI
List of Tables XIII
Chapter 1 Introduction 1
1.1 Color conversion or photon down-conversion 1
1.2 Förster resonance energy transfer 2
1.3 Colloidal quantum dot 4
1.4 Multiple-color quantum-well structures 5
1.5 Quantum-confined Stark effect in an InGaN/GaN quantum well 6
1.6 Research motivations 7
1.7 Structure of the dissertation 8
Chapter 2 Sample Structures, Fabrication Methods, and Measurement Techniques 12
2.1 InGaN/GaN quantum well growth conditions 12
2.2 Surface charge control on quantum well and quantum dot samples 12
2.3 Optical characterization methods 13
Chapter 3 Energy Transfer between Two Neighboring InGaN/GaN Quantum Wells 18
3.1 Sample structures and designations 18
3.2 Time-resolved and continuous photoluminescence studies 19
3.3 Influence of the quantum-confined Stark effect 21
3.4 Discussions 24
Chapter 4 Energy Transfer between Neighboring Colloidal Quantum Dots 48
4.1 Sample designations and experimental procedures 48
4.2 Results of time-resolved photoluminescence measurement 51
4.3 Results of continuous photoluminescence measurement 54
4.4 Relation between Förster resonance energy transfer and color conversion 55
4.5 Fitting the distance dependence of FRET efficiency 56
4.6 Discussions 58
Chapter 5 Energy Transfer between an InGaN/GaN Quantum Well and Overlaid Colloidal Quantum Dots 96
5.1 Sample structures and designations 96
5.2 Results of time-resolved photoluminescence spectroscopy in self-assembled quantum dot samples 98
5.3 Results of time-resolved photoluminescence spectroscopy in drop-casted quantum dot samples 99
5.4 Discussions 101
Chapter 6 Further Discussions, Conclusions and Future Work 115
References 122
Publication List 130
-
dc.language.isoen-
dc.subject福斯特共振能量轉移zh_TW
dc.subject光色轉換zh_TW
dc.subject量子井zh_TW
dc.subject膠體量子點zh_TW
dc.subject結構維度zh_TW
dc.subjectquantum wellen
dc.subjectFörster resonance energy transferen
dc.subjectstructure dimensionen
dc.subjectdistance dependenceen
dc.subjectcolloidal quantum doten
dc.subjectcolor conversionen
dc.title不同結構維度的能量授者與受者之間的近場能量轉移與光色轉換zh_TW
dc.titleNear-field Energy Transfers and Color Conversions between the Energy Donors and Acceptors of Different Structure Dimensionsen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree博士-
dc.contributor.oralexamcommittee程育人;張允崇;林建中;廖哲浩;郭仰zh_TW
dc.contributor.oralexamcommitteeYuh-Jen Cheng;Yun-Chorng Chang;Chien-Chung Lin;Che-Hao Liao;Yang Kuoen
dc.subject.keyword福斯特共振能量轉移,光色轉換,量子井,膠體量子點,結構維度,zh_TW
dc.subject.keywordFörster resonance energy transfer,color conversion,quantum well,colloidal quantum dot,distance dependence,structure dimension,en
dc.relation.page134-
dc.identifier.doi10.6342/NTU202502691-
dc.rights.note未授權-
dc.date.accepted2025-07-31-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept光電工程學研究所-
dc.date.embargo-liftN/A-
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
  未授權公開取用
9.01 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved