Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 植物病理與微生物學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99204
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor鍾嘉綾zh_TW
dc.contributor.advisorChia-Lin Chungen
dc.contributor.author朱宜翎zh_TW
dc.contributor.authorYi-Ling Chuen
dc.date.accessioned2025-08-21T16:48:04Z-
dc.date.available2025-08-22-
dc.date.copyright2025-08-21-
dc.date.issued2025-
dc.date.submitted2025-08-01-
dc.identifier.citationAlexa, A., and Rahnenführer, J. 2024. Gene set enrichment analysis with topGO. Bioconductor Improv. 27:776.
Amatulli, M. T., Spadaro, D., Gullino, M. L., and Garibaldi, A. 2010. Molecular identification of Fusarium spp. associated with bakanae disease of rice in Italy and assessment of their pathogenicity. Plant Pathol. 59:839-844.
An, Y. N., Murugesan, C., Choi, H., Kim, K. D., and Chun, S.-C. 2023. Current studies on bakanae disease in rice: host range, molecular identification, and disease management. Mycobiology 51:195-209.
Baker, J. T., Allen, L. H., and Boote, K. J. 1992. Response of rice to carbon dioxide and temperature. Agric. For. Meteorol. 60:153-166.
Bashyal, B. M. 2018. Etiology of an emerging disease: bakanae of rice. Indian Phytopathol. 71:485-494.
Bashyal, B. M., Rawat, K., Parmar, P., Gupta, A. K., Gupta, S., Krishnan, S. G., Choudhary, R., Ercisli, S., Kovacevic, A., and Aggarwal, R. 2022. Transcriptomic analysis of bakanae disease resistant and susceptible rice genotypes in response to infection by Fusarium fujikuroi. Mol. Biol. Rep. 49:11959-11972.
Ben Saad, R., Ben Romdhane, W., Čmiková, N., Baazaoui, N., Bouteraa, M. T., Ben Akacha, B., Chouaibi, Y., Maisto, M., Ben Hsouna, A., Garzoli, S., Wiszniewska, A., and Kačániová, M. 2024. Research progress on plant stress‐associated protein (SAP) family: Master regulators to deal with environmental stresses. BioEssays 46.
Bui, D.-C., Lee, Y., Lim, J. Y., Fu, M., Kim, J.-C., Choi, G. J., Son, H., and Lee, Y.-W. 2016. Heat shock protein 90 is required for sexual and asexual development, virulence, and heat shock response in Fusarium graminearum. Sci. Rep. 6:28154.
Chan, Z.-L., Ding, K.-J., Tan, G.-J., Zhu, S.-J., Chen, Q., Su, X.-Y., Ma, K., and Wang, A.-E. 2004. Epidemic regularity of rice bakanae disease. J. Anhui Agric. Univ. 31:139-142.
Chang, Y., C. 2003. Rice bakanae disease. Pages 258-264 in: Compendium of rice diseases and pests. Animal and Plant Health Inspection Agency, Ministry of Agriculture, Taipei, Taiwan. (in Chinese)
Chen, C.-Y., Chen, S.-Y., Liu, C.-W., Wu, D.-H., Kuo, C.-C., Lin, C.-C., Chou, H.-P., Wang, Y.-Y., Tsai, Y.-C., Lai, M.-H., and Chung, C.-L. 2020a. Invasion and colonization pattern of Fusarium fujikuroi in rice. Phytopathology 110:1934-1945.
Chen, J., Xu, Y., Fei, K., Wang, R., He, J., Fu, L., Shao, S., Li, K., Zhu, K., Zhang, W., Wang, Z., and Yang, J. 2020b. Physiological mechanism underlying the effect of high temperature during anthesis on spikelet-opening of photo-thermo-sensitive genic male sterile rice lines. Sci. Rep. 10: 2210.
Chen, L., Geng, X., Ma, Y., Zhao, J., Chen, W., Xing, X., Shi, Y., Sun, B., and Li, H. 2019c. The ER lumenal Hsp70 protein FpLhs1 is important for conidiation and plant infection in Fusarium pseudograminearum. Front. Microbiol. 10:1401.
Chen, Q., Huang, X., Chen, X., Shamsunnaher, and Song, W.-Y. 2019a. Reversible activation of XA21-mediated resistance by temperature. Eur. J. Plant Pathol. 153:1177-1184.
Chen, S.-Y., Lai, M.-H., Tung, C.-W., Wu, D.-H., Chang, F.-Y., Lin, T.-C., and Chung, C.-L. 2019b. Genome-wide association mapping of gene loci affecting disease resistance in the rice-Fusarium fujikuroi pathosystem. Rice 12:85.
Chen, Y. N., Wu, D. H., Chen, M. C., Hsieh, M. T., Jwo, W. S., Lin, G. C., Chen, R. K., Chou, H. P., and Chen, P. C. 2023. Dynamics of spatial and temporal population structure of Pyricularia oryzae in Taiwan. Pest Manag. Sci. 79:4254-4263.
Chen, Y.-C., Lai, M.-H., Wu, C.-Y., Lin, T.-C., Cheng, A.-H., Yang, C.-C., Wu, H.-Y., Chu, S.-C., Kuo, C.-C., Wu, Y.-F., Lin, G.-C., Tseng, M.-N., Tsai, Y.-C., Lin, C.-C., Chen, C.-Y., Huang, J.-W., Lin, H.-A., and Chung, C.-L. 2016. The genetic structure, virulence, and fungicide sensitivity of Fusarium fujikuroi in Taiwan. Phytopathology 106:624-635.
Cheng, A.-P., Chen, S.-Y., Lai, M.-H., Wu, D.-H., Lin, S.-S., Chen, C.-Y., and Chung, C.-L. 2020. Transcriptome analysis of early defenses in rice against Fusarium fujikuroi. Rice 13:65.
Chiang, S.-H. . 2022. Identification of rice stress associated proteins in the salicylic acid-mediated immune pathway [Master’s thesis, National Taiwan University]. NTU Theses and Dissertations Repository. http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84554
Chujo, T., Miyamoto, K., Shimogawa, T., Shimizu, T., Otake, Y., Yokotani, N., Nishizawa, Y., Shibuya, N., Nojiri, H., Yamane, H., Minami, E., and Okada, K. 2013. OsWRKY28, a PAMP-responsive transrepressor, negatively regulates innate immune responses in rice against rice blast fungus. Plant Mol. Biol. 82:23-37.
Cohen, S. P., and Leach, J. E. 2020. High temperature-induced plant disease susceptibility: more than the sum of its parts. Curr. Opin. Plant Biol. 56:235-241.
De Bruyne, L., Höfte, M., and De Vleesschauwer, D. 2014. Connecting growth and defense: the emerging roles of brassinosteroids and gibberellins in plant innate immunity. Mol. Plant 7:943-959.
Dong, X., Ling, N., Wang, M., Shen, Q., and Guo, S. 2012. Fusaric acid is a crucial factor in the disturbance of leaf water imbalance in Fusarium-infected banana plants. Plant Physiol. Biochem. 60:171-179.
Dong, X., Xiong, Y., Ling, N., Shen, Q., and Guo, S. 2014. Fusaric acid accelerates the senescence of leaf in banana when infected by Fusarium. World J. Microbiol. Biotechnol. 30:1399-1408.
Dossa, G. S., Quibod, I., Atienza-Grande, G., Oliva, R., Maiss, E., Vera Cruz, C., and Wydra, K. 2020. Rice pyramided line IRBB67 (Xa4/Xa7) homeostasis under combined stress of high temperature and bacterial blight. Sci. Rep. 10:683.
Gómez-Gómez, E., Ruı́z-Roldán, M. C., Di Pietro, A., Roncero, M. I. G., and Hera, C. 2002. Role in pathogenesis of two endo-β-1,4-xylanase genes from the vascular wilt fungus Fusarium oxysporum. Fungal Genet. Biol. 35:213-222.
Gupta, R., Anand, G., and Bar, M. 2023. Developmental phytohormones: key players in host-microbe interactions. J. Plant Growth Regul. 42:7330-7351.
Helliwell, E. E., Wang, Q., and Yang, Y. 2013. Transgenic rice with inducible ethylene production exhibits broad‐spectrum disease resistance to the fungal pathogens Magnaporthe oryzae and Rhizoctonia solani. Plant Biotechnol. J. 11:33-42.
Hernández-García, J., Briones-Moreno, A., and Blázquez, M. A. 2021. Origin and evolution of gibberellin signaling and metabolism in plants. Semin. Cell Dev. Biol. 109:46-54.
Hsiao, P.-Y., Zeng, C.-Y., and Shih, M.-C. 2024. Group VII ethylene response factors forming distinct regulatory loops mediate submergence responses. Plant Physiol. 194:1745–1763.
Hsu, C. C., Chen, C. Y., and Huang, J. W. 2021. Development of the differential medium of Fusarium fujikuroi, the causal agent of rice bakanae disease. Bull. Taichung DARES 152:53-75. (in Chinese with English abstract)
Hsu, C. C., Huang, J. W., and Chen, C. Y. 2013. The cause of rice bakanae disease in Taiwan. Plant Pathol. Bull. 22:279-289. (in Chinese with English abstract)
Huang, T. C., and Chu, S. C. 2009. Occurrence and management of bakanae disease of rice. Pages 29–43 in: Proceedings of symposium on achievements and perspectives of rice protection in Taiwan. Ni, H. F. and Yang, H. R., eds. TARI Special Publication No. 138. (in Chinese)
Iqbal, N., Czékus, Z., Ördög, A., and Poór, P. 2024. Fusaric acid-evoked oxidative stress affects plant defence system by inducing biochemical changes at subcellular level. Plant Cell Rep. 43:2.
Jagadish, S., Craufurd, P., and Wheeler, T. 2007. High temperature stress and spikelet fertility in rice (Oryza sativa L.). J. Exp. Bot. 58:1627-1635.
Janevska, S., and Tudzynski, B. 2018. Secondary metabolism in Fusarium fujikuroi: strategies to unravel the function of biosynthetic pathways. Appl. Microbiol. Biotechnol. 102:615-630.
Javed, T., and Gao, S.-J. 2023. WRKY transcription factors in plant defense. Trends Genet. 39:787-801.
Jha, U. C., Nayyar, H., and Siddique, K. H. M. 2022. Role of phytohormones in regulating heat stress acclimation in agricultural crops. J. Plant Growth Regul. 41:1041-1064.
Ji, Z., Zeng, Y., Liang, Y., Qian, Q., and Yang, C. 2016. Transcriptomic dissection of the rice–Fusarium fujikuroi interaction by RNA-Seq. Euphytica 211:123-137.
Korotkevich, G., Sukhov, V., Budin, N., Shpak, B., Artyomov, M. N., and Sergushichev, A. 2016. Fast gene set enrichment analysis. bioRxiv 060012.
Krishnan, P., Ramakrishnan, B., Reddy, K. R., and Reddy, V. R. 2011. High-temperature effects on rice growth, yield, and grain quality. Pages 87-206 in: Advances in Agronomy, vol. 111. D. L. Sparks, ed. Academic Press.
Lee, H., Cha, J., Choi, C., Choi, N., Ji, H.-S., Park, S. R., Lee, S., and Hwang, D.-J. 2018. Rice WRKY11 plays a role in pathogen defense and drought tolerance. Rice 11:5.
Li, J. Y., Yang, C., Xu, J., Lu, H. P., and Liu, J. X. 2023. The hot science in rice research: How rice plants cope with heat stress. Plant Cell Environ. 46:1087-1103.
Lin, H.-Y. 2022. Deciphering the role of gibberellic acid in the rice-Fusarium fujikuroi interaction [Master’s thesis, National Taiwan University]. NTU Theses and Dissertations Repository. http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86114
Liu, F., Xi, M., Liu, T., Wu, X., Ju, L., and Wang, D. 2024. The central role of transcription factors in bridging biotic and abiotic stress responses for plants’ resilience. New Crops 1:100005.
Liu, H., and Timko, M. P. 2021. Jasmonic acid signaling and molecular crosstalk with other phytohormones. Int. J. Mol. Sci. 22:2914.
Liu, J., Hasanuzzaman, M., Wen, H., Zhang, J., Peng, T., Sun, H., and Zhao, Q. 2019. High temperature and drought stress cause abscisic acid and reactive oxygen species accumulation and suppress seed germination growth in rice. Protoplasma 256:1217-1227.
Lo, S.-F., Ho, T.-H. D., Liu, Y.-L., Jiang, M.-J., Hsieh, K.-T., Chen, K.-T., Yu, L.-C., Lee, M.-H., Chen, C.-Y., Huang, T.-P., Kojima, M., Sakakibara, H., Chen, L.-J., and Yu, S.-M. 2017. Ectopic expression of specific GA2 oxidase mutants promotes yield and stress tolerance in rice. Plant Biotechnol. J. 15:850-864.
Luo, Y., TeBeest, D. O., Teng, P. S., and Fabellar, N. G. 1995. Simulation studies on risk analysis of rice leaf blast epidemics associated with global climate change in several Asian countries. J. Biogeogr. 22:673-678.
Ma, H., and Zhao, J. 2010. Genome-wide identification, classification, and expression analysis of the arabinogalactan protein gene family in rice (Oryza sativa L.). J. Exp. Bot. 61:2647-2668.
Malonek, S., Bomke, C., Bornberg-Bauer, E., Rojas, M. C., Hedden, P., Hopkins, P., and Tudzynski, B. 2005. Distribution of gibberellin biosynthetic genes and gibberellin production in the Gibberella fujikuroi species complex. Phytochemistry 66:1296-1311.
Matić, S., Bagnaresi, P., Biselli, C., Orru’, L., Amaral Carneiro, G., Siciliano, I., Valé, G., Gullino, M. L., and Spadaro, D. 2016. Comparative transcriptome profiling of resistant and susceptible rice genotypes in response to the seedborne pathogen Fusarium fujikuroi. BMC Genom. 17:608.
Matić, S., Garibaldi, A., and Gullino, M. L. 2021. Combined and single effects of elevated CO2 and temperatures on rice bakanae disease under controlled conditions in phytotrons. Plant Pathol. 70:815-826.
Matic, S., Gullino, M. L., and Spadaro, D. 2017. The puzzle of bakanae disease through interactions between Fusarium fujikuroi and rice. Front. Biosci. 9:333-344.
Mittal, D., Chakrabarti, S., Sarkar, A., Singh, A., and Grover, A. 2009. Heat shock factor gene family in rice: Genomic organization and transcript expression profiling in response to high temperature, low temperature and oxidative stresses. Plant Physiol. Biochem. 47:785-795.
Moscetti, I., Tundo, S., Janni, M., Sella, L., Gazzetti, K., Tauzin, A., Giardina, T., Masci, S., Favaron, F., and D'Ovidio, R. 2013. Constitutive expression of the xylanase inhibitor TAXI-III delays Fusarium head blight symptoms in durum wheat transgenic plants. Mol. Plant-Microbe Interact. 26:1464-1472.
National Aeronautics and Space Administration Goddard Institute for Space Studies. 2025. GISS Surface Temperature Analysis (v4). Available at: https://data.giss.nasa.gov/gistemp/graphs_v4/ (Accessed on 2025/06/01).
National Science and Technology Council, Research Center of Environmental Changes, Academia Sinica, Central Weather Administration, Department of Earth Sciences, National Taiwan Normal University, and National Science and Technology Center for Disaster Reduction. 2021. Summary of scientific highlights from the IPCC Sixth Assessment Report and updated assessment of climate change in Taiwan. (in Chinese)
Nevame, A. Y. M., Emon, R. M., Malek, M. A., Hasan, M. M., Alam, M. A., Muharam, F. M., Aslani, F., Rafii, M. Y., and Ismail, M. R. 2018. Relationship between high temperature and formation of chalkiness and their effects on quality of rice. BioMed Res. Int. 2018:1-18.
Ng, D. W. K., Abeysinghe, J. K., and Kamali, M. 2018. Regulating the regulators: The control of transcription factors in plant defense signaling. Int. J. Mol. Sci. 19:3737.
Nguyen, Q. B., Itoh, K., Van Vu, B., Tosa, Y., and Nakayashiki, H. 2011. Simultaneous silencing of endo‐β‐1,4 xylanase genes reveals their roles in the virulence of Magnaporthe oryzae. Mol. Microbiol. 81:1008-1019.
Niehaus, E.-M., Kim, H.-K., Münsterkötter, M., Janevska, S., Arndt, B., Kalinina, S. A., Houterman, P. M., Ahn, I.-P., Alberti, I., Tonti, S., Kim, D.-W., Sieber, C. M. K., Humpf, H.-U., Yun, S.-H., Güldener, U., and Tudzynski, B. 2017. Comparative genomics of geographically distant Fusarium fujikuroi isolates revealed two distinct pathotypes correlating with secondary metabolite profiles. PLOS Pathog. 13:e1006670.
Oh, C.-S., Kim, H., and Lee, C. 2013. Rice cell wall polysaccharides: Structure and biosynthesis. J. Plant Biol. 56:274-282.
Oikawa, T., Koshioka, M., Kojima, K., Yoshida, H., and Kawata, M. 2004. A role of OsGA20ox1, encoding an isoform of gibberellin 20-oxidase, for regulation of plant stature in rice. Plant Mol. Biol. 55:687-700.
Onaga, G., Wydra, K. D., Koopmann, B., Séré, Y., and von Tiedemann, A. 2017. Elevated temperature increases in planta expression levels of virulence related genes in Magnaporthe oryzae and compromises resistance in Oryza sativa cv. Nipponbare. Func. Plant Biol. 44:358-371.
Pabuayon, I. C. M., Kitazumi, A., Cushman, K. R., Singh, R. K., Gregorio, G. B., Dhatt, B., Zabet-Moghaddam, M., Walia, H., and De Los Reyes, B. G. 2021. Novel and transgressive salinity tolerance in recombinant inbred lines of rice created by physiological coupling-uncoupling and network rewiring effects. Front. Plant Sci. 12:615277.
Paccanaro, M. C., Sella, L., Castiglioni, C., Giacomello, F., Martínez-Rocha, A. L., D’Ovidio, R., Schäfer, W., and Favaron, F. 2017. Synergistic effect of different plant cell wall–degrading enzymes is important for virulence of Fusarium graminearum. Mol. Plant-Microbe Interact. 30:886-895.
Peng, S., Huang, J., Sheehy, J. E., Laza, R. C., Visperas, R. M., Zhong, X., Centeno, G. S., Khush, G. S., and Cassman, K. G. 2004. Rice yields decline with higher night temperature from global warming. Proc. Natl. Acad. Sci. USA 101:9971-9975.
Piombo, E., Bosio, P., Acquadro, A., Abbruscato, P., and Spadaro, D. 2020. Different phenotypes, similar genomes: Three newly sequenced Fusarium fujikuroi strains induce different symptoms in rice depending on temperature. Phytopathology 110:656-665.
Prerostova, S., and Vankova, R. 2023. Phytohormone-mediated regulation of heat stress response in plants. Pages 167-206 in: Plant Hormones and Climate Change. G. J. Ahammed and J. Yu, eds. Springer Nature Singapore.
Puyam, A., Pannu, P. P. S., Kaur, J., and Sethi, S. 2017. Variability in production of gibberellic acid and fusaric acid by Fusarium moniliforme and their relationship. J. Plant Pathol. 99:103-108.
Qin, X., Liu, J. H., Zhao, W. S., Chen, X. J., Guo, Z. J., and Peng, Y. L. 2013. Gibberellin 20-oxidase gene OsGA20ox3 regulates plant stature and disease development in rice. Mol. Plant-Microbe Interact. 26:227-239.
Qiu, J., Xie, J., Chen, Y., Shen, Z., Shi, H., Naqvi, N. I., Qian, Q., Liang, Y., and Kou, Y. 2022. Warm temperature compromises JA-regulated basal resistance to enhance Magnaporthe oryzae infection in rice. Mol. Plant 15:723-739.
Raghu, S., Guru-Pirasanna, G., Baite, M., Yadav, M., Prabhukarthikeyan, S., Keerthana, U., and Rath, P. 2021. Estimation of yield loss and relationship of weather parameters on incidence of bakanae disease in rice varieties under shallow low land ecologies of Eastern India. J. Environ. Biol. 42:995-1001.
Roychowdhury, R., Hada, A., Biswas, S., Mishra, S., Prusty, M. R., Das, S. P., Ray, S., Kumar, A., and Sarker, U. 2025. Jasmonic acid (JA) in plant immune response: Unravelling complex molecular mechanisms and networking of defence signalling against pathogens. J. Plant Growth Regul. 44:89-114.
Saito, H., Sasaki, M., Nonaka, Y., Tanaka, J., Tokunaga, T., Kato, A., Thuy Tran Thi, T., Vang Le, V., Tuong Le, M., Kanematsu, S., Suzuki, T., Kurauchi, K., Fujita, N., Teraoka, T., Komatsu, K., and Arie, T. 2021. Spray application of nonpathogenic Fusaria onto rice flowers controls bakanae disease (caused by Fusarium fujikuroi) in the next plant generation. Appl. Environ. Microbiol. 87:e01959-01920.
Sakai, M., Sakamoto, T., Saito, T., Matsuoka, M., Tanaka, H., and Kobayashi, M. 2003. Expression of novel rice gibberellin 2-oxidase gene is under homeostatic regulation by biologically active gibberellins. J. Plant Res. 116:161-164.
Sella, L., Gazzetti, K., Faoro, F., Odorizzi, S., D'Ovidio, R., Schäfer, W., and Favaron, F. 2013. A Fusarium graminearum xylanase expressed during wheat infection is a necrotizing factor but is not essential for virulence. Plant Physiol. Biochem. 64:1-10.
Sempere, F., and Santamarina, M. P. 2009. The conidia formation of several Fusarium species. Ann. Microbiol. 59:663-674.
Shao, C., Shen, L., Qiu, C., Wang, Y., Qian, Y., Chen, J., Ouyang, Z., Zhang, P., Guan, X., Xie, J., Liu, G., and Peng, C. 2021. Characterizing the impact of high temperature during grain filling on phytohormone levels, enzyme activity and metabolic profiles of an early indica rice variety. Plant Biol. 23:806-818.
Shew, A. M., Durand-Morat, A., Nalley, L. L., Zhou, X.-G., Rojas, C., and Thoma, G. 2019. Warming increases bacterial panicle blight (Burkholderia glumae) occurrences and impacts on USA rice production. PLoS One 14:e0219199.
Shigenaga, A. M., and Argueso, C. T. 2016. No hormone to rule them all: Interactions of plant hormones during the responses of plants to pathogens. Semin. Cell Dev. Biol. 56:174-189.
Shin, S., Ryu, H., Jung, J.-Y., Yoon, Y.-J., Kwon, G., Lee, N., Kim, N. H., Lee, R., Oh, J., Baek, M., Choi, Y. S., Lee, J., and Kim, K.-H. 2023. Past and future epidemiological perspectives and integrated management of rice bakanae in Korea. Plant Pathol. J. 39:1-20.
Shrestha, S., Mahat, J., Shrestha, J., K.C, M., and Paudel, K. 2022. Influence of high-temperature stress on rice growth and development. A review. Heliyon 8:e12651.
Singh, B. K., Delgado-Baquerizo, M., Egidi, E., Guirado, E., Leach, J. E., Liu, H., and Trivedi, P. 2023. Climate change impacts on plant pathogens, food security and paths forward. Nat. Rev. Microbiol. 21:640-656.
Stępień, Ł., Lalak-Kańczugowska, J., Witaszak, N., and Urbaniak, M. 2020. Fusarium secondary metabolism biosynthetic pathways: so close but so far away. Pages 211-247 in: Co-Evolution of Secondary Metabolites. J.-M. Mérillon and K. G. Ramawat, eds.
Taiwan Climate Change Projection Information and Adaptation Knowledge Platform. 2023. https://tccip.ncdr.nat.gov.tw/ds_01_station.aspx. (Accessed: 2025/06/01)
Tang, Y., Gao, C.-C., Gao, Y., Yang, Y., Shi, B., Yu, J.-L., Lyu, C., Sun, B.-F., Wang, H.-L., Xu, Y., Yang, Y.-G., and Chong, K. 2020. OsNSUN2-mediated 5-methylcytosine mRNA modification enhances rice adaptation to high temperature. Dev. Cell 53:272-286.e277.
Tudzynski, B. 2005. Gibberellin biosynthesis in fungi: genes, enzymes, evolution, and impact on biotechnology. Appl. Microbiol. Biotechnol. 66:597-611.
Velásquez, A. C., Castroverde, C. D. M., and He, S. Y. 2018. Plant-pathogen warfare under changing climate conditions. Curr. Biol. 28:R619-R634.
Webb, K. M., Oña, I., Bai, J., Garrett, K. A., Mew, T., Vera Cruz, C. M., and Leach, J. E. 2010. A benefit of high temperature: increased effectiveness of a rice bacterial blight disease resistance gene. New Phytol. 185:568-576.
Westermann, A. J., Barquist, L., and Vogel, J. 2017. Resolving host–pathogen interactions by dual RNA-seq. PLOS Pathog. 13:e1006033.
Wiemann, P., Sieber, C. M. K., Von Bargen, K. W., Studt, L., Niehaus, E.-M., Espino, J. J., Huß, K., Michielse, C. B., Albermann, S., Wagner, D., Bergner, S. V., Connolly, L. R., Fischer, A., Reuter, G., Kleigrewe, K., Bald, T., Wingfield, B. D., Ophir, R., Freeman, S., Hippler, M., Smith, K. M., Brown, D. W., Proctor, R. H., Münsterkötter, M., Freitag, M., Humpf, H.-U., Güldener, U., and Tudzynski, B. 2013. Deciphering the cryptic genome: genome-wide analyses of the rice pathogen Fusarium fujikuroi reveal complex regulation of secondary metabolism and novel metabolites. PLoS Pathog. 9:e1003475.
Wu, C., Cui, K., Wang, W., Li, Q., Fahad, S., Hu, Q., Huang, J., Nie, L., and Peng, S. 2016. Heat-induced phytohormone changes are associated with disrupted early reproductive development and reduced yield in rice. Sci. Rep. 6:34978.
Wu, N., Yao, Y., Xiang, D., Du, H., Geng, Z., Yang, W., Li, X., Xie, T., Dong, F., and Xiong, L. 2022. A MITE variation‐associated heat‐inducible isoform of a heat‐shock factor confers heat tolerance through regulation of JASMONATE ZIM‐DOMAIN genes in rice. New Phytol. 234:1315-1331.
Xiao, J., Cheng, H., Li, X., Xiao, J., Xu, C., and Wang, S. 2013. Rice WRKY13 regulates cross talk between abiotic and biotic stress signaling pathways by selective binding to different cis-Elements. Plant Physiol. 163:1868-1882.
Xu, G., Li, M., Huang, M., Cui, Y., Wang, M., and Xia, X. 2013. The negative regulator OsSDS1 significantly reduces salt and drought tolerance in transgenic Arabidopsis. Plant Mol. Biol. Rep. 31:517-523.
Xu, H., Li, X., Zhang, H., Wang, L., Zhu, Z., Gao, J., Li, C., and Zhu, Y. 2020. High temperature inhibits the accumulation of storage materials by inducing alternative splicing of OsbZIP58 during filling stage in rice. Plant Cell Environ. 43:1879-1896.
Xu, Y., Chu, C., and Yao, S. 2021. The impact of high-temperature stress on rice: Challenges and solutions. Crop J. 9:963-976.
Yang, C., Li, W., Cao, J., Meng, F., Yu, Y., Huang, J., Jiang, L., Liu, M., Zhang, Z., Chen, X., Miyamoto, K., Yamane, H., Zhang, J., Chen, S., and Liu, J. 2017. Activation of ethylene signaling pathways enhances disease resistance by regulating ROS and phytoalexin production in rice. Plant J. 89:338-353.
Yang, D.-L., Li, Q., Deng, Y.-W., Lou, Y.-G., Wang, M.-Y., Zhou, G.-X., Zhang, Y.-Y., and He, Z.-H. 2008. Altered disease development in the eui mutants and Eui overexpressors indicates that gibberellins negatively regulate rice basal disease resistance. Mol. Plant 1:528-537.
Zhao, C., Liu, B., Piao, S., Wang, X., Lobell, D. B., Huang, Y., Huang, M., Yao, Y., Bassu, S., Ciais, P., Durand, J.-L., Elliott, J., Ewert, F., Janssens, I. A., Li, T., Lin, E., Liu, Q., Martre, P., Müller, C., Peng, S., Peñuelas, J., Ruane, A. C., Wallach, D., Wang, T., Wu, D., Liu, Z., Zhu, Y., Zhu, Z., and Asseng, S. 2017. Temperature increase reduces global yields of major crops in four independent estimates. Proc. Natl. Acad. Sci. USA 114:9326-9331.
Zheng, Z.-W., Chang, S.-J., and Chu, S.-C. 2016. The occurrence of bakanae disease and fungicide resistance of Fusarium fujikuroi on rice paddy, seedlings and seeds from Miaoli. Bull. Miaoli DARES 4:59-72. (in Chinese with English abstract)
Zhu, S., Gao, F., Cao, X., Chen, M., Ye, G., Wei, C., and Li, Y. 2005. The rice dwarf virus P2 protein interacts with ent-kaurene oxidases in vivo, leading to reduced biosynthesis of gibberellins and rice dwarf symptoms. Plant Physiol. 139:1935-1945.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99204-
dc.description.abstract全球暖化對作物及其病原菌皆造成深遠影響,嚴重危害農業生產及糧食安全。 Fusarium fujikuroi 引起之水稻徒長病過去被視為次要病害,近年來卻已成為限制生產的重要因子之一,其是否受暖化影響仍待釐清。本研究探討高溫下臺灣徒長病菌株的生理反應及徒長病病程變化,並分析高溫對水稻抗性與病原菌毒力在轉錄層級的影響。結果顯示,高溫同時抑制徒長病菌毒力與水稻防禦,從而改變病程發展。高溫下徒長病菌菌絲生長、孢子萌發及吉貝素 (GA3) 合成均受到抑制;水稻防禦反應亦減弱,尤以植物賀爾蒙訊號傳遞與轉錄因子調控最為明顯。在徒長病菌與水稻雙雙弱化下,徒長病發生情形減輕,導致病害嚴重度、植體內徒長病菌菌量、GA3及鐮孢菌酸 (fusaric acid) 訊號降低。結合溫度 (日/夜30/25℃與35/30℃)、水稻品種 [臺農67號 (TNG67) 與Zerawchanica Karatals (ZK)] 以及接種處理 (徒長病菌接種組與健康對照組) 作為變因進行轉錄體分析。主成分分析與差異表達基因 (differentially expressed gene, DEG) 分析顯示高溫對基因表現的影響較徒長病菌侵染更為顯著,且TNG67中所鑑定出的DEGs數量也多於 ZK。熱逆境下光合作用、氧化還原穩態、碳水化合物代謝、膜完整性與RNA修飾相關的基因本體詞彙 (Gene Ontology term, GO term) 顯著富集,其中的DEGs在TNG67中普遍受到下調、在ZK中則以上調居多,顯示TNG67與ZK具有不同的熱適應策略。感染徒長病時,防禦相關 之GO terms (如:植物賀爾蒙訊息傳遞) 顯著富集,且其中的DEGs在兩個品種中皆呈上調。無論是在健康或是接種徒長病菌的植株中,茉莉酸 (jasmonic acid, JA) 與水楊酸 (salicylic acid, SA) 訊息傳遞在高溫下皆遭抑制,使得整體防禦反應削弱。乙烯 (ethylene, ET) 訊息傳遞則在高溫與徒長病菌侵染逆境下皆上調,可能是其中的整合性角色。多個廣泛參與抗性調控的轉錄因子家族 (如:WRKY、NAC、MYB) 在徒長病菌侵染下上調,但在高溫下受到抑制,顯示熱逆境干擾水稻的防禦調控網絡。有趣的是,少數基因在兩種逆境下均上調,彰顯其做為氣候韌性與徒長病抗性改良標的之價值。此外,多數防禦相關基因在高溫下被抑制,支持植物在面對非生物與生物逆境間存在調控權衡 (trade-off) 的觀點。在徒長病菌方面,富集分析指出病原菌在面對熱逆境與感病寄主時,下調其壓力反應和蛋白質摺疊相關途徑,並上調代謝、轉譯與細胞壁分解功能,反映其調控模式可能由維持細胞功能轉向代償機制或致病功能。此外,比卡菌素 (bikaverin) 與GA生合成基因分別在應對熱逆境與感病寄主時活化,突顯徒長病菌次級代謝物在環境適應與致病力中的角色。綜合而言,本研究揭示高溫如何透過轉錄調控網絡影響水稻–徒長病菌交互作用,對氣候變遷下水稻徒長病潛在的發生生態變化提供機制面的理解。雖然全球暖化可能降低徒長病嚴重度,但在水稻抗性降低的情況下,應重視耐熱菌株演化帶來的潛在風險,突顯持續監測與目標性抗病育種策略的重要性。zh_TW
dc.description.abstractGlobal warming has exerted profound impacts on both crops and their associated pathogens, posing serious threats to agricultural productivity and food security. Bakanae disease, caused by Fusarium fujikuroi, was historically considered a minor issue in rice cultivation but has recently re-emerged as a major constraint on production. However, it remains unclear whether this phenomenon has been influenced by climate change. This study aimed to investigate the physiological responses of F. fujikuroi isolates in Taiwan to high temperature and to assess disease progression under elevated temperature. Additionally, we analyzed how heat affects rice defense responses and pathogen virulence mechanisms at the transcriptomic level. Our results demonstrate that high temperature simultaneously suppresses both F. fujikuroi virulence and rice immune responses, thereby reshaping disease progression. Under elevated temperature, the pathogen exhibited reduced hyphal growth, spore germination, and gibberellin A3 (GA3) production. Concurrently, rice defense responses were weakened, particularly in phytohormone signaling and transcription factor regulation. The combined attenuation of host and pathogen activity led to lower disease severity index, reduced fungal biomass, and decreased in planta levels of GA3 and fusaric acid. Transcriptome analysis was conducted by integrating temperature (30/25℃ vs. 35/30℃), rice cultivars [Tainung 67 (TNG67) vs. Zerawchanica Karatals (ZK)], and inoculation treatment (Ff266-inoculated vs. mock-treated) as experimental variables. Principle component analysis and differentially expressed gene (DEG) analysis revealed that heat exerted a more profound influence on gene expression than fungal infection. Furthermore, a greater number of DEGs were identified in TNG67 compared with ZK. Gene Ontology (GO) terms related to photosynthesis, redox homeostasis, carbohydrate metabolism, membrane integrity, and RNA modification were significantly enriched under heat stress. The majority of DEGs were downregulated in TNG67 but upregulated in ZK, indicating that the two cultivars employed distinct transcriptomic strategies in response to heat stress. During F. fujikuroi infection, defense-related GO terms, such as those involved in phytohormone signaling, were significantly enriched. The associated DEGs were consistently upregulated in both cultivars. In both healthy and infected seedlings, jasmonic acid (JA) and salicylic acid (SA) signaling—key components of plant defense—were suppressed by heat, reflecting compromised immune function. Conversely, ethylene (ET) signaling was consistently upregulated under both heat stress and fungal infection, suggesting a potential integrative role in dual stress responses. Several transcription factor families commonly involved in defense regulation (e.g., WRKY, NAC, MYB) were induced by infection but suppressed by heat, indicating that elevated temperature disrupted immune regulatory networks in rice. Interestingly, a small subset of genes was consistently upregulated under both stress conditions, highlighting their potential as targets for breeding climate-resilient and disease-resistant rice varieties. Meanwhile, the broader downregulation of defense genes supported the concept of a regulatory trade-off between abiotic and biotic stress responses. On the pathogen side, enrichment analysis revealed that F. fujikuroi downregulated pathways associated with stress responses and protein homeostasis in response to heat stress and the susceptible host, while upregulating those related to metabolism, translation, and cell wall degradation. These transcriptional changes suggested a regulatory shift from cellular maintenance toward compensatory mechanisms or infection functions. Furthermore, the activation of bikaverin and GA biosynthetic genes in response to heat stress and susceptible hosts, respectively, underscored the role of secondary metabolites in adaptation and virulence. Collectively, this study demonstrated how high temperature modulates rice–F. fujikuroi interactions via transcriptomic regulatory networks, providing mechanistic insights into how climate change may influence bakanae disease dynamics. Although disease severity may appear reduced under warming scenarios, the observed suppression of host immunity raises concerns about the emergence of heat-tolerant F. fujikuroi isolates. These findings underscore the importance of ongoing field surveillance and targeted resistance breeding strategies.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-21T16:48:04Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-08-21T16:48:04Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書 i
致謝 ii
中文摘要 iii
Abstract v
Content viii
List of Tables xii
List of Figures xiv
Chapter 1 Introduction 1
1.1 Rice bakanae disease epidemiology 1
1.2 Impacts of global warming on rice industry 2
1.2.1 Impacts of heat on rice 2
1.2.2 Impacts of heat on rice pathogens 4
1.2.3 Impacts of heat on rice diseases 5
1.3 Impacts of heat stress on rice bakanae disease 5
1.4 Secondary metabolites involved in bakanae pathogenesis 7
1.4.1 Gibberellins (GAs) 8
1.4.2 Mycotoxins 10
1.5 Phytohormonal regulation of rice under heat stress 10
1.6 The role of phytohormones in the rice–Fusarium fujikuroi interaction 11
1.7 Research objectives 13
Chapter 2 Materials and methods 15
2.1 Plant materials 15
2.2 Fungal materials 15
2.3 In vitro impacts of high temperature on F. fujikuroi 16
2.3.1 Mycelial growth and colony morphology 16
2.3.2 Spore gemination 16
2.3.3 GA3 biosynthesis 16
2.3.4 Fusaric acid biosynthesis 17
2.4 Occurrence of bakanae disease under high temperature 17
2.4.1 Inoculation of F. fujikuroi 17
2.4.2 Disease severity index (DSI) 18
2.4.3 F. fujikuroi colonization rate 18
2.4.4 Quantification of F. fujikuroi using quantitative PCR (qPCR) 19
2.4.5 In planta GA3 content 20
2.4.6 In planta fusaric acid content 20
2.5 Transcriptome analysis of rice–Fusarium pathosystem under high temperature 21
2.5.1 RNA sample preparation and sequencing 21
2.5.2 Raw data processing, data quality control, read alignment and quantification 21
2.5.3 Expression normalization and differentially expressed gene (DEG) discovery 22
2.5.4 Enrichment analysis – Gene Ontology (GO) 23
2.5.5 Enrichment analysis – Gene-Set Enrichment Analysis (GSEA) 23
2.5.6 Functional classification of special gene categories 23
2.6 Statistical analysis 24
Chapter 3 Results 25
3.1 In vitro impacts of high temperature on F. fujikuroi 25
3.1.1 Mycelial growth and colony morphology 25
3.1.2 Spore gemination 25
3.1.3 GA3 biosynthesis 26
3.1.4 Fusaric acid biosynthesis 26
3.2 Occurrence of bakanae disease under high temperature 27
3.2.1 Disease severity index (DSI) 27
3.2.2 F. fujikuroi colonization rate 28
3.2.3 Quantification of F. fujikuroi using qPCR 28
3.2.4 In planta GA3 content 29
3.2.5 In planta fusaric acid content 30
3.3 RNA-sequencing (RNA-seq) statistics 30
3.4 Rice transcriptome under high temperature and F. fujikuroi infection 30
3.4.1 Expression normalization and differentially expressed gene (DEG) discovery 30
3.4.2 Enrichment analysis – Gene Ontology (GO) 33
3.4.3 Enrichment analysis – Gene-Set Enrichment Analysis (GSEA) 35
3.4.4 Phytohormone regulation of rice under heat stress and F. fujikuroi infection 37
3.4.5 Regulation of transcription factor in response to F. fujikuroi under high temperature 42
3.5 In planta F. fujikuroi transcriptome under high temperature and in different cultivar 43
3.5.1 Expression normalization and DEG discovery 43
3.5.2 Enrichment analysis – Gene Ontology (GO) 45
3.5.3 Enrichment analysis – Gene-Set Enrichment Analysis (GSEA) 47
Chapter 4 Discussion 49
4.1 Integrated evaluation of F. fujikuroi physiology and bakanae disease severity under heat stress 49
4.2 Heat tolerance of F. fujikuroi field isolates from distinct genetic clusters 49
4.3 Strategies to improve fungal transcript recovery in dual RNA-seq 51
4.4 Different regulatory patterns to heat stress in TNG67 and ZK 51
4.5 Dynamics of fungal and rice GA3 during infection process 53
4.6 The role of fusaric acid in bakanae symptom development 55
4.7 Temporal dynamics of phytohormone signaling in rice defense against F. fujikuroi 58
4.8 Trad-off between abiotic and biotic responses in rice 60
4.9 Resource reallocation in F. fujikuroi under heat stress and host pressures 62
4.10 The potential role of xylanase in F. fujikuroi virulence 63
4.11 Tripartite interaction model of rice, F. fujikuroi, and high temperature 65
References 67
Tables 81
Figures 131
Supplementary data 166
-
dc.language.isoen-
dc.subject水稻徒長病zh_TW
dc.subjectFusarium fujikuroizh_TW
dc.subject高溫逆境zh_TW
dc.subject寄主–病原菌交互作zh_TW
dc.subject植物賀爾蒙交互作用zh_TW
dc.subjecthigh temperature stressen
dc.subjectrice bakanae diseaseen
dc.subjectphytohormone crosstalken
dc.subjecthost-pathogen interactionen
dc.subjectFusarium fujikuroien
dc.title評估高溫對水稻與徒長病菌交互作用之影響zh_TW
dc.titleAssessing the effect of high temperature on the interaction between rice and Fusarium fujikuroien
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee葉信宏;吳東鴻;張皓巽zh_TW
dc.contributor.oralexamcommitteeHsin-Hung Yeh;Dong-Hong Wu;Hao-Xun Changen
dc.subject.keyword水稻徒長病,Fusarium fujikuroi,高溫逆境,寄主–病原菌交互作,植物賀爾蒙交互作用,zh_TW
dc.subject.keywordrice bakanae disease,Fusarium fujikuroi,high temperature stress,host-pathogen interaction,phytohormone crosstalk,en
dc.relation.page166-
dc.identifier.doi10.6342/NTU202502927-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2025-08-06-
dc.contributor.author-college生物資源暨農學院-
dc.contributor.author-dept植物病理與微生物學系-
dc.date.embargo-lift2030-07-29-
顯示於系所單位:植物病理與微生物學系

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
  此日期後於網路公開 2030-07-29
6.49 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved