Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99193Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 胡凱焜 | zh_TW |
| dc.contributor.advisor | Kae-Kuen Hu | en |
| dc.contributor.author | 劉昱彣 | zh_TW |
| dc.contributor.author | Yu-Wen Liu | en |
| dc.date.accessioned | 2025-08-21T16:45:16Z | - |
| dc.date.available | 2025-08-22 | - |
| dc.date.copyright | 2025-08-21 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-08-03 | - |
| dc.identifier.citation | Book
Geels, F. W. (2005). Technological Transitions And System Innovations: A Co-evolutionary And Socio-technical Analysis. Edward Elgar Publishing Limited. https://doi.org/https://doi.org/10.1162/jiec.2007.1158a Book Section Calleja-Sanz, G., Olivella-Nadal, J., & Solé-Parellada, F. (2020). Technology Forecasting: Recent Trends and New Methods. In Research Methodology in Management and Industrial Engineering (pp. 45–69). https://doi.org/10.1007/978-3-030-40896-1_3 Chao, W. Y., Chang, Y. T., Tsai, Y. T., Huang, M. C., Lin, Y. C., Wu, M. M., Chi, J. F., Lin, C. L., Cheng, H. F., & Wu, S. M. (2023). Update on Regulation of Regenerative Medicine in Taiwan. In M. C. Galli (Ed.), Regulatory Aspects of Gene Therapy and Cell Therapy Products—A Global Perspective (Vol. 1430, pp. 211–219). Springer. https://doi.org/10.1007/978-3-031-34567-8_12 Cho, Y., & Daim, T. (2013). Technology Forecasting Methods. In Research and Technology Management in the Electricity Industry (pp. 67–112). https://doi.org/10.1007/978-1-4471-5097-8_4 Dalal, V., Lata, H., Kharkwal, G., & Jotwani, G. (2023). Regulation of Clinical Research for Cellular and Gene Therapy Products in India. In M. C. Galli (Ed.), Regulatory Aspects of Gene Therapy and Cell Therapy Products—A Global Perspective (Vol. 1430, pp. 135–154). Springer. https://doi.org/10.1007/978-3-031-34567-8_12 Maruyama, Y., Noda, S., Okudaira, S., Sakurai, A., Okura, N., & Honda, F. (2023a). Regulatory Aspects of Cell and Gene Therapy Products: The Japanese Perspective. In M. C. Galli (Ed.), Regulatory Aspects of Gene Therapy and Cell Therapy Products—A Global Perspective (Vol. 1430, pp. 155–180). Springer. https://doi.org/10.1007/978-3-031-34567-8_12 Conference Paper Mahalatchimy, A., Delage, A., Gilbert, L.-S., Kuo, H.-Y., Roby, V., & Chabannon, C. (2024, October, 2024). Real access to ATMPs: the cost issue European Society of Gene & Cell Therapy 2024, Rome, Italy. https://shs.hal.science/halshs-04842702v1 Government Document Centers for Medicare and Medicaid Services. Decision memo for chimeric antigen receptor (CAR) T-cell therapy for cancers. Centers for Medicare & Medicaid Services. https://www.cms.gov/medicare-coverage-database/view/ncacal-decision-memo.aspx?proposed=N&NCAId=291 Centers for Medicare and Medicaid Services. (December 21, 2020). Establishing Minimum Standards in Medicaid State Drug Utilization Review (DUR) and Supporting Value-Based Purchasing (VBP) for Drugs Covered in Medicaid, Revising Medicaid Drug Rebate and Third Party Liability (TPL) Requirements (CMS 2482-F) Final Reg. Retrieved April 4 from https://www.cms.gov/newsroom/fact-sheets/establishing-minimum-standards-medicaid-state-drug-utilization-review-dur-and-supporting-value-based-0 Centers for Medicare and Medicaid Services. (September 10, 2024). Medicare Coverage of Items and Services. Retrieved April 5 from https://www.cms.gov/cms-guide-medical-technology-companies-and-other-interested-parties/coverage/medicare-coverage-items-and-services Centers for Medicare and Medicaid Services. (n.d.). Cell and Gene Therapy (CGT) Access Model. U.S. Department of Health and Human Services. Retrieved April 4 from https://www.cms.gov/priorities/innovation/innovation-models/cgt Centers for Medicare and Medicaid Services. (n.d.). Parts of Medicare. https://www.medicare.gov/basics/get-started-with-medicare/medicare-basics/parts-of-medicare Department of Medical Affairs. (August 17, 2010). Wei fu bu “Xi bao Zhi liaoo Ji shu Zi xun Zhuan qu” Gai ban Shang xian Ti gong Xi bao Zhil iaoo Zheng que Wan zheng Zi xun Yi Bao zhang Min zhong Quan yi [The Ministry of Health and Welfare's "Cell Therapy Technology Information Zone" has been revised and launched to provide accurate and complete information on cell therapy to protect the rights of the public]. Ministry of Health and Welfare. Retrieved July 28 from https://www.mohw.gov.tw/cp-4628-55268-1.html Department of Medical Affairs. (June 4, 2024). Lì fǎ yuàn sān dú tōng guò “Zài shēng yī liáo zhì jì tiáo lì”, jiā huì bìng rén bìng cù jìn zài shēng yī liáo chǎn yè fā zhǎn [The Legislative Yuan has passed the third reading of the “Regenerative Medicine Products Act,” benefiting patients and promoting the development of the regenerative medicine industry]. Ministry of Health and Welfare. Retrieved May 30 from https://www.mohw.gov.tw/cp-16-78936-1.html Department of Medical Affairs. (June 4, 2024). Lì fǎ yuàn sān dú tōng guò 「zài shēng yī liáo fǎ 」kāi qǐ zài shēng yī liáo xīn lǐ chéng [The Legislative Yuan passed the "Regenerative Medicine Act" in the third reading, opening a new milestone in regenerative medicine]. Ministry of Health and Welfare. Retrieved May 30 from https://www.mohw.gov.tw/cp-16-78933-1.html Department of Statistics. (n.d.). guó mín yī liáo bǎo jiàn zhī chū [National Health Expenditure]. Department of Statistics, Ministry of Health and Welfare Retrieved from https://dep.mohw.gov.tw/DOS/lp-5071-113.html European Medicines Agency. (n.d.). Accelerated assessment. European Medicines Agency. Retrieved June 24 from https://www.ema.europa.eu/en/human-regulatory-overview/marketing-authorisation/accelerated-assessment Advanced therapy medicinal products: Overview, (n.d.–b). https://www.ema.europa.eu/en/human-regulatory-overview/advanced-therapy-medicinal-products-overview European Medicines Agency. (n.d.). Conditional marketing authorisation. European Medicines Agency. Retrieved June 24 from https://www.ema.europa.eu/en/human-regulatory-overview/marketing-authorisation/conditional-marketing-authorisation European Medicines Agency. (n.d.). Download medicine data. European Medicines Agency. Retrieved June 24 from https://www.ema.europa.eu/en/medicines/download-medicine-data European Medicines Agency. (n.d.). Orphan designation: Overview. Retrieved June 24 from https://www.ema.europa.eu/en/human-regulatory-overview/orphan-designation-overview#orphan-medicine-incentives-11926 European Medicines Agency. (n.d.). Pre-authorisation guidance. European Medicines Agency. Retrieved June 24 from https://www.ema.europa.eu/en/human-regulatory-overview/marketing-authorisation/pre-authorisation-guidance European Medicines Agency. (n.d.). PRIME: priority medicines. European Medicines Agency. Retrieved June 26 from https://www.ema.europa.eu/en/human-regulatory-overview/research-development/prime-priority-medicines Fukuda, T. (2018). Drug Pricing in Japan. Retrieved from https://www.ispor.org/docs/default-source/conference-ap-2018/ispor_ap-ip1-20180909-fukuda.pdf?sfvrsn=84310438_0 Ministry of Health, Labour and Welfare, Japan. (2024a). Partial Revision of “Designation of Orphan Drugs etc.”. Tokyo: Ministry of Health, Labour and Welfare Ministry of Health, Labour and Welfare, Japan. (2024b). Questions and Answers (Q&A) for Designation of Orphan Drugs etc. Tokyo: Ministry of Health, Labour and Welfare Ministry of Health, Labour and Welfare, Japan. (n.d.). Strategy of SAKIGAKE. Ministry of Health, Labour and Welfare. Retrieved June 24 from https://www.mhlw.go.jp/english/policy/health-medical/pharmaceuticals/140729-01.html Ministry of Health and Welfare. (April 12, 2024). Huí yìng “Tè guǎn bàn fǎ shàng lù fāng jiān shōu fèi luàn, mín tuán yōu bìng yǒu lún dài zǎi féi yáng” bào dǎo: Mù qián yǐ yǒu yán jǐn de guī fàn, jiāng yáng gé bǎ guān yǐ què bǎo mínz hòng quán yì. [Response to the report titled “Unregulated Charges Following the Implementation of the Special Regulation—Concern That Patients May Be Exploited”: There are already stringent regulations in place, and strict oversight will be enforced to ensure the protection of public interests.]. Ministry of Health and Welfare. Retrieved June 25 from https://www.mohw.gov.tw/cp-4343-48346-1.html Ministry of Health and Welfare. (n.d.). Xì bāo zhì liáo jì shù zī xùn zhuān qū [Cell Therapy Technology Information Portal]. Ministry of Health and Welfare. Retrieved June 26 from https://celltherapy.mohw.gov.tw National Health Insurance Administration. (2023a). quán mín jiàn kāng bǎo xiǎn yào wù gěi fù xiàng mù jí zhī fù biāo zhǔn gòng tóng nǐ dìng huì yì yào pǐn bù fèn dì 62 cì huì yì jì lù [Joint drafting meeting on the National Health Insurance drug benefit items and payment standards-Minutes of the 62nd meeting on drugs]. Ministry of Health and Welfare Retrieved from https://www.nhi.gov.tw/ch/dl-11918-b31caa68067a4e9e837077d53cd06c3d-1.pdf National Health Insurance Administration. (2023b). quán mín jiàn kāng bǎo xiǎn yào wù gěi fù xiàng mù jí zhī fù biāo zhǔn gòng tóng nǐ dìng huì yì yào pǐn bù fèn dì 63 cì huì yì jì lù [Joint drafting meeting on the National Health Insurance drug benefit items and payment standards-Minutes of the 63rd meeting on drugs]. Ministry of Health and Welfare Retrieved from https://www.nhi.gov.tw/ch/dl-47931-f4e517142a5246cab22a10f201723df1-1.pdf National Health Insurance Administration. (February 15, 2024). Universal Health Coverage in Taiwan. National Health Insurance Administration, Taiwan. Retrieved May 31 from https://www.nhi.gov.tw/en/cp-5-96705-57-2.html National Health Insurance Administration. (n.d.). NHI Timeline. National Health Insurance Administration, Taiwan. Retrieved May 31 from https://www.nhi.gov.tw/en/mp-2.html Pharmaceuticals and Medical Devices Agency, Japan. (n.d.). List of Approved Products. Pharmaceuticals and Medical Devices Agency. Retrieved June 24 from https://www.pmda.go.jp/english/review-services/reviews/approved-information/0002.html Pharmaceuticals and Medical Devices Agency, Japan. (n.d.). Regenerative Medical Products. https://www.pmda.go.jp/english/review-services/reviews/0003.html Pharmaceuticals and Medical Devices Agency, Japan. (n.d.). Strategy of SAKIGAKE by MHLW. Pharmaceuticals and Medical Devices Agency. Retrieved June 24 from https://www.pmda.go.jp/english/review-services/reviews/advanced-efforts/0001.html Pharmaceuticals and Medical Devices Agency, Japan. (n.d.). Yakka kijun shūsai hinmoku risuto oyobi kōhatsu iyakuhin ni kansuru jōhō ni tsuite (Reiwa nana-nen san-gatsu sanjūichi-nichi made) [Information on the Drug Price List and Generic Drugs (until March 31, 2025)]. Ministry of Health, Labour and Welfare, Japan,. Retrieved June 24 from https://www.mhlw.go.jp/topics/2024/04/tp20240401-01.html Taiwan Intellectual Property Office. (January 10, 2025). quán qiú zhuān lì jiǎn suǒ xì tǒng GPSSgōng néng jiè shào [Introduction to the functions of the Global Patent Search System GPSS]. Taiwan Intellectual Property Office (TIPO). Retrieved April 29 from https://www.tipo.gov.tw/tw/cp-1018-946868-eaf5b-1.html US Food and Drug Administration. (January 4, 2018). Breakthrough Therapy. Retrieved June 28 from https://www.fda.gov/patients/fast-track-breakthrough-therapy-accelerated-approval-priority-review/breakthrough-therapy US Food and Drug Administration. (March 20, 2023). Cellular & Gene Therapy Products. Retrieved March 18 from https://www.fda.gov/vaccines-blood-biologics/cellular-gene-therapy-products US Food and Drug Administration. (July 21, 2023). Regenerative Medicine Advanced Therapy Designation. U.S. Food and Drug Administration. Retrieved June 28 from https://www.fda.gov/vaccines-blood-biologics/cellular-gene-therapy-products/regenerative-medicine-advanced-therapy-designation US Food and Drug Administration. (August 12, 2024). Designating an Orphan Product: Drugs and Biological Products. U.S. Food and Drug Administration. Retrieved June 28 from https://www.fda.gov/industry/medical-products-rare-diseases-and-conditions/designating-orphan-product-drugs-and-biological-products US Food and Drug Administration. (September 27, 2024). Rare Pediatric Disease Designation and Priority Review Voucher Programs. U.S. Food and Drug Administration. Retrieved June 28 from https://www.fda.gov/industry/medical-products-rare-diseases-and-conditions/rare-pediatric-disease-designation-and-priority-review-voucher-programs US Food and Drug Administration. (May 13, 2025). CBER Regenerative Medicine Advanced Therapy (RMAT) Approvals. U.S. Food & Drug Administration. Retrieved June 28 from https://www.fda.gov/vaccines-blood-biologics/cellular-gene-therapy-products/cber-regenerative-medicine-advanced-therapy-rmat-approvals US Food and Drug Administration. (January 13, 2025). Fast Track Designation Requests. U.S. Food and Drug Administration. Retrieved June 28 from https://www.fda.gov/drugs/ind-activity/fast-track-designation-requests US Food and Drug Administration. (May 15, 2925). Approved Cellular and Gene Therapy Products. U.S. Food and Drug Administration. Retrieved June 28 from https://www.fda.gov/vaccines-blood-biologics/cellular-gene-therapy-products/approved-cellular-and-gene-therapy-products Journal Article Ahumada-Ayala, M., Aguilar-López, R., González-Stoylov, N., Palacio-Sosa, E., Cervantes-Barragán, D. E., & Fernández-Hernández, L. (2023). Editing the Human Genome with CRISPR/Cas: A Review of its Molecular Basis, Current Clinical Applications, and Bioethical Implications. REVISTA DE INVESTIGACIÓN CLÍNICA, 75(1), 13–28. https://doi.org/10.24875/RIC.22000252 Allen, J., Berry, D., Cook, F., Hume, A., Rouce, R., Srirangam, A., Wellman, J., & McCombs, C. (2023). Medicaid coverage practices for approved gene and cell therapies: Existing barriers and proposed policy solutions. Mol Ther Methods Clin Dev, 29, 513–521. https://doi.org/10.1016/j.omtm.2023.05.015 Anderson, P., & Tushman, M. L. (1990). Technological Discontinuities and Dominant Designs: A Cyclical Model of Technological Change. Administrative Science Quarterly, 35(4). https://doi.org/10.2307/2393511 Arato, T., & Nomura, K. (2024). Cell and gene therapy approvals in Japan and the need for international harmonization. Nat Biotechnol, 42(1), 13–17. https://doi.org/10.1038/s41587-023-02053-7 Au, H. K. E., Isalan, M., & Mielcarek, M. (2021). Gene Therapy Advances: A Meta-Analysis of AAV Usage in Clinical Settings. Front Med (Lausanne), 8. https://doi.org/10.3389/fmed.2021.809118 Awasthi, R., Maier, H. J., Zhang, J., & Lim, S. (2023). Kymriah(R) (tisagenlecleucel) - An overview of the clinical development journey of the first approved CAR-T therapy. Hum Vaccin Immunother, 19(1). https://doi.org/10.1080/21645515.2023.2210046 Azuma, K. (2015). Regulatory Landscape of Regenerative Medicine in Japan. Current Stem Cell Reports, 1(2), 118–128. https://doi.org/10.1007/s40778-015-0012-6 Bach, P. B., Giralt, S. A., & Saltz, L. B. (2017). FDA Approval of Tisagenlecleucel: Promise and Complexities of a $475,000 Cancer Drug. Jama, 318(19), 1861–1862. https://doi.org/10.1001/jama.2017.15218 Baghbaderani, B. A., Syama, A., Sivapatham, R., Pei, Y., Mukherjee, O., Fellner, T., Zeng, X., & Rao, M. S. (2016). Detailed Characterization of Human Induced Pluripotent Stem Cells Manufactured for Therapeutic Applications. Stem Cell Rev Rep, 12(4), 394–420. https://doi.org/10.1007/s12015-016-9662-8 Bald, T., Krummel, M. F., Smyth, M. J., & Barry, K. C. (2020). The NK cell-cancer cycle: advances and new challenges in NK cell-based immunotherapies. Nat Immunol, 21(8), 835–847. https://doi.org/10.1038/s41590-020-0728-z Barrangou, R., & Doudna, J. A. (2016). Applications of CRISPR technologies in research and beyond. Nat Biotechnol, 34(9), 933–941. https://doi.org/10.1038/nbt.3659 Barry, F. P. (2003). Biology and clinical applications of mesenchymal stem cells. Birth Defects Res C Embryo Today, 69(3), 250–256. https://doi.org/10.1002/bdrc.10021 Beinfeld, M. T., Rucker, J. A., Jenkins, N. B., de Breed, L. A., & Chambers, J. D. (2023). Variation in Medicaid and commercial coverage of cell and gene therapies. Health Policy Open, 5. https://doi.org/10.1016/j.hpopen.2023.100103 Berry, D., Hickey, C., Kahlman, L., Long, J., Markus, C., & McCombs, C. K. (2025). Ensuring patient access to gene therapies for rare diseases: Navigating reimbursement and coverage challenges. Mol Ther Methods Clin Dev, 33(1). https://doi.org/10.1016/j.omtm.2024.101403 Bing, S. J., Justesen, S., Wu, W. W., Sajib, A. M., Warrington, S., Baer, A., Thorgrimsen, S., Shen, R. F., & Mazor, R. (2022). Differential T cell immune responses to deamidated adeno-associated virus vector. Mol Ther Methods Clin Dev, 24, 255–267. https://doi.org/10.1016/j.omtm.2022.01.005 Bobis, S., Jarocha, D., & Majka, M. (2006). Mesenchymal stem cells: characteristics and clinical applications. Folia Histochemica et Cytobiologica, 44(4), 215–230. https://doi.org/10.5603/4554 Borrás, S., & Edquist, C. (2013). The choice of innovation policy instruments. Technological Forecasting and Social Change, 80(8), 1513–1522. https://doi.org/10.1016/j.techfore.2013.03.002 Burki, T. K. (2019). Drug pricing in the USA. Lancet Respir Med, 7(11), 937. https://doi.org/10.1016/S2213-2600(19)30332-7 Caligiuri, M. A. (2008). Human natural killer cells. Blood, 112(3), 461–469. https://doi.org/10.1182/blood-2007-09-077438 Callenbach, M. H. E., Goettsch, W. G., Mantel-Teeuwisse, A. K., & Trusheim, M. (2024). Creating win-win-win situations with managed entry agreements? Prioritizing gene and cell therapies within the window of opportunity. Drug Discov Today, 29(7). https://doi.org/10.1016/j.drudis.2024.104048 Caracciolo, D., Mancuso, A., Polera, N., Froio, C., D'Aquino, G., Riillo, C., Tagliaferri, P., & Tassone, P. (2023). The emerging scenario of immunotherapy for T-cell Acute Lymphoblastic Leukemia: advances, challenges and future perspectives. Exp Hematol Oncol, 12(1). https://doi.org/10.1186/s40164-022-00368-w Carvalho, M., Sepodes, B., & Martins, A. P. (2021). Patient access to gene therapy medicinal products: a comprehensive review. BMJ Innovations, 7(1), 123–134. https://doi.org/10.1136/bmjinnov-2020-000425 Cerneckis, J., Cai, H., & Shi, Y. (2024). Induced pluripotent stem cells (iPSCs): molecular mechanisms of induction and applications. Signal Transduct Target Ther, 9(1). https://doi.org/10.1038/s41392-024-01809-0 Chancellor, D., Barrett, D., Nguyen-Jatkoe, L., Millington, S., & Eckhardt, F. (2023). The state of cell and gene therapy in 2023. Mol Ther, 31(12), 3376–3388. https://doi.org/10.1016/j.ymthe.2023.11.001 Chehelgerdi, M., Chehelgerdi, M., Khorramian-Ghahfarokhi, M., Shafieizadeh, M., Mahmoudi, E., Eskandari, F., Rashidi, M., Arshi, A., & Mokhtari-Farsani, A. (2024). Comprehensive review of CRISPR-based gene editing: mechanisms, challenges, and applications in cancer therapy. Mol Cancer, 23(1), 9. https://doi.org/10.1186/s12943-023-01925-5 Cheng, X., Fan, S., & Xianfa, C. W. a. (2020). CRISPR/Cas9 for cancer treatment: technology, clinical applications and challenges. Briefings in Functional Genomics, 19(3), 209–214. https://doi.org/10.1093/bfgp/elaa001 Conti, R. M., Demartino, P., Gruber, J., Lo, A. W., Sun, Y., & Wu, J. (2025). Innovative Insurance to Improve US Patient Access to Cell and Gene Therapy. Milbank Q, 103(1), 32–51. https://doi.org/10.1111/1468-0009.12728 Coppens, D. G. M., de Wilde, S., Guchelaar, H. J., De Bruin, M. L., Leufkens, H. G. M., Meij, P., & Hoekman, J. (2018). A decade of marketing approval of gene and cell-based therapies in the United States, European Union and Japan: An evaluation of regulatory decision-making. Cytotherapy, 20(6), 769–778. https://doi.org/10.1016/j.jcyt.2018.03.038 Cring, M. R., & Sheffield, V. C. (2022). Gene therapy and gene correction: targets, progress, and challenges for treating human diseases. Gene Ther, 29(1-2), 3–12. https://doi.org/10.1038/s41434-020-00197-8 Dash, C. P., Sonowal, D., Dhaka, P., Yadav, R., Chettri, D., Satapathy, B. P., Sheoran, P., Uttam, V., Jain, M., & Jain, A. (2024). Antitumor activity of genetically engineered NK-cells in non-hematological solid tumor: a comprehensive review. Front Immunol, 15. https://doi.org/10.3389/fimmu.2024.1390498 Denise T Kruzikas, Malone, D. C., Pham, S., Reinsch, T. K., & Akehurst, R. (2020). HTA and economics in the United States: a systematic review of ICER reports to evaluate trends, identify factors associated with recommendations, and understand implications. JMCP, 26(12), 1548–1557. https://doi.org/10.18553/jmcp.2020.26.12.1548 Desmet, T., Michelsen, S., Van den Brande, E., Van Dyck, W., Simoens, S., & Huys, I. (2024). Towards implementing new payment models for the reimbursement of high-cost, curative therapies in Europe: insights from semi-structured interviews. Front Pharmacol, 15. https://doi.org/10.3389/fphar.2024.1397531 Dias, J., Garcia, J., Agliardi, G., & Roddie, C. (2024). CAR-T cell manufacturing landscape-Lessons from the past decade and considerations for early clinical development. Mol Ther Methods Clin Dev, 32(2). https://doi.org/10.1016/j.omtm.2024.101250 Dickinson, M. J., Barba, P., Jager, U., Shah, N. N., Blaise, D., Briones, J., Shune, L., Boissel, N., Bondanza, A., Mariconti, L., Marchal, A. L., Quinn, D. S., Yang, J., Price, A., Sohoni, A., Treanor, L. M., Orlando, E. J., Mataraza, J., Davis, J.,…Flinn, I. W. (2023). A Novel Autologous CAR-T Therapy, YTB323, with Preserved T-cell Stemness Shows Enhanced CAR T-cell Efficacy in Preclinical and Early Clinical Development. Cancer Discov, 13(9), 1982–1997. https://doi.org/10.1158/2159-8290.CD-22-1276 Dosi, G. (1982). Technological paradigms and technological trajectories: A suggested interpretation of the determinants and directions of technical change. Research Policy, 11, 147–162. https://doi.org/0048-7333/82/0000-0000 Doss, M. X., & Sachinidis, A. (2019). Current Challenges of iPSC-Based Disease Modeling and Therapeutic Implications. Cells, 8(5). https://doi.org/10.3390/cells8050403 Edler, J., & Georghiou, L. (2007). Public procurement and innovation—Resurrecting the demand side. Research Policy, 36(7), 949–963. https://doi.org/10.1016/j.respol.2007.03.003 El-Kadiry, A. E., Rafei, M., & Shammaa, R. (2021). Cell Therapy: Types, Regulation, and Clinical Benefits. Front Med (Lausanne), 8. https://doi.org/10.3389/fmed.2021.756029 Elverum, K., & Whitman, M. (2020). Delivering cellular and gene therapies to patients: solutions for realizing the potential of the next generation of medicine. Gene Therapy, 27(12), 537–544. https://doi.org/10.1038/s41434-019-0074-7 Fang, F., Wang, W., Chen, M., Tian, Z., & Xiao, W. (2019). Technical advances in NK cell-based cellular immunotherapy. Cancer Biol Med, 16(4), 647–654. https://doi.org/10.20892/j.issn.2095-3941.2019.0187 Fellmann, C., Gowen, B. G., Lin, P. C., Doudna, J. A., & Corn, J. E. (2017). Cornerstones of CRISPR-Cas in drug discovery and therapy. Nat Rev Drug Discov, 16(2), 89–100. https://doi.org/10.1038/nrd.2016.238 Fischer, P., Reiss, T., Mahlich, J., Gicquel, E., Aichinger, H., Pullmann, L., & Bratan, T. (2023). Unlocking the value of innovative medicines: Insights from the advanced therapy medicinal products (ATMP) innovation systems in Germany and Sweden. Health Policy and Technology, 12(2). https://doi.org/10.1016/j.hlpt.2023.100744 Foss, D. V., Hochstrasser, M. L., & Wilson, R. C. (2019). Clinical applications of CRISPR-based genome editing and diagnostics. Transfusion, 59(4), 1389–1399. https://doi.org/10.1111/trf.15126 Gambella, M., Carlomagno, S., Raiola, A. M., Giannoni, L., Ghiggi, C., Setti, C., Giordano, C., Luchetti, S., Serio, A., Bo, A., Falco, M., Della Chiesa, M., Angelucci, E., & Sivori, S. (2022). CD19-Targeted Immunotherapies for Diffuse Large B-Cell Lymphoma. Front Immunol, 13. https://doi.org/10.3389/fimmu.2022.837457 Gao, L., Porter, A. L., Wang, J., Fang, S., Zhang, X., Ma, T., Wang, W., & Huang, L. (2013). Technology life cycle analysis method based on patent documents. Technological Forecasting and Social Change, 80(3), 398–407. https://doi.org/10.1016/j.techfore.2012.10.003 Guo, N., Liu, J. B., Li, W., Ma, Y. S., & Fu, D. (2022). The power and the promise of CRISPR/Cas9 genome editing for clinical application with gene therapy. J Adv Res, 40, 135–152. https://doi.org/10.1016/j.jare.2021.11.018 Hampson, G., Towse, A., Pearson, S. D., Dreitlein, W. B., & Henshall, C. (2018). Gene therapy: evidence, value and affordability in the US health care system [White Paper]. Journal of Comparative Effectiveness Research, 7(1), 16–28. https://doi.org/10.2217/cer-2017-0068 Hartmann, J., Schussler-Lenz, M., Bondanza, A., & Buchholz, C. J. (2017). Clinical development of CAR T cells-challenges and opportunities in translating innovative treatment concepts. EMBO Mol Med, 9(9), 1183–1197. https://doi.org/10.15252/emmm.201607485 Horrow, C., & Kesselheim, A. S. (2023). Confronting High Costs And Clinical Uncertainty: Innovative Payment Models For Gene Therapies. Health Aff (Millwood), 42(11), 1532–1540. https://doi.org/10.1377/hlthaff.2023.00527 Huang, Y., Li, R., Zou, F., Jiang, L., Porter, A. L., & Zhang, L. (2022). Technology life cycle analysis: From the dynamic perspective of patent citation networks. Technological Forecasting and Social Change, 181. https://doi.org/10.1016/j.techfore.2022.121760 Iglesias-Lopez, C., Agusti, A., Vallano, A., & Obach, M. (2023). Financing and Reimbursement of Approved Advanced Therapies in Several European Countries. Value Health, 26(6), 841–853. https://doi.org/10.1016/j.jval.2022.12.014 Issa, S. S., Shaimardanova, A. A., Solovyeva, V. V., & Rizvanov, A. A. (2023). Various AAV Serotypes and Their Applications in Gene Therapy: An Overview. Cells, 12(5). https://doi.org/10.3390/cells12050785 Jogalekar, M. P., Rajendran, R. L., Khan, F., Dmello, C., Gangadaran, P., & Ahn, B. C. (2022). CAR T-Cell-Based gene therapy for cancers: new perspectives, challenges, and clinical developments. Frontiers in Immunology, 13. https://doi.org/10.3389/fimmu.2022.925985 Jorgensen, J., Hanna, E., & Kefalas, P. (2020). Outcomes-based reimbursement for gene therapies in practice: the experience of recently launched CAR-T cell therapies in major European countries. J Mark Access Health Policy, 8(1). https://doi.org/10.1080/20016689.2020.1715536 Jorgensen, J., & Kefalas, P. (2015). Reimbursement of licensed cell and gene therapies across the major European healthcare markets. J Mark Access Health Policy, 3. https://doi.org/10.3402/jmahp.v3.29321 Jorgensen, L. V., Christensen, E. B., Barnkob, M. B., & Barington, T. (2025). The clinical landscape of CAR NK cells. Exp Hematol Oncol, 14(1), 46. https://doi.org/10.1186/s40164-025-00633-8 June, C. H., O’Connor, R. S., Kawalekar, O. U., Saba Ghassemi, & Milone, M. C. (2018). CAR T cell immunotherapy for human cancer. Science, 359, 1361–1365. https://doi.org/10.1126/science.aar6711 Kang, L., Jin, S., Wang, J., Lv, Z., Xin, C., Tan, C., Zhao, M., Wang, L., & Liu, J. (2023). AAV vectors applied to the treatment of CNS disorders: Clinical status and challenges. J Control Release, 355, 458–473. https://doi.org/10.1016/j.jconrel.2023.01.067 Kang, S. Y., Bai, G., DiStefano, M. J., Socal, M. P., Yehia, F., & Anderson, G. F. (2020). Comparative Approaches to Drug Pricing. Annu Rev Public Health, 41, 499–512. https://doi.org/10.1146/annurev-publhealth-040119-094305 Kast, J., Nozohouri, S., Zhou, D., Yago, M. R., Chen, P. W., Ahamadi, M., Dutta, S., & Upreti, V. V. (2022). Recent advances and clinical pharmacology aspects of Chimeric Antigen Receptor (CAR) T-cellular therapy development. Clin Transl Sci, 15(9), 2057–2074. https://doi.org/10.1111/cts.13349 Kim, G., & Bae, J. (2017). A novel approach to forecast promising technology through patent analysis. Technological Forecasting and Social Change, 117, 228–237. https://doi.org/10.1016/j.techfore.2016.11.023 Kishimoto, T. K., & Samulski, R. J. (2022). Addressing high dose AAV toxicity - 'one and done' or 'slower and lower'? Expert Opin Biol Ther, 22(9), 1067–1071. https://doi.org/10.1080/14712598.2022.2060737 Kobolak, J., Dinnyes, A., Memic, A., Khademhosseini, A., & Mobasheri, A. (2016). Mesenchymal stem cells: Identification, phenotypic characterization, biological properties and potential for regenerative medicine through biomaterial micro-engineering of their niche. Methods, 99, 62–68. https://doi.org/10.1016/j.ymeth.2015.09.016 KOÇKAYA, G. v., OĞUZHAN, G. l., ÜLGER, F. M., & ÇAM, K. (2020). Health Policies About Gene & Cell Therapies in France, Germany, Italy, Unıted Kıngdom, Spain, Portugal And Turkey. Eurasian Journal of Health Technology Assessment, 4(2), 49–67. Kohn, D. B., Chen, Y. Y., & Spencer, M. J. (2023). Successes and challenges in clinical gene therapy. Gene Ther, 30(10-11), 738–746. https://doi.org/10.1038/s41434-023-00390-5 Lai, R. C., Chen, T. S., & Lim, S. K. (2011). Mesenchymal stem cell exosome: a novel stem cell-based therapy for cardiovascular disease. Regen Med, 6(4), 481–492. https://doi.org/10.2217/rme.11.35 Lee, C., Kwon, O., Kim, M., & Kwon, D. (2018). Early identification of emerging technologies: A machine learning approach using multiple patent indicators. Technological Forecasting and Social Change, 127, 291–303. https://doi.org/10.1016/j.techfore.2017.10.002 Lee, S., & Lee, J. H. (2023). Cell and gene therapy regulatory, pricing, and reimbursement framework: With a focus on South Korea and the EU. Front Public Health, 11. https://doi.org/10.3389/fpubh.2023.1109873 Li, Y. R., Lyu, Z., Chen, Y., Fang, Y., & Yang, L. (2024). Frontiers in CAR-T cell therapy for autoimmune diseases. Trends Pharmacol Sci, 45(9), 839–857. https://doi.org/10.1016/j.tips.2024.07.005 Lim, J. M., & Kim, H. H. (2022). Basic Principles and Clinical Applications of CRISPR-Based Genome Editing. Yonsei Med J, 63(2), 105–113. https://doi.org/10.3349/ymj.2022.63.2.105 Ling, Q., Herstine, J. A., Bradbury, A., & Gray, S. J. (2023). AAV-based in vivo gene therapy for neurological disorders. Nat Rev Drug Discov, 22(10), 789–806. https://doi.org/10.1038/s41573-023-00766-7 Liu, I. T. T., Lalani, H. S., & Kesselheim, A. S. (2024). Administrative action on drug pricing: Lessons and opportunities for the Center for Medicare and Medicaid Innovation. J Manag Care Spec Pharm., 30(3), 290–301. https://doi.org/10.18553/jmcp.2023.23208 Liu, S., Galat, V., Galat, Y., Lee, Y. K. A., Wainwright, D., & Wu, J. (2021). NK cell-based cancer immunotherapy: from basic biology to clinical development. J Hematol Oncol, 14(7). https://doi.org/10.1186/s13045-020-01014-w Lopata, E., Terrone, C., & Gopalan, A. (2023). Opportunities and challenges surrounding financial models for high-investment medications A survey of access decision-makers and employers. Journal of Managed Care & Specialty Pharmacy, 29(7), 782–790. https://doi.org/10.18553/jmcp.2023.22436 Lotfy, A., AboQuella, N. M., & Wang, H. (2023). Mesenchymal stromal/stem cell (MSC)‑derived exosomes in clinical trials. Stem Cell Research & Therapy, 14(66). https://doi.org/https://doi.org/10.1186/s13287-023-03287-7 Lysaght, T. (2017). Accelerating regenerative medicine: the Japanese experiment in ethics and regulation. Regen Med, 12(6), 657–668. https://doi.org/10.2217/rme-2017-0038 Maeda, D., Yamaguchi, T., Ishizuka, T., Hirata, M., Takekita, K., & Sato, D. (2015). Regulatory Frameworks for Gene and Cell Therapies in Japan. Adv Exp Med Biol, 871, 147–162. https://doi.org/10.1007/978-3-319-18618-4_8 Makita, S., Yoshimura, K., & Tobinai, K. (2017). Clinical development of anti-CD19 chimeric antigen receptor T-cell therapy for B-cell non-Hodgkin lymphoma. Cancer Sci, 108(6), 1109–1118. https://doi.org/10.1111/cas.13239 Maruyama, Y., Kasai, M., Oyama, K., & Chikazawa, K. (2018). Experiences from Japan – SAKIGAKE Designation System for Regenerative Medical Products. Cell Gene Therapy Insights, 4(6), 545–554. https://doi.org/10.18609/cgti.2018.045 Maruyama, Y., Noda, S., Okudaira, S., Sakurai, A., Okura, N., & Honda, F. (2023b). Regulatory Aspects of Cell and Gene Therapy Products: The Japanese Perspective. Adv Exp Med Biol, 1430, 155–179. https://doi.org/10.1007/978-3-031-34567-8_9 McGee, J., & Thomas, H. (1986). Strategic groups: Theory, research and taxonomy. Strategic Management Journal, 7(2), 141–160. https://doi.org/10.1002/smj.4250070204 Mohan, R., Reckelbus, M., & Borry, P. (2025). Regional disparities in access to gene therapies in the European Union, the United States, Japan, and China. Per Med. https://doi.org/10.1080/17410541.2025.2515002 Morshedzadeh, F., Ghanei, M., Lotfi, M., Ghasemi, M., Ahmadi, M., Najari-Hanjani, P., Sharif, S., Mozaffari-Jovin, S., Peymani, M., & Abbaszadegan, M. R. (2024). An Update on the Application of CRISPR Technology in Clinical Practice. Mol Biotechnol, 66(2), 179–197. https://doi.org/10.1007/s12033-023-00724-z Myers, J. A., & Miller, J. S. (2021). Exploring the NK cell platform for cancer immunotherapy. Nat Rev Clin Oncol, 18(2), 85–100. https://doi.org/10.1038/s41571-020-0426-7 Naso, M. F., Tomkowicz, B., Perry, W. L., 3rd, & Strohl, W. R. (2017). Adeno-Associated Virus (AAV) as a Vector for Gene Therapy. BioDrugs, 31(4), 317–334. https://doi.org/10.1007/s40259-017-0234-5 Negoro, T., Okura, H., & Matsuyama, A. (2017). Induced Pluripotent Stem Cells: Global Research Trends. Biores Open Access, 6(1), 63–73. https://doi.org/10.1089/biores.2017.0013 Nisanov, A. M., Rivera de Jesus, J. A., & Schaffer, D. V. (2025). Advances in AAV capsid engineering: Integrating rational design, directed evolution and machine learning. Mol Ther, 33(5), 1937–1945. https://doi.org/10.1016/j.ymthe.2025.03.056 Okada, K., Miyata, T., & Sawa, Y. (2017). Insurance systems and reimbursement concerning research and development of regenerative medicine in Japan. Regen Med, 12(2), 179–186. https://doi.org/10.2217/rme-2016-0124 Paes, B., Moco, P. D., Pereira, C. G., Porto, G. S., de Sousa Russo, E. M., Reis, L. C. J., Covas, D. T., & Picanco-Castro, V. (2017). Ten years of iPSC: clinical potential and advances in vitro hematopoietic differentiation. Cell Biol Toxicol, 33(3), 233–250. https://doi.org/10.1007/s10565-016-9377-2 Page, A., Chuvin, N., Valladeau-Guilemond, J., & Depil, S. (2024). Development of NK cell-based cancer immunotherapies through receptor engineering. Cell Mol Immunol, 21(4), 315–331. https://doi.org/10.1038/s41423-024-01145-x Peteraf, M., & Shanley, M. (1998). Getting to Know You: A Theory of Strategic Group Identity. Strategic Management Journal, 18(S1), 165–186. https://doi.org/10.1002/(sici)1097-0266(199707)18:1 Pillai, M., Davies, M. M., & Thistlethwaite, F. C. (2020). Delivery of adoptive cell therapy in the context of the health-care system in the UK: challenges for clinical sites. Ther Adv Vaccines Immunother, 8. https://doi.org/10.1177/2515135520944355 Pittenger, M. F., Discher, D. E., Peault, B. M., Phinney, D. G., Hare, J. M., & Caplan, A. I. (2019). Mesenchymal stem cell perspective: cell biology to clinical progress. NPJ Regen Med, 4(22). https://doi.org/10.1038/s41536-019-0083-6 Poetsch, M. S., Strano, A., & Guan, K. (2022). Human Induced Pluripotent Stem Cells: From Cell Origin, Genomic Stability, and Epigenetic Memory to Translational Medicine. Stem Cells, 40(6), 546–555. https://doi.org/10.1093/stmcls/sxac020 Quinn, C., Ciarametaro, M., Sils, B., Phares, S., & Trusheim, M. (2023). Medicaid best price reforms to enable innovative payment models for cell and gene therapies. Expert Rev Pharmacoecon Outcomes Res, 23(2), 191–203. https://doi.org/10.1080/14737167.2023.2159813 Ramos, C. A., & Dotti, G. (2011). Chimeric antigen receptor (CAR)-engineered lymphocytes for cancer therapy. Expert Opin Biol Ther, 11(7), 855–873. https://doi.org/10.1517/14712598.2011.573476 Rejon-Parrilla, J. C., Espin, J., Garner, S., Kniazkov, S., & Epstein, D. (2023). Pricing and reimbursement mechanisms for advanced therapy medicinal products in 20 countries. Front Pharmacol, 14. https://doi.org/10.3389/fphar.2023.1199500 Riva, L., & Petrini, C. (2019). A few ethical issues in translational research for gene and cell therapy. J Transl Med, 17. https://doi.org/10.1186/s12967-019-02154-5 Ronco, V., Dilecce, M., Lanati, E., Canonico, P. L., & Jommi, C. (2021). Price and reimbursement of advanced therapeutic medicinal products in Europe: are assessment and appraisal diverging from expert recommendations? J Pharm Policy Pract, 14(1), 30. https://doi.org/10.1186/s40545-021-00311-0 Sabatini, M. T., & Chalmers, M. (2023). The Cost of Biotech Innovation: Exploring Research and Development Costs of Cell and Gene Therapies. Pharmaceur Med., 37(5), 365–375. https://doi.org/10.1007/s40290-023-00480-0 Sanchez-Guijo, F., Vives, J., Ruggeri, A., Chabannon, C., Corbacioglu, S., Dolstra, H., Farge, D., Gagelmann, N., Horgan, C., Kuball, J., Neven, B., Rintala, T., Rocha, V., Sanchez-Ortega, I., Snowden, J. A., Zwaginga, J. J., Gnecchi, M., & Sureda, A. (2024). Current challenges in cell and gene therapy: a joint view from the European Committee of the International Society for Cell & Gene Therapy (ISCT) and the European Society for Blood and Marrow Transplantation (EBMT). Cytotherapy, 26(7), 681–685. https://doi.org/10.1016/j.jcyt.2024.02.007 Sarv, S., Kahre, T., Vaidla, E., Pajusalu, S., Muru, K., Põder, H., Gross-Paju, K., Ütt, S., Žordania, R., Talvik, I., Õiglane-Shlik, E., Muhu, K., & Õunap, K. (2021). The Birth Prevalence of Spinal Muscular Atrophy: A Population Specific Approach in Estonia. Frontiers in Genetics, 12. https://doi.org/https://doi.org/10.3389/fgene.2021.796862 Sensebe, L., Krampera, M., Schrezenmeier, H., Bourin, P., & Giordano, R. (2010). Mesenchymal stem cells for clinical application. Vox Sang, 98(2), 93–107. https://doi.org/10.1111/j.1423-0410.2009.01227.x Shah, N., Chari, A., Scott, E., Mezzi, K., & Usmani, S. Z. (2020). B-cell maturation antigen (BCMA) in multiple myeloma: rationale for targeting and current therapeutic approaches. Leukemia, 34(4), 985–1005. https://doi.org/10.1038/s41375-020-0734-z Shin, M. H., Kim, J., Lim, S. A., Kim, J., Kim, S. J., & Lee, K. M. (2020). NK Cell-Based Immunotherapies in Cancer. Immune Netw, 20(2). https://doi.org/10.4110/in.2020.20.e14 Shukla, V., Enrique Seoane-Vazquez, Fawaz, S., Brown, L., & Rodriguez-Monguio, R. (2019). The Landscape of Cellular and Gene Therapy Products: Authorization, Discontinuations, and Cost. HUMAN GENE THERAPY CLINICAL DEVELOPMENT, 30(3), 102–113. https://doi.org/10.1089/humc.2018.201INTRODUCTION Shupe, J., Zhang, A., Odenwelder, D. C., & Dobrowsky, T. (2022). Gene therapy: challenges in cell culture scale-up. Curr Opin Biotechnol, 75. https://doi.org/10.1016/j.copbio.2022.102721 Singh, V. K., Kalsan, M., Kumar, N., Saini, A., & Chandra, R. (2015). Induced pluripotent stem cells: applications in regenerative medicine, disease modeling, and drug discovery. Front Cell Dev Biol, 3, 2. https://doi.org/10.3389/fcell.2015.00002 Song, B., Luan, C., & Liang, D. (2023). Identification of emerging technology topics (ETTs) using BERT-based model and sematic analysis: a perspective of multiple-field characteristics of patented inventions (MFCOPIs). Scientometrics, 128(11), 5883–5904. https://doi.org/10.1007/s11192-023-04819-x Sugai, K., Sumida, M., Shofuda, T., Yamaguchi, R., Tamura, T., Kohzuki, T., Abe, T., Shibata, R., Kamata, Y., Ito, S., Okubo, T., Tsuji, O., Nori, S., Nagoshi, N., Yamanaka, S., Kawamata, S., Kanemura, Y., Nakamura, M., & Okano, H. (2021). First-in-human clinical trial of transplantation of iPSC-derived NS/PCs in subacute complete spinal cord injury: Study protocol. Regenerative Therapy, 18, 321–333. https://doi.org/10.1016/j.reth.2021.08.005 Sun, J. Y., Hu, H. B., Cheng, Y. X., & Lu, X. J. (2020). CRISPR in medicine: applications and challenges. Brief Funct Genomics, 19(3), 151–153. https://doi.org/10.1093/bfgp/elaa011 Tandulje, A. A., Varpe, P. C., Chaugule, P. D., Saji, S., Nizar, F., Raghuvanshi, R. S., & Srivastava, S. (2025). Cell and Gene Therapy Products: Navigating the Regulatory Landscape of Paradigm Approvals in the US (2020 to 2024). Journal of Pharmaceutical Innovation, 20(2). https://doi.org/10.1007/s12247-025-09973-8 Taylor, M., & Taylor, A. (2012). The technology life cycle: Conceptualization and managerial implications. International Journal of Production Economics, 140(1), 541–553. https://doi.org/10.1016/j.ijpe.2012.07.006 Tunis, S., Hanna, E., Neumann, P. J., Toumi, M., Dabbous, O., Drummond, M., Fricke, F. U., Sullivan, S. D., Malone, D. C., Persson, U., & Chambers, J. D. (2021). Variation in market access decisions for cell and gene therapies across the United States, Canada, and Europe. Health Policy, 125(12), 1550–1556. https://doi.org/10.1016/j.healthpol.2021.10.003 Uddin, F., Rudin, C. M., & Sen, T. (2020). CRISPR Gene Therapy: Applications, Limitations, and Implications for the Future. Front Oncol, 10. https://doi.org/10.3389/fonc.2020.01387 Umemura, M., & Morrison, M. (2021). Comparative lessons in regenerative medicine readiness: learning from the UK and Japanese experience. Regen Med, 16(3), 269–282. https://doi.org/10.2217/rme-2020-0136 Velikanova, R., Wolters, S., Hofstra, H. S., Postma, M. J., & Boersma, C. (2024). Market Access Challenges and Solutions in Cell and Gene Therapy in The Netherlands. J Mark Access Health Policy, 12(3), 181–198. https://doi.org/10.3390/jmahp12030015 Vivier, E., Tomasello, E., Baratin, M., Walzer, T., & Ugolini, S. (2008). Functions of natural killer cells. Nat Immunol, 9(5), 503–510. https://doi.org/10.1038/ni1582 Wagner, D. L., Koehl, U., Chmielewski, M., Scheid, C., & Stripecke, R. (2022). Review: Sustainable Clinical Development of CAR-T Cells - Switching From Viral Transduction Towards CRISPR-Cas Gene Editing. Front Immunol, 13. https://doi.org/10.3389/fimmu.2022.865424 Wang, S., Qu, X., & Zhao, R. C. (2012). Clinical applications of mesenchymal stem cells. Journal of Hematology & Oncology, 5(19). https://doi.org/doi.org/10.1186/1756-8722-5-19 Wang, V., Gauthier, M., Decot, V., Reppel, L., & Bensoussan, D. (2023). Systematic Review on CAR-T Cell Clinical Trials Up to 2022: Academic Center Input. Cancers (Basel), 15(4). https://doi.org/10.3390/cancers15041003 Wang, Z., & Han, W. (2018). Biomarkers of cytokine release syndrome and neurotoxicity related to CAR-T cell therapy. Biomark Res, 6, 4. https://doi.org/10.1186/s40364-018-0116-0 Wang, Z., Sun, Y., Shen, R., Tang, X., Xu, Y., Zhang, Y., & Liu, Y. (2022). Global scientific trends on the immunomodulation of mesenchymal stem cells in the 21st century: A bibliometric and visualized analysis. Front Immunol, 13. https://doi.org/10.3389/fimmu.2022.984984 Watanabe, N., Yano, K., Tsuyuki, K., Okano, T., & Yamato, M. (2015). Re-examination of regulatory opinions in Europe: possible contribution for the approval of the first gene therapy product Glybera. Mol Ther Methods Clin Dev, 2. https://doi.org/10.1038/mtm.2014.66 Weber, T. (2021). Anti-AAV Antibodies in AAV Gene Therapy: Current Challenges and Possible Solutions. Front Immunol, 12. https://doi.org/10.3389/fimmu.2021.658399 Wong, C. H., Li, D., Wang, N., Gruber, J., Lo, A. W., & Conti, R. M. (2023). The estimated annual financial impact of gene therapy in the United States. Gene Ther, 30(10-11), 761–773. https://doi.org/10.1038/s41434-023-00419-9 Xu, Z., Yang, J., Xin, X., Liu, C., Li, L., Mei, X., & Li, M. (2023). Merits and challenges of iPSC-derived organoids for clinical applications. Front Cell Dev Biol, 11. https://doi.org/10.3389/fcell.2023.1188905 Yamada, K., Sakai, D., Hiraoka, M., Hatakenaka, K., Hiyoshi, S., Otani, T., Mandai, M., Maeda, T., & Takahashi, M. (2025). Unveiling Willingness to Pay for iPSC-Based Retinal Cell therapy through Discrete Choice Experiments. https://doi.org/http://dx.doi.org/10.2139/ssrn.5178795 Young, P. (2023). Treatment to cure: Advancing AAV gene therapy manufacture. Drug Discov Today, 28(7). https://doi.org/10.1016/j.drudis.2023.103610 Zemplenyi, A., Leonard, J., DiStefano, M. J., Anderson, K. E., Wright, G. C., Mendola, N. D., Nair, K., & McQueen, R. B. (2024). Using Real-World Data to Inform Value-Based Contracts for Cell and Gene Therapies in Medicaid. Pharmacoeconomics, 42(3), 319–328. https://doi.org/10.1007/s40273-023-01335-x Zhang, H., Zhan, Q., Huang, B., Wang, Y., & Wang, X. (2022). AAV-mediated gene therapy: Advancing cardiovascular disease treatment. Front Cardiovasc Med, 9. https://doi.org/10.3389/fcvm.2022.952755 Zhang, J. X., & Shugarman, L. R. (2024). Value-based payment and financing for cell and gene therapies: challenges and potential solutions. J Med Econ, 27(1), 678–681. https://doi.org/10.1080/13696998.2024.2346406 Legal Rule or Regulation Iyaku-hin, iryō-kiki-tō no hinshitsu, yūkōsei oyobi anzensei no kakuho-tō ni kansuru hōritsu [Act on Securing Quality, Efficacy and Safety of Products Including Pharmaceuticals and Medical Devices], (1960). https://www.japaneselawtranslation.go.jp/en/laws/view/3213#je_ch6 Regenerative Medicine Act, (2024). https://law.moj.gov.tw/LawClass/LawAll.aspx?pcode=L0020238 quán mín jiàn kāng bǎo xiǎn yào wù jǐ fù xiàng mù jí zhī fù biāo zhǔn [National Health Insurance Drug Benefit Items and Payment Standards], (2025b). https://law.moj.gov.tw/LawClass/LawAll.aspx?PCode=L0060035 Saisei iryō-tō no anzensei no kakuho-tō ni kansuru hōritsu [Act on the Safety of Regenerative Medicine], (2020). https://laws.e-gov.go.jp/law/425AC0000000085#Mp-Ch_1 Magazine Article Lim, X. H., Ting, D. S. W., Koh, A., & Edited By: Ingrid U. Scott, a. B. J. (2020, June 2020). Retinitis Pigmentosa, Part1: Understanding the Basics. EyeNet Magazine, 33–35. Liu, H. E. (2025, March 2025). Zài shēng yī liáo lì fǎ jí chǎn yè fā zhǎn de lún lǐ yǔ shè huì jī chǔ: yǐ lì yì chōng tú, shěn yì huì duō yuán xìng, bìng rén jiù jì cuò shī yǔ quán yì bǎo hù wéi lì [The ethical and social foundations of regenerative medicine legislation and industry development: Taking conflicts of interest, diversity of review committees, patient relief measures and rights protection as examples]. The Taiwan Law Review, (358), 110–126. Online Database Chǎn yè jià zhí liàn zī xùn píng tái [Industrial Value Chain Information Platform]. (n.d.). National Center for Biotechnology Information. (n.d.). ClinicalTrials.gov National Health Insurance Administration. (n.d.–a). Jiàn bǎo yòng yào pǐn xiàng wǎng lù chá xún fú wù [Online query service for health insurance drug items] Taiwan Intellectual Property Office. (n.d.). Global Patent Search System (GPSS) US Food and Drug Administration. (n.d.–b). Search Orphan Drug Designations and Approvals Report Aitken, M., Kleinrock, M., Campanelli, G., Tawil, C., & Vokey, M. (2020). Medicine Spending and Affordability in the United States. Aitken, M., Pritchett, J., & Jaishankar, A. (2024). Strengthening Pathways for Cell and Gene Therapies. https://www.iqvia.com/-/media/iqvia/pdfs/institute-reports/strengthening-pathways-for-cell-and-gene-therapies/iqvia-institute-cagt-report-03-24-forweb.pdf Alliance for Regenerative Medicine. (2023a). Innovative Contracting for ATMPs in Europe. Alliance for Regenerative Medicine. https://alliancerm.org/innovative-contracting-for-atmps-in-europe/ Alliance for Regenerative Medicine. (2023b). Issue Brief: Medicaid Barriers to Accessing Cell & Gene Therapies. Alliance for Regenerative Medicine. https://alliancerm.org/medicaid-barriers-to-accessing-cell-gene-therapies/ Alliance for Regenerative Medicine. (n.d.). Joint Clinical Assessment for Advanced Therapy Medicinal Products. Alliance for Regenerative Medicine. https://alliancerm.org/indication-data/joint-clinical-assessment-for-advanced-therapy-medicinal-products/ American Society of Gene and Cell Therapy, & CITELINE. (n.d.). Gene, Cell, & RNA Therapy Landscape Report-Q4 2024 Quarterly Data Report. Ernst, D. (1997). From Partial to Systemic Globalization- International Production Networks in the Electronics Industry (BRIE Working Paper, Issue. Liu, J. P. (2024). Zài shēng yī liáo zhì jì tiáo lì jí guó jì hé zhǔn xiàn kuàng [Regenerative Medicine Product Act and International Approval Status]. https://www.twpharmconf.org.tw/upload/program/20241218/492d413fea434a52bc93629e56ff53c9/492d413fea434a52bc93629e56ff53c9.pdf Ministry of Health and Welfare. (2025a). 2024 Annual Report of Cell Therapy. https://celltherapy.mohw.gov.tw/announcement_page.htm?id=128 Office of the Assistant Secretary for Planning and Evaluation. (2025). Health Insurance Coverage and Healthcare Access from 2021-2024. https://aspe.hhs.gov/reports/healthcare-coverage-access-2021-2024 Phares, S., Trusheim, M., Emond, S. K., & Pearson, S. D. (2024). Managing the Challenges of Paying for Gene Therapy: Strategies for Market Action and Policy Reform. Institute for Clinical and Economic Review. Precedence Research. (n.d.). Cell and Gene Therapy Market Size | Share and Trends 2025 to 2034. https://www.precedenceresearch.com/cell-and-gene-therapy-market The Royal Swedish Academy of Sciences. (2020). Genetic scissors: a tool for rewriting the code of life. https://www.nobelprize.org/uploads/2020/10/popular-chemistryprize2020.pdf US Census Bureau. (2024). Health Insurance Coverage in the United States: 2023 (Current Population Reports, Issue. U.S. Government Publishing Office. https://www2.census.gov/library/publications/2024/demo/p60-284.pdf Unpublished Work Maruyama, Y. (2024). Regulatory Update of Regenerative Medicine in Japan [Presentation]. Ministry of Health Labour and Welfare, Japan,. https://www.pmda.go.jp/files/000269742.pdf Web Page Adaptimmune. (March 6, 2023). Adaptimmune and TCR2 Therapeutics Announce Strategic Combination to Create a Preeminent Cell Therapy Company for Solid Tumors. Adaptimmune. Retrieved June 10 from https://www.adaptimmune.com/investors-and-media/news-center/press-releases/detail/241/adaptimmune-and-tcr2-therapeutics-announce-strategic Amarin. (n.d.). Official Website of Amarin. Retrieved June 13 from https://www.amarincorp.com/ American Society of Gene and Cell Therapy. (n.d.). Gene Therapy Approaches. American Society of Gene and Cell Therapy. Retrieved May 30 from https://patienteducation.asgct.org/gene-therapy-101/gene-therapy-approaches Chen, J. (April 25, 2023). Zì fèi xì bāo liáo fǎ Tái dà, Róng zǒng wèi hé fǎn yìng lěng? Zhì liáo jiū fēn nán rèn dìng, yī bìng bǎo zhàng jiē bù zú [Why are NTU and Veterans General Hospital so cold about self-funded cell therapy? Treatment disputes are difficult to identify, and medical and disease insurance is insufficient]. The Reporter. Retrieved July 8 from https://www.twreporter.org/a/regenerative-medicine-patients-rights Children's Hospital of Philadelphia. (2022). Emily Whitehead, First Pediatric Patient to Receive CAR T-Cell Therapy, Celebrates Cure 10 Years Later. Children's Hospital of Philadelphia. Retrieved April 6 from https://www.chop.edu/news/emily-whitehead-first-pediatric-patient-receive-car-t-cell-therapy-celebrates-cure-10-years CITELINE. (January 21, 2025). The World’s Top 100 Pharma Companies: 2024 Sales Rankings. Citeline. Retrieved June 17 from https://insights.citeline.com/pharma-insights/the-worlds-top-100-pharma-companies-2024-sales-rankings-Z47XBTXVNJEXFCKYU7Q4EJ45XI/ Dennis, M. (May 26, 2022). J&J, Legend's CAR-T therapy Carvykti cleared in Europe. FirstWorld PHARMA. Retrieved June 26 from https://firstwordpharma.com/story/5580359 editorv. (May 9, 2024). 1120511Qiǎn zé zài shēng yī liáo fǎ cū bào xié shāng, kǒng xī shēng yī bìng quán lì [1120511 Condemning the rough negotiation of the Regenerative Medicine Act, which may sacrifice the rights of patients]. Taiwan Healthcare Reform Foundation. Retrieved July 3 from https://www.thrf.org.tw/initiative/2428 editorv. (May 9, 2024). Zàishēng yīliáo fǎ chǎo shénme? Tīng gèlù zhuānjiā zhèngyán! [What's the fuss about the Regenerative Medicine Act? Here are the experts' opinions!]. Taiwan Healthcare Reform Foundation. Retrieved July 3 from https://www.thrf.org.tw/initiative/2430 Emily Whitehead Foundation. (n.d.). Our Journey. Emily Whitehead Foundation. Retrieved April 6 from https://emilywhiteheadfoundation.org/our-journey/ European Commission. (June 10, 2025). Implementation of the Regulation on health technology assessment. European Commission. Retrieved June 22 from https://health.ec.europa.eu/health-technology-assessment/implementation-regulation-health-technology-assessment_en Foundation, N. B. D. (n.d.). Hemophilia B. National Bleeding Disorders Foundation. Retrieved July 27 from https://www.bleeding.org/bleeding-disorders-a-z/types/hemophilia-b Huang, H. M. (June 4, 2024). lì jīng 10nián ,zài shēng yī liáo shuāng fǎ sān dú !shì yòng duì xiàng 、xì bāo shǐ yòng 、lún lǐ guī fàn ,6dà jiāo diǎn yī cì kàn [After 10 years, the two laws on regenerative medicine have been read three times! Applicable subjects, cell use, ethical standards, 6 major focuses at a glance]. The Reporter. Retrieved May 30 from https://www.twreporter.org/a/regenerative-medicine-legislation-passed Inserm. (May 9, 2025). Inserm at a Glance. Retrieved June 13 from https://www.inserm.fr/en/about-us/inserm-at-a-glance/ Keown, A. (August 7, 2019). More M&A Activity Expected Around AAV-Based Gene Therapies, Analyst Says. BioSpace. Retrieved July 27 from https://www.biospace.com/more-m-and-a-activity-expected-around-aav-based-gene-therapies-analyst-says Kou, Y. H. (March 14, 2025). jī yīn zhì liáo chǎn pǐn fā zhǎn xiàn kuàng yǔ qū shì[Current Status and Trends of Gene Therapy Product Development]. Development Center for Biotechnology. Retrieved May 30 from https://www.dcb.org.tw/posts/1092?locale=zh-TW Lai, S. M., & Jiang, L. X. (June 4, 2024). Zài shēng yī liáo shuāng fǎ sān dú, yī jì yǔ xì bāo yuán tóu huò fǎ yuán [The third reading of the two acts on regenerative medicine: medical technology and cell sources gain legal basis]. PTS News. Retrieved July 3 from https://news.pts.org.tw/article/698484 Lin, C.-Y. (November 2, 2023). CAR-T liè jiàn bǎo zàn shí xìng zhī fù 7 yuàn suǒ kě tí gòng zhì liáo [CAR-T is temporarily covered by the National Health Insurance, and 7 hospitals can provide treatment]. Yahoo! News. Retrieved May 31 from https://tw.news.yahoo.com/car-t%E5%88%97%E5%81%A5%E4%BF%9D%E6%9A%AB%E6%99%82%E6%80%A7%E6%94%AF%E4%BB%98-7%E9%99%A2%E6%89%80%E5%8F%AF%E6%8F%90%E4%BE%9B%E6%B2%BB%E7%99%82-042244531.html Liu, X. T. (January 7, 2020). Bǎi wàn yuán huā fèi pǎo bù diào! Yī cì gǎo dǒng ái zhèng xì bāo liáo fǎ sān duàn shōu fèi [No escaping the million-dollar bill! A quick guide to the three-stage pricing of cancer cell therapy.]. Wealth Magazine. Retrieved June 25 from https://www.wealth.com.tw/articles/3887cf95-8861-401e-ae3f-97d6f13cfef2 Liu, X. T., & Hung, L. X. (August 19, 2024). zài shēng yī liáo xīn gé mìng 5》yī cì kàn dǒng ,zài shēng yī liáo guān jiàn 5wèn liáo xiào 、jià gé 、bǎo xiǎn gè yǒu méi jiǎo [A New Revolution in Regenerative Medicine 5: Understand the 5 key questions about regenerative medicine at once: efficacy, price, and insurance, each with its own unique characteristics]. Wealth Magazine. Retrieved May 30 from https://www.wealth.com.tw/articles/e070e3eb-768e-4c95-91b6-56f35b22e29d MS Technologies. (n.d.). Official Website. MS Technologies. Retrieved Jun 15 from https://www.mstechseed.com/ Ng, D. (July 24, 2024). A Brief History of CRISPR-Cas9 Genome-Editing Tools. BiteSize Bio. Retrieved April 8 from https://bitesizebio.com/47927/history-crispr/ Pagliarulo, N. (October 21, 2021). Bluebird, winding down in Europe, withdraws another rare disease gene therapy. BIOPHARMA DIVE. Retrieved July 7 from https://www.biopharmadive.com/news/bluebird-withdraw-gene-therapy-europe-skysona/608666/ Pagliarulo, N. (February 21, 2025). Pfizer stops selling hemophilia gene therapy, citing weak demand. Retrieved March 24 from https://www.biopharmadive.com/news/pfizer-beqvez-hemophilia-halt-sales-gene-therapy/740590/ Pategou, J. (January 28, 2025). Catalysts of Change: How the Cell and Gene Therapy Market Has Evolved. Cell and Gene. Retrieved April 6 from https://www.cellandgene.com/doc/catalysts-of-change-how-the-cell-and-gene-therapy-market-has-evolved-0001 Peng, Z.-H. (August 14, 2024). Xiān jìn yào pǐn jǐ fù luò dì nán? Zhuān jiā jiě xī Tái wān yǔ gè guó nà bǎo cè lüè, shǒu zhōng HTA, RWE [Challenges in Reimbursement of Advanced Therapies? Experts Analyze Taiwan and International Coverage Strategies, Focusing on HTA and RWE]. Global Bio. Retrieved May 31 from https://news.gbimonthly.com/tw/article/show.php?num=70452 Peter, R. M. (May 12, 2025). Pharma giants pull back on AAV research: what’s next for the gene therapy space? LABIOTECH. Retrieved July 27 from https://www.labiotech.eu/trends-news/aav-gene-therapy-pharma-pullback/ Rudowitz, R., Tolbert, J., Burns, A., Hinton, E., & Mudumala, A. Medicaid 101. KFF. https://www.kff.org/health-policy-101-medicaid/?entry=table-of-contents-citation Sandra Johannesson, M. (April 29, 2024). Advanced Therapy Medicinal Product (ATMP) Regulations in Europe – 2024 Report. CAR T-Cell Advisory by Medrego. Retrieved March 18 from https://cartcell.medrego.com/advanced-therapy-medicinal-product-atmp-regulations-in-europe-2024-report/ Smith, D. (May 6, 2025). Gene Therapy at a Crossroads: Rethinking AAV Amid Industry Resets. pharma’s almanac. Retrieved July 27 from https://www.pharmasalmanac.com/articles/gene-therapy-at-a-crossroads-rethinking-aav-amid-industry-resets Smith, G. (September 9, 2024). Cures for rare diseases now exist: Employers don't want to pay. Retrieved March 24 from https://medicalxpress.com/news/2024-09-rare-diseases-employers-dont-pay.html?utm_source=chatgpt.com#google_vignette Vandermosten, J. (March 18, 2020). Gene Therapy M&A: Best Prospects 2020. American Gene Technologies. Retrieved July 27 from https://www.americangene.com/blog/gene-therapy-ma-best-prospects-2020/ Warner, E. (April 20, 2017). Goodbye Glybera! The World’s First Gene Therapy will be Withdrawn. LABIOTECH. Retrieved June 30 from https://www.labiotech.eu/trends-news/uniqure-glybera-marketing-withdrawn/ Wu, O. (25 February, 2025). Wèi fú bù zài shēng yī liáo liù xiàng zǐ fǎ guī: ná nīe tuī xíng yǔ pǐn zhí lún lǐ jiān de píng héng diǎn [Taiwan’s Six Sub-Regulations on Regenerative Medicine: Balancing Policy Implementation with Ethical and Quality Standards]. Gene Online. Retrieved May 30 from https://geneonline.news/six-sub-regulations-on-regenerative-medicine-from-mohw-find-the-balance-between-implementation-and-quality-ethics/ Wu, P. A. (April 22, 2024). Guó xǐ xì bāo xīn yào + CDMO shuāng guǐ cè lüè, dàn zài shēng yīl iáo shuāng fǎ shāng jī [Gwoxi's dual-track strategy of new cell medicine + CDMO captures dual business opportunities in regenerative medicine]. Global Bio & Investment. Retrieved July 3 from https://news.gbimonthly.com/tw/article/show.php?num=76268&range=news Xì bāo zhìl iáo fèi yòng gāo zěn me bàn? Jiě xī zài shēng yī xué jiàn bǎo jǐ fù yǔ shāng yè bǎo xiǎn bǔ zhù fāng ’àn [What can be done about the high cost of cell therapy? Analyzing reimbursement through national health insurance and commercial insurance support in regenerative medicine]. (June 16, 2025). We Get Care. Retrieved July 27 from https://www.wegetcare.tw/post/cell-therapy-cost-insurance-taiwan?srsltid=AfmBOoq97qRjsD_8h0moPjiLmdYLQ5OzAwsDR3B5k7ySz-REhLAy3_F4#viewer-uk07f1839 Yang, X. Y., & Lin, Y. H. (March 29, 2023). [Tóu shū] Kāi cè mén de zài shēng yī liáo fǎ, mín zhòng néng xìn lài ma? [[Letter] Can the public trust the side-door regenerative medicine method?]. CommonWealth Magazine. Retrieved July 3 from https://opinion.cw.com.tw/blog/profile/52/article/13444 You, Y. T. (June 5, 2024). Zài shēng yī liáo fǎ sān dú tōng guò! Zài shēng yī liáo fǎ shì shén me? Guò qù zhēng yì, wèi lái yǐng xiǎng fēn xī [The Regenerative Medicine Act passed the third reading! What is the Regenerative Medicine Act? Analysis of past controversies and future impacts]. Business Weekly. Retrieved July 3 from https://www.businessweekly.com.tw/focus/blog/3015793 Zhou, J. H., & Lin, Y. K. (October 31, 2022). Shēngyīchǎn yètòu guòshòu quánbìng gòujíhé zīdǎ zàoxiàyī zuò [The biomedical industry is building the next national guardian mountain through licensing, mergers and acquisitions, and joint ventures]. PwC. Retrieved May 31 from https://www.pwc.tw/zh/news/press-release/press-20221031-1.html Patent Amusan, I. (2019). Inbred corn line KM5 (United States Patent No. US10165744B2). United States Patent and Trademark Office. https://tiponet.tipo.gov.tw/gpss/ Asoro, F. G., Bhatnagar, S., Eller, M. S., Eller, R. C., Gehlhar, S., Lubich, D. J., McElroy, J. L., Potrzeba, D. A., & Reeder, L. R. (2018). Plants and seeds of hybrid corn variety CH624975 (United States Patent No. US10070611B1). United States Patent and Trademark Office. https://tiponet.tipo.gov.tw/gpss/ Bachmann, M., & Ehninger, A. (2020). Universal chimeric antigen expressing immune cells for targeting of diverse multiple antigens and method of manufacturing the same and use of the same for treatment of cancer, infections and autoimmune disorders (United States Patent No. US10611814B2). United States Patent and Trademark Office. https://tiponet.tipo.gov.tw/gpss/ Baeuerle, P., Sieczkiewicz, G., & Hofmeister, R. (2019). Compositions and methods for TCR reprogramming using fusion proteins (United States Patent No. US10442849B2). United States Patent and Trademark Office. https://tiponet.tipo.gov.tw/gpss/ Baeuerle, P., Sieczkiewicz, G., & Hofmeister, R. (2021). Compositions and methods for TCR reprogramming using fusion proteins (United States Patent No. US11028142B2). United States Patent and Trademark Office. https://tiponet.tipo.gov.tw/gpss/ Baeuerle, P., Sieczkiewicz, G., & Hofmeister, R. (2024). Compositions and methods for TCR reprogramming using fusion proteins (United States Patent No. US11965012B2). United States Patent and Trademark Office. https://tiponet.tipo.gov.tw/gpss/ Barker, T. C., Cabral, C. B., Weber, G. P., & Yu, J. (2019). Maize hybrid X95M194 (United States Patent No. US10219471B1). United States Patent and Trademark Office. https://tiponet.tipo.gov.tw/gpss/ Barrangou, R., Boyaval, P., Fremaux, C., & Romero, P. H. (2018). Method of modulating cell resistance (United States Patent No. US10066233B2). United States Patent and Trademark Office. https://tiponet.tipo.gov.tw/gpss/ Barrangou, R., & Briner, K. M. S. E. (2020). Methods and compositions for sequence guiding Cas9 targeting (United States Patent No. US10787654B2). United States Patent and Trademark Office. https://tiponet.tipo.gov.tw/gpss/ Belgrader, P., Bent, Z., Gopalan, V. K. S., Harada, J., Hindson, C., Lenji, M. R., McDermott, G., Meer, E., Mikkelsen, T. S., O'Keeffe, C. J., Pfeiffer, K., Price, A. D., Ryvkin, P., Saxonov, S., Stuelpnagel, J. R., & Terry, J. M. (2018). Methods and systems for processing polynucleotides (United States Patent No. US10011872B1). United States Patent and Trademark Office. https://tiponet.tipo.gov.tw/gpss/ Benson, M., Merkin, J., Kryukov, G. V., Shenker, S. M., Schlabach, M., & Tubo, N. (2021). Gene-regulating compositions and methods for improved immunotherapy (United States Patent No. US11111493B2). United States Patent and Trademark Office. https://tiponet.tipo.gov.tw/gpss/ Bernett, M., Rashid, R., Desjarlais, J., Varma, R., & Bonzon, C. (2020). Bispecific heterodimeric fusion proteins containing IL-15-IL-15Rα Fc-fusion proteins and PD-1 antibody fragments (United States Patent No. US10550185B2). United States Patent and Trademark Office. https://tiponet.tipo.gov.tw/gpss/ Bhatnagar, S., Chen, Y., Gutierrez, H. I., Nichols, D. M., & Tiwari, K. R. (2022). Plants and seeds of hybrid corn variety CH011149 (United States Patent No. US11388874B2). United States Patent and Trademark Office. https://tiponet.tipo.gov.tw/gpss/ Bhatnagar, S., Nichols, D. M., & Tiwari, K. R. (2024). Plants and seeds of hybrid corn variety CH011015 (United States Patent No. US12058974B2). United States Patent and Trademark Office. https://tiponet.tipo.gov.tw/gpss/ Brogdon, J., Choi, E., Ebersbach, H. E., Glass, D., Huet, H., June, C. H., Mannick, J., Milone, M. C., Murphy, L., Plesa, G., Richardson, C., Ruella, M., Singh, R., Wang, Y., & Wu, Q. (2019). Nucleic acid encoding a humanized anti-BCMA chimeric antigen receptor (United States Patent No. US10174095B2). United States Patent and Trademark Office. https://tiponet.tipo.gov.tw/gpss/ Buffard, C. J., Sernett, J. M., & Stangland, G. R. (2019). Plants and seeds of hybrid corn variety CH482861 (United States Patent No. US10362756B1). United States Patent and Trademark Office. https://tiponet.tipo.gov.tw/gpss/ Buffard, C. J., Sernett, J. M., & Stangland, G. R. (2023). Plants and seeds of hybrid corn variety CH011102 (United States Patent No. US11606924B2). United States Patent and Trademark Office. https://tiponet.tipo.gov.tw/gpss/ Campana, D., Shook, D., & Imamura, M. (2019). Modified natural killer cells that express IL15 and uses thereof (United States Patent No. US10428305B2). United States Patent and Trademark Office. https://tiponet.tipo.gov.tw/gpss/ Carton, J. M., Naso, M. F., Borges, L. G., Wheeler, J., & Devaney, A. (2024). Chimeric antigen receptor system with adaptable receptor specificity (United States Patent No. US11883432B2). United States Patent and Trademark Office. https://tiponet.tipo.gov.tw/gpss/ Chand, D. S., Jawad, Z., Ignatovich, O., Ramsay, N. A., Campbell, S., Wensley, B., Briend, E. C. P., Bushell, K. M., Morin, B. M., & Ilkow, V. F. (2022). Anti-TIGIT and anti-CD96 antibodies (United States Patent No. US11718669B2). United States Patent and Trademark Office. https://tiponet.tipo.gov.tw/gpss/ Chand, D. S., Wilson, N. S., Underwood, D. J., & Morin, B. M. (2021). Anti-TIGIT antibodies and methods of use thereof (United States Patent No. US11021537B2). United States Patent and Trademark Office. https://tiponet.tipo.gov.tw/gpss/ Chee, M. S., Gong, H., & Gunderson, K. L. (2023). Methods for barcoding macromolecules in individual cells (United States Patent No. US11753677B2). United States Patent and Trademark Office. https://tiponet.tipo.gov.tw/gpss/ Cheung, N.-K. V., Lopez-Albaitero, A., & Xu, H. (2019). Bispecific HER2 and CD3 binding molecules (United States Patent No. US10519248B2). United States Patent and Trademark Office. https://tiponet.tipo.gov.tw/gpss/ Chopin, F., Page, N. J., & Roucolle, J. (2019). Plants and seeds of hybrid corn variety CH267399 (United States Patent No. US10362754B1). United States Patent and Trademark Office. https://tiponet.tipo.gov.tw/gpss/ Chung, S. (2023). Methods for efficient generation of GABAergic interneurons from pluripotent stem cells (United States Patent No. US11767507B2). United States Patent and Trademark Office. https://tiponet.tipo.gov.tw/gpss/ Ciaramella, G., & Himansu, S. (2018). Combination PIV3/hMPV RNA vaccines (United States Patent No. US10064934B2). United States Patent and Trademark Office. https://tiponet.tipo.gov.tw/gpss/ Ciaramella, G., & Himansu, S. (2020). Betacoronavirus mRNA vaccine (United States Patent No. US10702600B1). United States Patent and Trademark Office. https://tiponet.tipo.gov.tw/gpss/ Ciaramella, G., Huang, E. Y.-C., Bahl, K., Zaks, T., & Himansu, S. (2018). Zika RNA vaccines (United States Patent No. US10449244B2). United States Patent and Trademark Office. https://tiponet.tipo.gov.tw/gpss/ Clube, J. (2019). Altering microbial populations and modifying microbiota (United States Patent No. US10506812B2). United States Patent and Trademark Office. https://tiponet.tipo.gov.tw/gpss/ Clube, J. (2021). Selectively altering microbiota for immune modulation (United States Patent No. US11141481B2). United States Patent and Trademark Office. https://tiponet.tipo.gov.tw/gpss/ Clube, J. (2022). Selectively altering microbiota for immune modulation (United States Patent No. US11351252B2). United States Patent and Trademark Office. https://tiponet.tipo.gov.tw/gpss/ Clube, J., Sommer, M., Grøndahl, C., HELM, E. V. D., & VAZQUEZ-URIBE, R. (2023). Altering microbial populations and modifying microbiota (United States Patent No. US11844760B2). United States Patent and Trademark Office. https://tiponet.tipo.gov.tw/gpss/ Cogswell, J. P., Goldberg, S. M., Gupta, A. K., Jure-Kunkel, M., Wang, X.-T., & Wigginton, J. M. (2018). Cancer immunotherapy by disrupting PD-1/PD-L1 signaling (United States Patent No. US10072082B2). United States Patent and Trademark Office. https://tiponet.tipo.gov.tw/gpss/ Conway, A., Cost, G. J., Dekelver, R., Rebar, E. J., Reik, A., Urnov, F., Wang, J., & Zhang, H. S. (2019). Methods and compositions for treatment of a genetic condition (United States Patent No. US10196651B2). United States Patent and Trademark Office. https://tiponet.tipo.gov.tw/gpss/ Cooper, L. J. N., KORNGOLD, A. B., RABINOVICH, B. A., Singh, H., & OLIVARES, S. (2018). Chimeric antigen receptors and methods of making (United States Patent No. US10125193B2). United States Patent and Trademark Office. https://tiponet.tipo.gov.tw/gpss/ Cotta-Ramusino, C., & Margulies, C. M. (2024). Systems and methods for targeted integration and genome editing and detection thereof using integrated priming sites (United States Patent No. US11866726B2). United States Patent and Trademark Office. https://tiponet.tipo.gov.tw/gpss/ Crowley, N. A., Cunnyngham, C. T., Gadlage, M. J., Henry, T. R., Holley, R. N., Lennon, J. R., O'Berry, N. B., Pohl, D. J., & Steinke, J. A. (2022). Maize hybrid X13N234 (United States Patent No. US11490584B1). United States Patent and Trademark Office. https://tiponet.tipo.gov.tw/gpss/ Crowley, N. A., Cunnyngham, C. T., Henry, T. R., Holley, R. N., Lennon, J. R., Steinke, J. A., & Thurston, A. K. (2022). Maize hybrid X15P092 (United States Patent No. US11528874B1). United States Patent and Trademark Office. https://tiponet.tipo.gov.tw/gpss/ Deisseroth, K. A., Allen, W. E., HSUEH, B., & Ye, L. (2019). Method and system for imaging and analysis of a biological specimen (United States Patent No. US10495554B2). United States Patent and Trademark Office. https://tiponet.tipo.gov.tw/gpss/ Denham, G. J., & Stone, K. T. (2018). Method and apparatus for coupling soft tissue to a bone (United States Patent No. US10092288B2). United States Patent and Trademark Office. https://tiponet.tipo.gov.tw/gpss/ Denham, G. J., & Stone, K. T. (2020). Method and apparatus for coupling soft tissue to a bone (United States Patent No. US10729430B2). United States Patent and Trademark Office. https://tiponet.tipo.gov.tw/gpss/ Dequeant, M.-L., Kalaitzidis, D., & Ghonime, M. (2022). Genetically engineered t cells with regnase-1 and/or TGFBRII disruption have improved functionality and persistence (United States Patent No. US11497773B2). United States Patent and Trademark Office. https://tiponet.tipo.gov.tw/gpss/ Desjarlais, J. R., Moore, G., Hedvat, M., Diaz, J., & Zeng, V. G. (2024). Anti-CD28 compositions (United States Patent No. US11919958B2). United States Patent and Trademark Office. https://tiponet.tipo.gov.tw/gpss/ Dever, D. P., Bak, R. O., Hendel, A., Srifa, W., & Porteus, M. H. (2021). Nuclease-mediated genome editing of primary cells and enrichment thereof (United States Patent No. US11193141B2). United States Patent and Trademark Office. https://tiponet.tipo.gov.tw/gpss/ Dever, D. P., Bak, R. O., Hendel, A., Srifa, W., & Porteus, M. H. (2022). Nuclease-mediated genome editing of primary cells (United States Patent No. US11492646B2). United States Patent and Trademark Office. https://tiponet.tipo.gov.tw/gpss/ Dever, D. P., Bak, R. O., Hendel, A., Srifa, W., & Porteus, M. H. (2023). Pharmaceutical compositions comprising gene-corrected primary cells (United States Patent No. US11634732B2). United States Patent and Trademark Office. https://tiponet.tipo.gov.tw/gpss/ DiMauro, T. M. (2018). In-situ formed intervertebral fusion device and method (United States Patent No. US10085843B2). United States Patent and Trademark Office. https://tiponet.tipo.gov.tw/gpss/ DiMauro, T. M. (2019). In-situ formed intervertebral fusion device and method (United States Patent No. US10492918B2). United States Patent and Trademark Office. https://tiponet.tipo.gov.tw/gpss/ DiMauro, T. M., & Malone, J. D. (2019). In-situ formed intervertebral fusion device and method (United States Patent No. US10433971B2). United States Patent and Trademark Office. https://tiponet.tipo.gov.tw/gpss/ DiMauro, T. M., & Slivka, M. A. (2020a). In-situ formed intervertebral fusion device and method (United States Patent No. US10555817B2). United States Patent and Trademark Office. https://tiponet.tipo.gov.tw/gpss/ DiMauro, T. M., & Slivka, M. A. (2020). In-situ formed intervertebral fusion device and method (United States Patent No. US10575959B2). United States Patent and Trademark Office. https://tiponet.tipo.gov.tw/gpss/ DiMauro, T. M., & Slivka, M. A. (2020). In-situ formed intervertebral fusion device and method (United States Patent No. US10583013B2). United States Patent and Trademark Office. https://tiponet.tipo.gov.tw/gpss/ DiMauro, T. M., & Slivka, M. A. (2020b). In-situ formed intervertebral fusion device and method (United States Patent No. US10639164B2). United States Patent and Trademark Office. https://tiponet.tipo.gov.tw/gpss/ Doudna, J. A., Al-Shayeb, B., Banfield, J. F., & Pausch, P. (2023a). CRISPR-Cas12J effector polypeptides and methods of use thereof (United States Patent No. US11739309B2). United States Patent and Trademark Office. https://tiponet.tipo.gov.tw/gpss/ Doudna, J. A., Al-Shayeb, B., Banfield, J. F., & Pausch, P. (2023b). CRISPR-Cas effector polypeptides and methods of use thereof (United States Patent No. US11578313B2). United States Patent and Trademark Office. https://tiponet.tipo.gov.tw/gpss/ DOUDNA, J. A., Banfield, J., Burstein, D., Harrington, L. B., & Strutt, S. C. (2020). RNA-guided nucleic acid modifying enzymes and methods of use thereof (United States Patent No. US10570415B2). United States Patent and Trademark Office. https://tiponet.tipo.gov.tw/gpss/ Doudna, J. A., Banfield, J., Burstein, D., Harrington, L. B., & Strutt, S. C. (2023). RNA-guided nucleic acid modifying enzymes and methods of use thereof (United States Patent No. US11795472B2). United States Patent and Trademark Office. https://tiponet.tipo.gov.tw/gpss/ DOUDNA, J. A., Banfield, J. F., Burstein, D., Harrington, L. B., & Strutt, S. C. (2024). RNA-guided nucleic acid modifying enzymes and methods of use thereof (United States Patent No. US11873504B2). United States Patent and Trademark Office. https://tiponet.tipo.gov.tw/gpss/ DOUDNA, J. A., Chen, J. S., Harrington, L. B., & Ma, E. (2019). Type V CRISPR/Cas effector proteins for cleaving ssDNAs and detecting target DNAs (United States Patent No. US10253365B1). United States Patent and Trademark Office. https://tiponet.tipo.gov.tw/gpss/ Doudna, J. A., Chen, J. S., Harrington, L. B., & Ma, E. (2021). Type V CRISPR/Cas effector proteins for cleaving ssDNAs and detecting target DNAs (United States Patent No. US11118224B2). United States Patent and Trademark Office. https://tiponet.tipo.gov.tw/gpss/ Doudna, J. A., Lin, S., & Staahl, B. T. (2020). Methods and compositions for RNA-directed target DNA modification (United States Patent No. US10570418B2). United States Patent and Trademark Office. https://tiponet.tipo.gov.tw/gpss/ Dupont, J., & Parmar, H. (2021). Methods for treatment of cancer comprising TIGIT-binding agents (United States Patent No. US11136384B2). United States Patent and Trademark Office. https://tiponet.tipo.gov.tw/gpss/ Dupont, J., & Parmar, H. (2022). Methods for treatment of cancer comprising TIGIT-binding agents (United States Patent No. US11230596B2). United States Patent and Trademark Office. https://tiponet.tipo.gov.tw/gpss/ Eisenbach-Schwartz, M., Baruch, K., & Rosenzweig, N. (2018). Reducing systemic regulatory T cell levels or activity for treatment of disease and injury of the CNS (United States Patent No. US10144778B2). United States Patent and Trademark Office. https://tiponet.tipo.gov.tw/gpss/ Faham, M., & Willis, T. (2019). Methods of monitoring conditions by sequence analysis (United States Patent No. US10246752B2). United States Patent and Trademark Office. https://tiponet.tipo.gov.tw/gpss/ Fang, L., Wang, Z., Guo, B., & Zang, J. (2019). Anti-PD-L1 antibodies and uses thereof (United States Patent No. US10208119B2). United States Patent and Trademark Office. https://tiponet.tipo.gov.tw/gpss/ Feng, Q., Lu, S.-J., & Lanza, R. P. (2019). Methods for production of platelets from pluripotent stem cells and compositions thereof (United States Patent No. US10426799B2). United States Patent and Trademark Office. https://tiponet.tipo.gov.tw/gpss/ Feng, Q., Lu, S.-J., & Lanza, R. P. (2021). Methods for production of platelets from pluripotent stem cells and compositions thereof (United States Patent No. US10894065B2). United States Patent and Trademark Office. https://tiponet.tipo.gov.tw/gpss/ Ferrara Koller, C., Junttila, T. T., Klein, C., Umana, P., & Claus, C. (2024). HER2-targeting antigen binding molecules comprising 4-1BBL (United States Patent No. US12065478B2). United States Patent and Trademark Office. https://tiponet.tipo.gov.tw/gpss/ Fox, R., Heffner, E. L., Henke, G. E., Lira, S. J., Srnic, G., & Tarnowski, T. L. B. (2021). Maize hybrid X13N261 (United States Patent No. US10905063B1). United States Patent and Trademark Office. https://tiponet.tipo.gov.tw/gpss/ Frisen, J., Stahl, P., Lundeberg, J., Cann, G. M., Bazargan, L., & Aravanis, A. (2023a). Spatially distinguished, multiplex nucleic acid analysis of biological specimens US11613773B2). https://patents.google.com/patent/US11613773B2/en?oq=US11613773B2 Frisen, J., Stahl, P., Lundeberg, J., Cann, G. M., Bazargan, L., & Aravanis, A. (2023b). Spatially distinguished, multiplex nucleic acid analysis of biological specimens (United States Patent No. US11613773B2). United States Patent and Trademark Office. https://tiponet.tipo.gov.tw/gpss/ Fritsche, J., Weinschenk, T., Walter, S., Lewandrowski, P., & Singh, H. (2021). Immunotherapy against several tumors including gastrointestinal and gastric cancer (United States Patent No. US11077171B2). United States Patent and Trademark Office. https://tiponet.tipo.gov.tw/gpss/ FRITSCHE, J., Weinschenk, T., Walter, S., LEWANDROWSKI, P., & Singh, H. (2022a). Immunotherapy against several tumors including gastrointestinal and gastric cancer (United States Patent No. US11298404B2). United States Patent and Trademark Office. https://tiponet.tipo.gov.tw/gpss/ FRITSCHE, J., Weinschenk, T., Walter, S., LEWANDROWSKI, P., & Singh, H. (2022b). Immunotherapy against several tumors including gastrointestinal and gastric cancer. (United States Patent No. US11273200B2). United States Patent and Trademark Office. https://tiponet.tipo.gov.tw/gpss/ Fritsche, J., Weinschenk, T., Walter, S., Lewandrowski, P., & Singh, H. (2023). Immunotherapy against several tumors including gastrointestinal and gastric cancer (United States Patent No. US11839643B2). United States Patent and Trademark Office. https://tiponet.tipo.gov.tw/gpss/ Gill, R. T., Garst, A., & LIPSCOMB, T. E. W. (2018). Nucleic acid-guided nucleases (United States Patent No. US10011849B1). United States Patent and Trademark Office. https://tiponet.tipo.gov.tw/gpss/ Grandal, M. M., Gjetting, T., Lantto, J., Jakobsen, J. S., HANSEN, R. W., & Fröhlich, C. (2023). Anti-CD73 antibodies and compositions (United States Patent No. US11634500B2). United States Patent and Trademark Office. https://tiponet.tipo.gov.tw/gpss/ Gurney, A. L., & Xie, M.-H. (2018). Tight-binding agents and uses thereof (United States Patent No. US10112997B2). United States Patent and Trademark Office. https://tiponet.tipo.gov.tw/gpss/ HAABER, J. K., SEMSEY, S., Grove, M., DAMHOLT, B., Jasinskyte, D., & Gençay, Y. E. (2024). Treating and preventing E coli infections (United States Patent No. US12076375B2). United States Patent and Trademark Office. https://tiponet.tipo.gov.tw/gpss/ Hawkins, J. R., Upal, A. M., O'Neil, M. J., Slivka, M. A., & Fisher, M. (2021). Highly lordosed fusion cage (United States Patent No. US10973652B2). United States Patent and Trademark Office. https://tiponet.tipo.gov.tw/gpss/ Higginson-Scott, N., Viney, J. L., Otipoby, K. L., Visweswaraiah, J., Alioto, S., Edwards, L. J., Sampson, E., Glanville, J., Maurer, D., Ives, S., Pettus, C., & Schwimmer, L. (2023). MAdCAM targeted immunotolerance (United States Patent No. US11739146B2). United States Patent and Trademark Office. https://tiponet.tipo.gov.tw/gpss/ Hindson, B., Hindson, C., Schnall-Levin, M., Ness, K., Jarosz, M., Saxonov, S., & Hardenbol, P. (2019). Methods and systems for processing polynucleotides (United States Patent No. US10273541B2). United States Patent and Trademark Office. https://tiponet.tipo.gov.tw/gpss/ Holley, R. N. (2020). Maize inbred PH46C2 (United States Patent No. US10716278B1). United States Patent and Trademark Office. https://tiponet.tipo.gov.tw/gpss/ Huang, Y.-C., Ivery, A., Choi, B., Schilling, B., & Ngo, M.-D. (2018). Method of preparing an adipose tissue derived matrix (United States Patent No. US10092600B2). United States Patent and Trademark Office. https://tiponet.tipo.gov.tw/gpss/ Huntington, N. D., Nicholson, S. E., Babon, J., & Kolesnik, T. (2021). Inhibition of cytokine-induced SH2 protein in NK cells (United States Patent No. US10975149B2). United States Patent and Trademark Office. https://tiponet.tipo.gov.tw/gpss/ Jacques, Y., Plet, A., Mortier, E., Quemener, A., & Vusio, P. (2019). IL-15Ralpha sushi domain—IL-15 fusion proteins (United States Patent No. US10358477B2). United States Patent and Trademark Office. https://tiponet.tipo.gov.tw/gpss/ Jaenisch, R., Hanna, Y., Wernig, M., Lengner, C. J., Meissner, A., Brambrink, O. T., Welstead, G. G., & Foreman, R. (2018). Reprogramming of somatic cells (United States Patent No. US10093904B2). United States Patent and Trademark Office. https://tiponet.tipo.gov.tw/gpss/ Jaenisch, R., & Hochedlinger, K. (2019). Methods for reprogramming somatic cells (United States Patent No. US10457917B2). United States Patent and Trademark Office. https://tiponet.tipo.gov.tw/gpss/ JASNY, E., & Petsch, B. (2024). Lassa virus vaccine (United States Patent No. US12161711B2). United States Patent and Trademark Office. https://tiponet.tipo.gov.tw/gpss/ Jensen, M. (2019). Bispecific chimeric antigen receptors and methods of use thereof to treat cancer (United States Patent No. US10189903B2). United States Patent and Trademark Office. https://tiponet.tipo.gov.tw/gpss/ Jensen, M. C. (2022). Bispecific CAR T-cells for solid tumor targeting (United States Patent No. US11458167B2). United States Patent and Trademark Office. https://tiponet.tipo.gov.tw/gpss/ Kahvejian, A., Mata-Fink, J., Deans, R. J., Chen, T. F., Round, J., Afeyan, N. B., Nissen, T. S., Dowden, N., Wickham, T., & Elloul, S. (2019). Compositions and methods related to engineered erythoid cells comprising 4-1BBL (United States Patent No. US10456421B2). United States Patent and Trademark Office. https://tiponet.tipo.gov.tw/gpss/ Kahvejian, A., Mata-Fink, J., Round, J., Berry, D. A., & Afeyan, N. B. (2019). Synthetic membrane-receiver complexes (United States Patent No. US10329531B2). United States Patent and Trademark Office. https://tiponet.tipo.gov.tw/gpss/ Kannan, K., Gander, M., Spindler, E., & Hardenbol, P. (2021). Increased nucleic-acid guided cell editing in yeast (United States Patent No. US10927385B2). United States Patent and Trademark Office. https://tiponet.tipo.gov.tw/gpss/ Kariko, K., & Weissman, D. (2019). RNA containing modified nucleosides and methods of use thereof (United States Patent No. US10232055B2). United States Patent and Trademark Office. https://tiponet.tipo.gov.tw/gpss/ Kelly, J. E., & DiMauro, T. M. (2019). In-situ formed intervertebral fusion device and method (United States Patent No. US10405986B2). United States Patent and Trademark Office. https://tiponet.tipo.gov.tw/gpss/ Klemke, R., & Wang, H. (2022). Platform for generating safe cell therapeutics (United States Patent No. US11248213B2). United States Patent and Trademark Office. https://tiponet.tipo.gov.tw/gpss/ Klemke, R., & Wang, H. (2023). Platform for generating safe cell therapeutics (United States Patent No. US11674121B2). United States Patent and Trademark Office. https://tiponet.tipo.gov.tw/gpss/ Klemke, R., & Wang, H. (2024). Platform for generating safe cell therapeutics (United States Patent No. US12049644B2). United States Patent and Trademark Office. https://tiponet.tipo.gov.tw/gpss/ Klimanskaya, I., Carson, J. K., Gay, R., & Ivanova, Y. G. (2023). Assays for potency of human retinal pigment epithelium (RPE) cells and photoreceptor progenitors (United States Patent No. US11680941B2). United States Patent and Trademark Office. https://tiponet.tipo.gov.tw/gpss/ Klimanskaya, I. V., Carson, J. K., Gay, R., & Ivanova, Y. G. (2022). Assays for potency of human retinal pigment epithelium (RPE) cells and photoreceptor progenitors (United States Patent No. US11422125B2). United States Patent and Trademark Office. https://tiponet.tipo.gov.tw/gpss/ Kochenderfer, J. N. (2023). Chimeric antigen receptors targeting B-cell maturation antigen (United States Patent No. US11827889B2). United States Patent and Trademark Office. https://tiponet.tipo.gov.tw/gpss/ Lanza, R. P., Lu, S.-J., & Wang, W. (2019). Photoreceptors and photoreceptor progenitors produced from pluripotent stem cells (United States Patent No. US10307444B2). United States Patent and Trademark Office. https://tiponet.tipo.gov.tw/gpss/ Lee, G. K., Riley, B. E., St. Martin, S. J., & Wechsler, T. (2019). Delivery methods and compositions for nuclease-mediated genome engineering (United States Patent No. US10450585B2). United States Patent and Trademark Office. https://tiponet.tipo.gov.tw/gpss/ Lonberg, N., Korman, A. J., Barnhart, B. C., Yamniuk, A. P., Srinivasan, M., Henning, K. A., Lei, M., Sega, E., Goodenough, A., Jure-Kunkel, M., Chen, G., Sack, J. S., HUANG, R. Y., Corbett, M. J., Joseph E. Myers, J., Schweizer, L., Hatcher, S. V., Huang, H., & Zhang, P. (2018). Antibodies against CD73 and uses thereof (United States Patent No. US10100129B2). United States Patent and Trademark Office. https://tiponet.tipo.gov.tw/gpss/ Lubich, D. J., & Nichols, D. M. (2022). Plants and seeds of hybrid corn variety CH011133 (United States Patent No. US11464188B2). United States Patent and Trademark Office. https://tiponet.tipo.gov.tw/gpss/ Maglaras, C., & Valdevit, A. (2020). Load sustaining bone scaffolds for spinal fusion utilizing hyperbolic struts and translational strength gradients (United States Patent No. US10660764B2). United States Patent and Trademark Office. https://tiponet.tipo.gov.tw/gpss/ Mahr, A., Weinschenk, T., Goldfinger, V., Schoor, O., Fritsche, J., & Singh, H. (2021). Peptides and combination of peptides for use in immunotherapy against small cell lung cancer and other cancers (United States Patent No. US11111280B2). United States Patent and Trademark Office. https://tiponet.tipo.gov.tw/gpss/ MAHR, A., Weinschenk, T., HOERZER, H., Schoor, O., FRITSCHE, J., & Singh, H. (2024a). Peptides and combination of peptides for use in immunotherapy against ovarian cancer and other cancers (United States Patent No. US12071458B2). United States Patent and Trademark Office. https://tiponet.tipo.gov.tw/gpss/ MAHR, A., Weinschenk, T., HOERZER, H., Schoor, O., FRITSCHE, J., & Singh, H. (2024b). Peptides and combination of peptides for use in immunotherapy against ovarian cancer and other cancers (United States Patent No. US11912749B2). United States Patent and Trademark Office. https://tiponet.tipo.gov.tw/gpss/ MAHR, A., Weinschenk, T., HOERZER, H., Schoor, O., FRITSCHE, J., & Singh, H. (2024c). Peptides and combination of peptides for use in immunotherapy against ovarian cancer and other cancers (United States Patent No. US11912748B2). United States Patent and Trademark Office. https://tiponet.tipo.gov.tw/gpss/ Malcuit, C., Lemieux, L., Holmes, W., Huertas, P., & Vilner, L. (2019). Methods of producing human RPE cells and pharmaceutical preparations of human RPE cells (United States Patent No. US10485829B2). United States Patent and Trademark Office. https://tiponet.tipo.gov.tw/gpss/ Manku, M., Osterloh, I., Wicker, P., Braeckman, R., Soni, P., & Zakrzewski, J. S. (2019a). Methods of reducing apolipoprotein C-III (United States Patent No. US10265290B2). United States Patent and Trademark Office. https://tiponet.tipo.gov.tw/gpss/ Manku, M., Osterloh, I., Wicker, P., Braeckman, R., Soni, P., & Zakrzewski, J. S. (2019b). Methods of reducing apolipoprotein C-III (United States Patent No. US10166209B2). United States Patent and Trademark Office. https://tiponet.tipo.gov.tw/gpss/ Mason, J. T. (2019). Soybean cultivar S170170 (United States Patent No. US10470423B1). United States Patent and Trademark Office. https://tiponet.tipo.gov.tw/gpss/ Mason, J. T. (2021a). Soybean cultivar 84410120 (United States Patent No. US11006605B2). United States Patent and Trademark Office. https://tiponet.tipo.gov.tw/gpss/ Mason, J. T. (2021b). Soybean cultivar 95130648 (United States Patent No. US11178840B1). United States Patent and Trademark Office. https://tiponet.tipo.gov.tw/gpss/ Mason, J. T. (2022a). Soybean cultivar 90442929 (United States Patent No. US11337397B2). United States Patent and Trademark Office. https://tiponet.tipo.gov.tw/gpss/ Mason, J. T. (2022b). Soybean cultivar 92312145 (United States Patent No. US11337396B2). United States Patent and Trademark Office. https://tiponet.tipo.gov.tw/gpss/ Mata-Fink, J., Round, J., Afeyan, N. B., & Kahvejian, A. (2020). Methods and compositions for immunomodulation (United States Patent No. US10869898B2). United States Patent and Trademark Office. https://tiponet.tipo.gov.tw/gpss/ Maurer, M. F., Chen, T.-h. T., Devaux, B., Srinivasan, M., Julien, S. H., Sheppard, P. O., Ardourel, D. F., & Chakraborty, I. (2019). Antibodies to TIGIT (United States Patent No. US10189902B2). United States Patent and Trademark Office. https://tiponet.tipo.gov.tw/gpss/ McAllister, M., Wang, D., Bubear, M., Canales, J., Chang, A., Shikhanovich, R., Spilker, M., & Semler, E. (2020). Modified demineralized cortical bone fibers (United States Patent No. US10531957B2). United States Patent and Trademark Office. https://tiponet.tipo.gov.tw/gpss/ McAllister, M., Wang, D., Bubear, M., Canales, J., Chang, A., Shikhanovich, R., Spilker, M., & Semler, E. (2023). Modified demineralized cortical bone fibers (United States Patent No. US11596517B2). United States Patent and Trademark Office. https://tiponet.tipo.gov.tw/gpss/ Meissner, T. B., Ferreira, L. M. R., Strominger, J. L., & Cowan, C. A. (2024a). Universal donor stem cells and related methods (United States Patent No. US12031154B2). United States Patent and Trademark Office. https://tiponet.tipo.gov.tw/gpss/ Meissner, T. B., Ferreira, L. M. R., Strominger, J. L., & Cowan, C. A. (2024b). Universal donor stem cells and related methods (United States Patent No. US12110500B2). United States Patent and Trademark Office. https://tiponet.tipo.gov.tw/gpss/ Meissner, T. B., Ferreira, L. M. R., Strominger, J. L., & Cowan, C. A. (2024c). Universal donor stem cells and related methods (United States Patent No. US12031155B2). United States Patent and Trademark Office. https://tiponet.tipo.gov.tw/gpss/ Miklas, J., Radisic, M., Thavandiran, N., Vasconcelos, S., Xiao, Y., Zhang, B., & Zhao, Y. (2019). Compositions and methods for making and using three-dimensional tissue systems (United States Patent No. US10254274B2). United States Patent and Trademark Office. https://tiponet.tipo.gov.tw/gpss/ Mohler, K. M., Levitsky, H. I., & SATHER, B. (2020). Engineered cells for adoptive cell therapy (United States Patent No. US10786533B2). United States Patent and Trademark Office. https://tiponet.tipo.gov.tw/gpss/ Moore, G., Bernett, M., Rashid, R., & Desjarlais, J. (2020). Heterodimeric proteins (United States Patent No. United States Patent and Trademark Office. https://tiponet.tipo.gov.tw/gpss/ Moore, G., Desjarlais, J., & Chu, S. (2019). Heterodimeric antibodies that bind CD3 and PSMA (United States Patent No. US10227410B2). United States Patent and Trademark Office. https://tiponet.tipo.gov.tw/gpss/ Moore, G., Desjarlais, J., Chu, S., & Lee, S.-H. (2019). Trispecific antibodies (United States Patent No. US10428155B2). United States Patent and Trademark Office. https://tiponet.tipo.gov.tw/gpss/ Morgan, R., & Friedman, K. (2022). BCMA chimeric antigen receptors (United States Patent No. US11351236B2). United States Patent and Trademark Office. https://tiponet.tipo.gov.tw/gpss/ Moriarity, B., Webber, B., Choudhry, M., Rosenberg, S. A., Palmer, D. C., & Restifo, N. P. (2023). Intracellular genomic transplant and methods of therapy (United States Patent No. US11642374B2). United States Patent and Trademark Office. https://tiponet.tipo.gov.tw/gpss/ Moriarity, B., Webber, B., Choudhry, M., Rosenberg, S. A., Palmer, D. C., & Restifo, N. P. (2024). Intracellular genomic transplant and methods of therapy (United States Patent No. US11903966B2). United States Patent and Trademark Office. https://tiponet.tipo.gov.tw/gpss/ Moriarity, B., Webber, B., Largaespada, D., Choudhry, M., & Rosenberg, S. A. (2024). Intracellular genomic transplant and methods of therapy (United States Patent No. US11925664B2). United States Patent and Trademark Office. https://tiponet.tipo.gov.tw/gpss/ Moriarity, B., Webber, B., McIvor, R. S., Choudhry, M., Rosenberg, S. A., Palmer, D. C., & Restifo, N. P. (2019). Intracellular genomic transplant and methods of therapy (United States Patent No. US10166255B2). United States Patent and Trademark Office. https://tiponet.tipo.gov.tw/gpss/ Muik, A., Swanson, K. A., Yang, Q., Cai, H., Sahin, U., & Modjarrad, K. (2024). Coronavirus vaccine (United States Patent No. US11878055B1). United States Patent and Trademark Office. https://tiponet.tipo.gov.tw/gpss/ Murray, M. M. (2023). Collagen scaffolds (United States Patent No. US11826489B2). United States Patent and Trademark Office. https://tiponet.tipo.gov.tw/gpss/ Musunuru, K., Cowan, C. A., & Rossi, D. J. (2019). Therapeutic uses of genome editing with CRISPR/Cas systems (United States Patent No. US10208319B2). United States Patent and Trademark Office. https://tiponet.tipo.gov.tw/gpss/ Nasert, M. A., Stoffel, F., Williams, P. R., & Callahan, A. (2023). Cartilage-derived implants and methods of making and using same (United States Patent No. US11806443B2). United States Patent and Trademark Office. https://tiponet.tipo.gov.tw/gpss/ Nasert, M. A., Stoffel, F., Williams, P. R., & Callahan, A. (2024). Cartilage-derived implants and methods of making and using same (United States Patent No. US11938245B2). United States Patent and Trademark Office. https://tiponet.tipo.gov.tw/gpss/ Naso, M., Carton, J., Wheeler, J., & Borges, L. (2023). Artificial cell death polypeptide for chimeric antigen receptor and uses thereof (United States Patent No. US11661459B2). United States Patent and Trademark Office. https://tiponet.tipo.gov.tw/gpss/ Nicholas, C. R., Rubenstein, J. L., Kriegstein, A. R., & Alvarez-Buylla, A. (2018). In vitro production of medial ganglionic eminence precursor cells (United States Patent No. US10100279B2). United States Patent and Trademark Office. https://tiponet.tipo.gov.tw/gpss/ Nukaya, D., Eiraku, M., Kinose, Y., Onishi, A., Takahashi, M., & SASAI, Y. (2024). Method for producing retinal tissues (United States Patent No. US12090252B2). United States Patent and Trademark Office. https://tiponet.tipo.gov.tw/gpss/ Oakes, B., Higgins, S., Spinner, H., Denny, S., Staahl, B. T., Taylor, K., Baney, K., Colin, I., & Adil, M. (2023). Engineered proteins (United States Patent No. US11560555B2). United States Patent and Trademark Office. https://tiponet.tipo.gov.tw/gpss/ Oakes, B., Higgins, S., Spinner, H., Denny, S., Staahl, B. T., Taylor, K., Baney, K., Colin, I., & Adil, M. (2024). Guide scaffolds (United States Patent No. US12084692B2). United States Patent and Trademark Office. https://tiponet.tipo.gov.tw/gpss/ Osterloh, I., Wicker, P., Braeckman, R., Soni, P., & Manku, M. (2019). Methods of treating mixed dyslipidemia (United States Patent No. US10220013B2). United States Patent and Trademark Office. https://tiponet.tipo.gov.tw/gpss/ PARK, S., Vong, Q., SATHER, B., Ryu, B., Lajoie, M., MOFFETT, H., Weitzner, B., SONG, Y., BOYKEN, S., Sharma, N., Potluri, S., & BOLDAJIPOUR, B. (2024). ROR1 targeting chimeric antigen receptor (United States Patent No. US12144827B2). United States Patent and Trademark Office. https://tiponet.tipo.gov.tw/gpss/ Park, S. W., Kim, Y. M., Jung, J. S., & Rhee, Y.-H. (2024). Method of producing natural killer cells and composition for treating cancer (United States Patent No. US12098388B2). United States Patent and Trademark Office. https://tiponet.tipo.gov.tw/gpss/ Peterson, Q. P., Pagliuca, F. J., Melton, D. A., Millman, J. R., Segel, M. S., & Gurtler, M. (2018). SC-β cells and compositions and methods for generating the same (United States Patent No. US10030229B2). United States Patent and Trademark Office. https://tiponet.tipo.gov.tw/gpss/ Png, Y. T., Vinanica, N., Kamiya, T., & Campana, D. (2022). Blockade of CD7 expression and chimeric antigen receptors for immunotherapy of T-cell malignancies (United States Patent No. US11440958B2). United States Patent and Trademark Office. https://tiponet.tipo.gov.tw/gpss/ Png, Y. T., Vinanica, N., Kamiya, T., & Campana, D. (2024). Blockade of CD7 expression and chimeric antigen receptors for immunotherapy of T-cell malignancies US11945865B2). Popelka, M. (2023). Inbred corn line CD9 (United States Patent No. US11716945B2). United States Patent and Trademark Office. https://tiponet.tipo.gov.tw/gpss/ Popovic, M., Onal, C., Effraimidis, D., Jennings, B., McCarthy, G. D., & Corso, N. (2024). Actuators and methods of use (United States Patent No. US11925594B2). United States Patent and Trademark Office. https://tiponet.tipo.gov.tw/gpss/ Porteus, M. H., Hendel, A., Clark, J., Bak, R. O., Ryan, D. E., Dellinger, D. J., Kaiser, R., & Myerson, J. (2022). Chemically modified guide RNAS for CRISPR/Cas-mediated gene regulation (United States Patent No. US11535846B2). United States Patent and Trademark Office. https://tiponet.tipo.gov.tw/gpss/ Porteus, M. H., Hendel, A., Clark, J., Bak, R. O., Ryan, D. E., Dellinger, D. J., Kaiser, R., & Myerson, J. (2023). Compositions comprising chemically modified guide RNAs for CRISPR/Cas-mediated editing of HBB (United States Patent No. US11851652B2). United States Patent and Trademark Office. https://tiponet.tipo.gov.tw/gpss/ RAUCH, S., GROSSE, H. W., & Petsch, B. (2022). Coronavirus vaccine (United States Patent No. US11241493B2). United States Patent and Trademark Office. https://tiponet.tipo.gov.tw/gpss/ Rezania, A., & Ramos-Zayas, R. (2020a). Universal donor cells (United States Patent No. US10724052B2). United States Patent and Trademark Office. https://tiponet.tipo.gov.tw/gpss/ Rezania, A., & Ramos-Zayas, R. (2020b). Universal donor cells (United States Patent No. US10865424B2). United States Patent and Trademark Office. https://tiponet.tipo.gov.tw/gpss/ Rhodes, C. S., & Shimko, D. A. (2024). Adjustable bone implant for enclosing bone material (United States Patent No. US12178941B2/). United States Patent and Trademark Office. https://tiponet.tipo.gov.tw/gpss/ Rios, D., Mande, P., Viney, J. L., Higginson-Scott, N., Otipoby, K. L., Borthakur, S., Alioto, S., & Edwards, L. J. (2024). Tissue targeted immunotolerance with a CD39 effector (United States Patent No. US11981715B2). United States Patent and Trademark Office. https://tiponet.tipo.gov.tw/gpss/ Rogers, C., Dooris, A., Fatyol, P. J., Lionetto, M., Naughton, R. J., & Hawkins, J. R. (2019). Intervertebral disc (United States Patent No. US10238500B2). United States Patent and Trademark Office. https://tiponet.tipo.gov.tw/gpss/ Sack, J. A. (2021). Implant with improved flow characteristics (United States Patent No. US10940015B2). United States Patent and Trademark Office. https://tiponet.tipo.gov.tw/gpss/ Sack, J. A. (2024). Implant with improved flow characteristics (United States Patent No. US11951018B2). United States Patent and Trademark Office. https://tiponet.tipo.gov.tw/gpss/ Sadelain, M. W. J., Eyquem, J. G. A. F., & Mansilla-Soto, J. (2022). Transgenic T cell and chimeric antigen receptor T cell compositions and related methods (United States Patent No. US11377637B2). United States Patent and Trademark Office. https://tiponet.tipo.gov.tw/gpss/ Sahin, U., Güler, A., Kuhn, A., Muik, A., Vogel, A., Walzer, K., Witzel, S., Hein, S., & Türeci, Ö. (2023). Coronavirus vaccine (United States Patent No. US11547673B1). United States Patent and Trademark Office. https://tiponet.tipo.gov.tw/gpss/ Sahin, U., Güler, A., Kuhn, A., Muik, A., Vogel, A., Walzer, K., Witzel, S., Hein, S., & Türeci, Ö. (2024). Coronavirus vaccine (United States Patent No. US12133899B2). United States Patent and Trademark Office. https://tiponet.tipo.gov.tw/gpss/ Sakoda, R. E. V., Restifo, N., Klausner, R. D., Huang, Y., Maeda, T., Tamaoki, N., & Yamazaki, Y. (2024). Methods for making, compositions comprising, and methods of using rejuvenated T cells (United States Patent No. US12091682B2). United States Patent and Trademark Office. https://tiponet.tipo.gov.tw/gpss/ Schlachter, K. W., Shimko, D. A., Kalpakci, K., Vasquez, E., Kaes, D. R., & Bhattacharyya, S. (2019). Milled bone graft materials and methods of use (United States Patent No. US10368930B2). United States Patent and Trademark Office. https://tiponet.tipo.gov.tw/gpss/ Schrum, J. P., Siddiqi, S., & Ejebe, K. (2018). Modified nucleosides, nucleotides, and nucleic acids, and uses thereof (United States Patent No. US10064959B2). United States Patent and Trademark Office. https://tiponet.tipo.gov.tw/gpss/ Semler, E., Callahan, A., Canales, J., Carroll, K., Dasgupta, A., & Shikhanovich, R. (2018). Tissue-derived tissuegenic implants, and methods of fabricating and using same (United States Patent No. US10130736B1). United States Patent and Trademark Office. https://tiponet.tipo.gov.tw/gpss/ Serber, Z., Dean, E. J., Manchester, S., Gora, K., Flashman, M., Shellman, E., Kimball, A., Szyjka, S., Frewen, B., Treynor, T., & Bruno, K. S. (2021). Automated system for HTP genomic engineering (United States Patent No. US10883101B2). United States Patent and Trademark Office. https://tiponet.tipo.gov.tw/gpss/ Serber, Z., Dean, E. J., Manchester, S., Gora, K., Flashman, M., Shellman, E., Kimball, A., Szyjka, S., Frewen, B., Treynor, T., & Bruno, K. S. (2021). HTP genomic engineering platform (United States Patent No. US11208649B2). United States Patent and Trademark Office. https://tiponet.tipo.gov.tw/gpss/ Serber, Z., Dean, E. J., Manchester, S., Gora, K., Flashman, M., Shellman, E., Kimball, A., Szyjka, S., Frewen, B., Treynor, T., & Bruno, K. S. (2022a). HTP genomic engineering platform (United States Patent No. US11352621B2). United States Patent and Trademark Offices. https://tiponet.tipo.gov.tw/gpss/ Serber, Z., Dean, E. J., Manchester, S., Gora, K., Flashman, M., Shellman, E., Kimball, A., Szyjka, S., Frewen, B., Treynor, T., & Bruno, K. S. (2022b). Systems and methods for host cell improvement utilizing epistatic effects (United States Patent No. US11312951B2). United States Patent and Trademark Office. https://tiponet.tipo.gov.tw/gpss/ Serhan, H., DiMauro, T. M., & Malone, J. D. (2019a). In-situ formed intervertebral fusion device and method (United States Patent No. US10420651B2). United States Patent and Trademark Office. https://tiponet.tipo.gov.tw/gpss/ Serhan, H., DiMauro, T. M., & Malone, J. D. (2019b). In-situ formed intervertebral fusion device and method (United States Patent No. US10376372B2). United States Patent and Trademark Office. https://tiponet.tipo.gov.tw/gpss/ Sommer, M., MARTINEZ, V., HELM, E. V. D., HAABER, J. K., TORIO, A. D. S., Grøndahl, C., & Clube, J. (2022a). Treating and preventing microbial infections (United States Patent No. US11485973B2). United States Patent and Trademark Office. https://tiponet.tipo.gov.tw/gpss/ Sommer, M., MARTINEZ, V., HELM, E. V. D., HAABER, J. K., TORIO, A. D. S., Grøndahl, C., & Clube, J. (2022b). Treating and preventing microbial infections (United States Patent No. US11421227B2). United States Patent and Trademark Office. https://tiponet.tipo.gov.tw/gpss/ Soni, P. (2019). Methods of reducing the risk of a cardiovascular event in a subject on statin therapy (United States Patent No. US10278935B2). United States Patent and Trademark Office. https://tiponet.tipo.gov.tw/gpss/ Soni, P. (2020a). Methods of reducing the risk of a cardiovascular event in a subject at risk for cardiovascular disease (United States Patent No. US10568861B1). United States Patent and Trademark Office. https://tiponet.tipo.gov.tw/gpss/ Soni, P. (2020b). Methods of reducing the risk of a cardiovascular event in a subject at risk for cardiovascular disease (United States Patent No. US10576054B1). United States Patent and Trademark Office. https://tiponet.tipo.gov.tw/gpss/ Soni, P. (2020c). Methods of reducing the risk of a cardiovascular event in a subject at risk for cardiovascular disease. (United States Patent No. US10555925B1). United States Patent and Trademark Office. https://tiponet.tipo.gov.tw/gpss/ Stefani, S., & Gander, T. T. (2022). Simultaneous multiplex genome editing in yeast (United States Patent No. US11306299B2). United States Patent and Trademark Office. https://tiponet.tipo.gov.tw/gpss/ Suri, V., Li, D. J., Sun, D., Delabarre, B., BALAKRISHNAN, V., Dolinski, B., INNISS, M. C., & OLINGER, G. Y. (2024). DHFR tunable protein regulation (United States Patent No. US12104178B2). United States Patent and Trademark Office. https://tiponet.tipo.gov.tw/gpss/ Szalay, A., & Minev, B. (2018). Smallpox vaccine for cancer treatment (United States Patent No. US10105436B2). United States Patent and Trademark Office. https://tiponet.tipo.gov.tw/gpss/ Terrett, J. A., Kalaitzidis, D., Dequéant, M.-L., & Padalia, Z. S. (2022). Methods and compositions for treating cancer (United States Patent No. US11254912B2). United States Patent and Trademark Office. https://tiponet.tipo.gov.tw/gpss/ Thon, J., & Dykstra, B. (2024). Compositions and methods for producing megakaryocytes (United States Patent No. US12060576B2). United States Patent and Trademark Office. https://tiponet.tipo.gov.tw/gpss/ Tian, T., Johnson, C., & Spindler, E. (2020). Curing for recursive nucleic acid-guided cell editing (United States Patent No. US10837021B1). United States Patent and Trademark Office. https://tiponet.tipo.gov.tw/gpss/ Trager, J. B., Buren, L. G., Guo, C., Tohmé, M., Chan, I., & Lazetic, A. L. L. (2022). CD19-directed chimeric antigen receptors and uses thereof in immunotherapy (United States Patent No. US11253547B2). United States Patent and Trademark Office. https://tiponet.tipo.gov.tw/gpss/ Valamehr, B., Abujarour, R., Lee, T. T., Lan, W., Clarke, R., & Bjordahl, R. (2019). Genomic engineering of pluripotent cells (United States Patent No. US10287606B2). United States Patent and Trademark Office. https://tiponet.tipo.gov.tw/gpss/ Valamehr, B., Clarke, R., & Bjordahl, R. (2020). Methods and compositions for inducing hematopoietic cell differentiation (United States Patent No. US10858628B2). United States Patent and Trademark Office. https://tiponet.tipo.gov.tw/gpss/ Viney, J. L., & Higginson-Scott, N. (2020). Targeted immunotolerance (United States Patent No. US10676516B2). United States Patent and Trademark Office. https://tiponet.tipo.gov.tw/gpss/ Viney, J. L., & Higginson-Scott, N. (2022). Targeted immunotolerance (United States Patent No. US11466068B2). United States Patent and Trademark Office. https://tiponet.tipo.gov.tw/gpss/ Viney, J. L., Higginson-Scott, N., Benson, M., & Crane, A. (2021). Targeted immunotolerance (United States Patent No. US10961310B2). United States Patent and Trademark Office. https://tiponet.tipo.gov.tw/gpss/ Wang, Z., Fang, L., Guo, B., & Zang, J. (2020). Anti-CD73 antibodies and uses thereof (United States Patent No. US10584169B2). United States Patent and Trademark Office. https://tiponet.tipo.gov.tw/gpss/ Wang, Z., Fang, L., Guo, B., Zang, J., & Yang, Q. (2021). Anti-CD73 anti-PD-L1 bispecific antibodies (United States Patent No. US11034771B2). United States Patent and Trademark Office. https://tiponet.tipo.gov.tw/gpss/ Wei, G. (2018). 3D printing of mesh implants for bone delivery (United States Patent No. US10064726B1). United States Patent and Trademark Office. https://tiponet.tipo.gov.tw/gpss/ Weinschenk, T., Mahr, A., Fritsche, J., Mueller, P., Wiebe, A., & Kutscher, S. (2018). Peptides and combination of peptides for use in immunotherapy against hepatocellular carcinoma (HCC) and other cancers (United States Patent No. US10064926B2). United States Patent and Trademark Office. https://tiponet.tipo.gov.tw/gpss/ Weinschenk, T., Mahr, A., Fritsche, J., Mueller, P., Wiebe, A., & Kutscher, S. (2023). Peptides and combination of peptides for use in immunotherapy against Hepatocellular carcinoma (HCC) and other cancers (United States Patent No. US11786583B2). United States Patent and Trademark Office. https://tiponet.tipo.gov.tw/gpss/ Weinschenk, T., Schoor, O., & MAHR, A. (2024). Peptides and combination of peptides for use in immunotherapy against non-small cell lung cancer and other cancers (United States Patent No. US12168044B2). United States Patent and Trademark Office. https://tiponet.tipo.gov.tw/gpss/ Weinschenk, T., Walter, S., FRITSCHE, J., SONG, C., & Singh, H. (2018). Immunotherapy against several tumors, such as lung cancer, including NSCLC (United States Patent No. US10071148B2). United States Patent and Trademark Office. https://tiponet.tipo.gov.tw/gpss/ Weinschenk, T., Walter, S., Fritsche, J., Song, C., & Singh, H. (2023). Immunotherapy against several tumors including lung cancer (United States Patent No. US11814446B2). United States Patent and Trademark Office. https://tiponet.tipo.gov.tw/gpss/ Weinschenk, T., Walter, S., Fritsche, J., Song, C., & Singh, H. (2024). Immunotherapy against several tumors including lung cancer (United States Patent No. US11866517B2). United States Patent and Trademark Office. https://tiponet.tipo.gov.tw/gpss/ Wells, J., & McCracken, K. (2021). Methods for the in vitro manufacture of gastric fundus tissue and compositions related to same (United States Patent No. US11066650B2). United States Patent and Trademark Office. https://tiponet.tipo.gov.tw/gpss/ Wells, J. M., & McCracken, K. W. (2021). Methods and systems for converting precursor cells into gastric tissues through directed differentiation (United States Patent No. US11053477B2). United States Patent and Trademark Office. https://tiponet.tipo.gov.tw/gpss/ Wells, J. M., & Munera, J. O. (2023). Colonic organoids and methods of making and using same (United States Patent No. US11767515B2). United States Patent and Trademark Office. https://tiponet.tipo.gov.tw/gpss/ Wells, J. M., Watson, C. L., Munera, J. O., Mahe, M. M., Helmrath, M. A., & Workman, M. J. (2023). Method of making in vivo human small intestine organoids from pluripotent stem cells (United States Patent No. US11584916B2). United States Patent and Trademark Office. https://tiponet.tipo.gov.tw/gpss/ Williams, J., Nguyen, M., Yao, A., Santoro, S., Cooper, A., Gagnon, J., Litterman, A., Khan, O., Bezman, N., Harris, K., CHAUDHRY, H. K. M., & Allen, N. (2024). Immune cells having co-expressed shRNAS and logic gate systems (United States Patent No. US12037407B2). United States Patent and Trademark Office. https://tiponet.tipo.gov.tw/gpss/ Wilson, N. S., Morin, B. M., Findeis, M. A., Mundt, C. A., van Dijk, M., Chand, D. S., Savitsky, D. A., Underwood, D. J., & Ignatovich, O. (2021). Anti-CD137 antibodies and methods of use thereof (United States Patent No. US11098117B2). United States Patent and Trademark Office. https://tiponet.tipo.gov.tw/gpss/ Wilson, N. S., Waight, J. D., Jennings, S. M., Ignatovich, O., BriendB, E. C. P., Morin, e. M., Schon, O., & Campbell, S. (2023). Anti-CD73 antibodies and methods of use thereof (United States Patent No. US11692042B2). United States Patent and Trademark Office. https://tiponet.tipo.gov.tw/gpss/ Winston, W., Hicklin, D., Bhaskar, V., Evnin, L., Baeuerle, P., Salmeron Garcia, J. A., Brodkin, H., & Seidel-Dugan, C. (2020). Activatable interleukin 12 polypeptides (United States Patent No. US10696723B2). United States Patent and Trademark Office. https://tiponet.tipo.gov.tw/gpss/ Wu, C.-Y., Onuffer, J., & Lim, W. A. (2018). Chimeric antigen receptor and methods of use thereof (United States Patent No. US10105391B2). United States Patent and Trademark Office. https://tiponet.tipo.gov.tw/gpss/ Xiao, Y., Wilson, N. S., Morin, B. M., Findeis, M. A., Mundt, C. A., van Dijk, M., Chand, D. S., Savitsky, D. A., Underwood, D. J., & Ignatovich, O. (2022). Anti-CD137 antibodies and methods of use thereof (United States Patent No. US11242385B2). United States Patent and Trademark Office. https://tiponet.tipo.gov.tw/gpss/ Yao, Y., Li, Y., Wei, Y., Zhu, S., Yao, X., & Huang, J. (2021). Combined chimeric antigen receptor targeting CD19 and CD20 and application thereof (United States Patent No. US11207349B2). United States Patent and Trademark Office. https://tiponet.tipo.gov.tw/gpss/ Zhang, F., Gao, L., Zetsche, B., & Slaymaker, I. (2019). Crispr enzyme mutations reducing off-target effects (United States Patent No. US10494621B2). United States Patent and Trademark Office. https://tiponet.tipo.gov.tw/gpss/ Zhang, F., Zetsche, B., Gootenberg, J. S., Abudayyeh, O. O., & Slaymaker, I. (2021). CRISPR enzymes and systems (United States Patent No. US11091798B2). United States Patent and Trademark Office. https://tiponet.tipo.gov.tw/gpss/ Zhang, F., Zetsche, B., Gootenberg, J. S., Abudayyeh, O. O., & Slaymaker, I. (2024). Crispr enzymes and systems (United States Patent No. US12091709B2). United States Patent and Trademark Office. https://tiponet.tipo.gov.tw/gpss/ Zhang, F., Zetsche, B., Slaymaker, I., Gootenberg, J., & Abudayyeh, O. O. (2020). CRISPR enzymes and systems (United States Patent No. US10669540B2). United States Patent and Trademark Office. https://tiponet.tipo.gov.tw/gpss/ Zhang, H., Shi, H., Shen, L., Cao, W., & Liu, L. (2023). Engineered immune cells targeting BCMA and their uses thereof (United States Patent No. US11840575B2). United States Patent and Trademark Office. https://tiponet.tipo.gov.tw/gpss/ Zhao, Y., REN, J., Liu, X., & June, C. H. (2021). Altering gene expression in modified T cells and uses thereof (United States Patent No. US11203758B2). United States Patent and Trademark Office. https://tiponet.tipo.gov.tw/gpss/ Zhao, Y., Shedlock, D. J., June, C. H., & Liu, X. (2024). Enhanced antigen presenting ability of RNA car T cells by co-introduction of costimulatory molecules (United States Patent No. US12162922B2). United States Patent and Trademark Office. https://tiponet.tipo.gov.tw/gpss/ | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99193 | - |
| dc.description.abstract | 細胞與基因治療(CGT)作為當代醫療創新的關鍵技術,具備根治罕見疾病與重大疾病的潛力。然而,其研發與商業化過程仍受到臨床不確定性、法規審查與支付機制限制的挑戰。本研究採用混合研究方法,結合專利分析、臨床試驗數據、國際制度比較與專家訪談,選取腺相關病毒(AAV)、嵌合抗原受體T細胞(CAR-T)、常間回文重複序列叢集關聯蛋白(CRISPR)、間質幹細胞(MSC)、自然殺手細胞(NK cell)與誘導性多能幹細胞(iPSC)等六種代表性技術,建構細胞基因療法的發展分類與成熟度評估架構。
透過美國、歐盟與日本的制度比較,本研究揭示不同法規與支付設計在CGT產品核准的偏好及產業發展的影響。最後特別聚焦於台灣現行雙軌制制度,並提出兼顧產業誘因與發展之建議。研究認為,影響CGT普及的關鍵並非僅止於技術發展,更取決於法規彈性、支付體系成熟度與整體政策前瞻性。 | zh_TW |
| dc.description.abstract | Cell and gene therapies (CGTs) represent a new frontier in biomedical innovation, offering curative potential for diseases once considered intractable. However, the development and delivery of CGTs remain constrained by uncertainties in regulation, reimbursement, and clinical translation. This study establishes an integrated analytical framework combining patent analysis, clinical trial mapping, and international policy comparison to examine six representative CGT modalities: AAV, CAR-T, CRISPR, MSC, NK cell, and iPSC. The analysis reveals differentiated technology trajectories and clinical maturity levels, which are used to develop a strategic group typology of CGT development. A cross-jurisdictional comparison of the United States, the European Union, and Japan further uncovers the heterogeneous structures of approval pathways and payment mechanisms.
Particular attention is paid to Taiwan’s dual-track regulatory system and its implications for local innovation. The study proposes strategic recommendations for Taiwan’s CGT governance, including regulatory alignment, HTA reform, data stewardship, and global standard integration of delivery capabilities. The findings suggest that beyond technology, institutional readiness and policy foresight are decisive in shaping the future of CGT accessibility and affordability. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-21T16:45:16Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-08-21T16:45:16Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 論文口試委員審定書 i
致謝辭 ii 中文摘要 iii ABSTRACT iv CONTENTS v LIST OF FIGURES ix LIST OF TABLES xii Chapter 1 Introduction 1 1.1 Research Background and Motivation 1 1.2 Research Objectives and Questions 4 Chapter 2 Literature Review 6 2.1 Technologies of CGT 6 2.1.1 The Definition of CGT 6 2.1.2 Gene Therapy 8 2.1.3 Cell therapy 15 2.2 Challenges of CGTs to the Current System 20 2.2.1 Clinical Uncertainty and Safety Challenges 21 2.2.2 Manufacturing, Supply Chain, and Delivery Constraints 23 2.2.3 Payment and Reimbursement Mechanisms 25 2.3 Global Responses to CGT Payment Challenges 26 2.3.1 The Innovative Payment Models for CGT 27 2.3.2 The United States 30 2.3.3 The European Union 36 2.3.4 Japan 41 2.4 Multilevel Frameworks of Technology Management 44 2.4.1 Technological Evolution: Life Cycles, Paradigms, and Discontinuities 45 2.4.2 Organizational Capabilities and Strategic Positioning 48 2.4.3 Institutional Environment and Innovation Policy 49 Chapter 3 Research Method 51 3.1 Study Design Overview 51 3.2 CGT Technology Landscape 52 3.2.1 Patent Analysis 52 3.2.2 Clinical Trials Analysis 56 3.2.3 Strategic Grouping 57 3.3 Comparative Analysis from a Regulatory Perspective 57 3.3.1 Country Selection and Data Sources 57 3.3.2 Analytical Framework: Regulation and Payment 57 3.4 Semi-Structured Expert Interviews 58 3.4.1 Interview Design and Scope 58 3.4.2 Participant Selection and Process 58 Chapter 4 Discussion and Results 60 4.1 The Development of CGT Modalities 61 4.1.1 The Technology Life Cycle of CGTs 63 4.1.2 Patent Citation Network Analysis 79 4.1.3 Therapy Indications and Technologies 125 4.1.4 The Strategic Group of CGTs 132 4.2 The Landscape of CGT Approvals and Pricing: Case Study of the US, EU, and Japan 138 4.2.1 Current Approved CGTs and Their Prices 138 4.2.2 The Analysis of the Approved CGTs and Their Prices of The Three Systems 159 4.2.3 The Mapping of Technologies and Regulatory Systems of CGTs 162 4.3 CGTs in Taiwan 167 4.3.1 The Regulatory Evolution of CGT 167 4.3.2 The Development of CGTs 173 4.3.3 The Payment and The Reimbursement State of Taiwan’s CGT 178 Chapter 5 Conclusion 183 5.1 Study Findings 183 5.1.1 The Establishment of a Systematic Structure for CGT Analysis 183 5.1.2 The Heterogeneous Global Environment of CGT 187 5.1.3 A New Strategic Pillar in Biotechnology for Taiwan 188 5.2 Strategy Suggestions 189 5.2.1 Different CGT Modality and Payment System 189 5.2.2 Shaping the Future of CGT in Taiwan 191 5.3 Study Limitations and Recommendations for Future Research 196 REFERENCES 198 Appendix A 233 Appendix B 234 | - |
| dc.language.iso | en | - |
| dc.subject | 細胞與基因治療 | zh_TW |
| dc.subject | 再生醫療 | zh_TW |
| dc.subject | 支付制度 | zh_TW |
| dc.subject | 法規體系 | zh_TW |
| dc.subject | 專利分析 | zh_TW |
| dc.subject | 台灣 | zh_TW |
| dc.subject | payment system | en |
| dc.subject | cell and gene therapy | en |
| dc.subject | regenerative medicine | en |
| dc.subject | Taiwan | en |
| dc.subject | patent analysis | en |
| dc.subject | regulatory system | en |
| dc.title | 細胞與基因治療的技術發展與支付體系探討 | zh_TW |
| dc.title | A Study on the Technology Development and Payment System of Cell and Gene Therapy | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 何佳安;何俐安;阮大同 | zh_TW |
| dc.contributor.oralexamcommittee | Ja-An Annie Ho;Li-An Ho;Ta-Tung Yuan | en |
| dc.subject.keyword | 細胞與基因治療,再生醫療,支付制度,法規體系,專利分析,台灣, | zh_TW |
| dc.subject.keyword | cell and gene therapy,regenerative medicine,payment system,regulatory system,patent analysis,Taiwan, | en |
| dc.relation.page | 239 | - |
| dc.identifier.doi | 10.6342/NTU202502665 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2025-08-06 | - |
| dc.contributor.author-college | 進修推廣學院 | - |
| dc.contributor.author-dept | 生物科技管理碩士在職學位學程 | - |
| dc.date.embargo-lift | 2025-08-22 | - |
| Appears in Collections: | 生物科技管理碩士在職學位學程 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| ntu-113-2.pdf | 5.63 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
