Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 管理學院
  3. 管理學院企業管理專班(Global MBA)
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99192
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor柯冠州zh_TW
dc.contributor.advisorKuan-Chou Koen
dc.contributor.author何則文zh_TW
dc.contributor.authorWenzel Herderen
dc.date.accessioned2025-08-21T16:45:01Z-
dc.date.available2025-08-22-
dc.date.copyright2025-08-21-
dc.date.issued2025-
dc.date.submitted2025-08-01-
dc.identifier.citationAdams, F., & Aizawa, K. (2001). The bounds of cognition. Philosophical Psychology, 14(1), 43–64. https://doi.org/10.1080/09515080120033571
Ahmad, S. F., & Han, H. (2023). Impact of artificial intelligence on human loss in decision making, laziness and safety in education. Humanities and Social Sciences Communications, 10, 1–14. https://doi.org/10.1057/s41599-023-01787-8
Ailon, G. (2008). Mirror, mirror on the wall: Culture's consequences in a value test of its own design. Academy of Management Review, 33(4), 885–904. https://doi.org/10.5465/amr.2008.34421995
Ajzen, I. (1991). The theory of planned behavior. Organizational Behavior and Human Decision Processes, 50(2), 179–211. https://doi.org/10.1016/0749-5978(91)90020-T
Amabile, T. M. (1988). A model of creativity and innovation in organizations. Research in Organizational Behavior, 10(1), 123–167.
Being honest about using AI at work makes people trust you less, research finds. (2025, May 29). University of Arizona News. (URL: https://news.arizona.edu/story/being-honest-about-using-ai-work-makes-people-trust-you-less-research-finds)
Binns, R., Van Kleek, M., Veale, M., Lyngs, U., Zhao, J., & Shadbolt, N. (2018). ‘It’s reducing a human being to a percentage’: Perceptions of justice in algorithmic decisions. Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, 1–14. https://doi.org/10.1145/3173574.3173951
Boston Consulting Group. (2024, January 10). Getting real about AI in retail. BCG. https://www.bcg.com/publications/2024/getting-real-about-ai-in-retail
Boston Consulting Group. (2025). AI at Work 2025: Momentum Builds, but Gaps Remain. BCG Publications. https://www.bcg.com/publications/2025/ai-at-work-momentum-builds-but-gaps-remain
Braun, V., & Clarke, V. (2006). Using thematic analysis in psychology. Qualitative Research in Psychology, 3(2), 77–101. https://doi.org/10.1191/1478088706qp063oa
Brynjolfsson, E., Li, D., & Raymond, L. (2023). Experimental evidence on the productivity effects of generative artificial intelligence. National Bureau of Economic Research. https://doi.org/10.3386/w31161
Candrian, C., & Scherer, A. (2022). Rise of the machines: Delegating decisions to autonomous AI. Computers in Human Behavior. https://doi.org/10.1016/j.chb.2022.107308
Chowdhury, S., Budhwar, P., Dey, P. K., Joel-Edgar, S., & Abadie, A. (2022). AI-employee collaboration and business performance. Journal of Business Research, 144, 31–49. https://doi.org/10.1016/j.jbusres.2022.01.069
Clark, A., & Chalmers, D. (1998). The extended mind. Analysis, 58(1), 7–19. https://doi.org/10.1093/analys/58.1.7
Dellermann, D., Calma, A., Lipusch, N., Weber, T., Weigel, S., & Ebel, P. (2019). The future of human-AI collaboration. Proceedings of the 52nd HICSS. https://doi.org/10.24251/HICSS.2019.034
Dellermann, D., Ebel, P., Söllner, M., & Leimeister, J. M. (2019). Hybrid intelligence. Business & Information Systems Engineering, 61(5), 637–643. https://doi.org/10.1007/s12599-019-00595-2
Dietvorst, B. J., Simmons, J. P., & Massey, C. (2015). Algorithm aversion: People erroneously avoid algorithms after seeing them err. Journal of Experimental Psychology: General, 144(1), 114–126. https://doi.org/10.1037/xge0000033
Employees won't trust AI if they don't trust their leaders. (2025, March 21). Harvard Business Review. (URL: https://hbr.org/2025/03/employees-wont-trust-ai-if-they-dont-trust-their-leaders)
Floridi, L., & Cowls, J. (2019). A unified framework of five principles for AI in society. Harvard Data Science Review, 1(1). https://doi.org/10.1162/99608f92.8cd550d1
Gaessler, F., & Piezunka, H. (2023). Training with AI: Evidence from chess computers. Strategic Management Journal, 44(11), 2724–2750. https://doi.org/10.1002/smj.3512
Georganta, E., & Ulfert, A.-S. (2024). Would you trust an AI team member? Journal of Occupational and Organizational Psychology, 97(4), 1212–1241. https://doi.org/10.1111/joop.12504
Georganta, E., & Ulfert, A.-S. (2025). Trust and AI weight: Human-AI collaboration in organizational management decision-making. Frontiers in Organizational Psychology. https://doi.org/10.3389/forgp.2025.1419403
Glikson, E., & Woolley, A. W. (2020). Human trust in artificial intelligence. Academy of Management Annals, 14(2), 627–660. https://doi.org/10.5465/annals.2018.0057
Hackman, J. R., & Oldham, G. R. (1976). Motivation through the design of work: Test of a theory. Organizational Behavior and Human Performance, 16(2), 250–279. https://doi.org/10.1016/0030-5073(76)90016-7
Haesevoets, T., De Cremer, D., Dierckx, K., & Van Hiel, A. (2021). Human–Machine Collaboration in Managerial Decision Making. Computers in Human Behavior, 119, 106730. https://doi.org/10.1016/j.chb.2021.106730
Hagemann, V., Rieth, M., Suresh, A., & Kirchner, F. (2023). Human–AI teams—Challenges for a team-centered AI at work. Frontiers in Artificial Intelligence, 6, 1252897. https://doi.org/10.3389/frai.2023.1252897
Hejtmánek, L., Oravcová, I., Motýl, J., Horáček, J., & Fajnerová, I. (2018). Spatial knowledge impairment after GPS guided navigation. International Journal of Human-Computer Studies, 116, 15–24. https://doi.org/10.1016/j.ijhcs.2018.04.006
Hofstede, G. (2001). Culture's consequences: Comparing values, behaviors, institutions, and organizations across nations (2nd ed.). Sage Publications. (URL: https://us.sagepub.com/en-us/nam/cultures-consequences/book226232)
Jakesch, M., French, M., Ma, X., Hancock, J. T., & Naaman, M. (2019). AI-mediated communication. Proceedings of the 2019 CHI Conference, 1–13. https://doi.org/10.1145/3290605.3300469
Jarrahi, M. H. (2018). Artificial intelligence and the future of work: Human–AI symbiosis in organizational decision making. Business Horizons, 61, 577–586. https://doi.org/10.1016/j.bushor.2018.03.007
Kahn, W. A. (1990). Psychological conditions of personal engagement and disengagement at work. Academy of Management Journal, 33(4), 692–724. https://doi.org/10.2307/256287
Kahneman, D. (2011). Thinking, fast and slow. Farrar, Straus and Giroux. ISBN-13:978-0374275631
Knowledge at Wharton team. (2025). Why Hybrid Intelligence Is the Future of Human-AI Collaboration. Knowledge at Wharton. https://knowledge.wharton.upenn.edu/article/why-hybrid-intelligence-is-the-future-of-human-ai-collaboration
Kolbjørnsrud, V. (2024). Designing the intelligent organization. California Management Review. https://doi.org/10.1177/00081256231211020
Kong, X., Fang, H., Chen, W. et al. Examining human–AI collaboration in hybrid intelligence learning environments: insight from the Synergy Degree Model. Humanit Soc Sci Commun 12, 821 (2025). https://doi.org/10.1057/s41599-025-05097-z
Kosmyna, N., Hauptmann, E., Yuan, Y. T., Situ, J., Liao, X.-H., Beresnitzky, A. V., Braunstein, I., & Maes, P. (2025). Your brain on ChatGPT: Accumulation of cognitive debt when using an AI assistant for essay writing task. arXiv preprint arXiv:2506.08872. https://doi.org/10.48550/arXiv.2506.08872
Leichtmann, B., Humer, C., Hinterreiter, A., Streit, M., & Mara, M. (2023). Effects of explainable AI. Computers in Human Behavior, 139, 107539. https://doi.org/10.1016/j.chb.2022.107539
Lou, B., Lu, T., Raghu, T. S., & Zhang, Y. (2025). Unraveling Human–AI Teaming. arXiv preprint arXiv:2504.05755.
Lysyakov, M., & Viswanathan, S. (2022). Threatened by AI. Information Systems Research, 34(3), 1191–1210. https://doi.org/10.1287/isre.2022.1184
Malone, T. W., & Bernstein, M. S. (2015). Handbook of collective intelligence. MIT Press. ISBN-13:978-0262029810
Mariani, M. M., Machado, I., Magrelli, V., & Dwivedi, Y. K. (2023). Artificial intelligence in innovation research. Technovation, 122, 102623. https://doi.org/10.1016/j.technovation.2022.102623
Mayer, R. C., Davis, J. H., & Schoorman, F. D. (1995). An integrative model of organizational trust. Academy of Management Review, 20(3), 709–734. https://doi.org/10.5465/amr.1995.9508080335
McAfee, A., Rock, D., & Brynjolfsson, E. (2023). How to capitalize on generative AI. Harvard Business Review. https://hbr.org/2023/11/how-to-capitalize-on-generative-ai
MIT Sloan Ideas Made to Matter team. (2025). When humans and AI work best together — and when each is better alone. MIT Sloan Management Review. https://mitsloan.mit.edu/ideas-made-to-matter/when-humans-and-ai-work-best-together-and-when-each-better-alone
Mohammed, S. J., & Khalid, M. W. (2025). AI-generated feedback on writing. Language Testing in Asia, 15(7). https://doi.org/10.1186/s40468-025-00343-2
Nonaka, I., & Takeuchi, H. (1995). The knowledge-creating company: How Japanese companies create the dynamics of innovation. Oxford University Press. ISBN-13:978-0195092691
Page, S. E. (2007). The difference. Princeton University Press. https://doi.org/10.1515/9781400830282
Parasuraman, R., & Manzey, D. H. (2010). Complacency and bias in human use of automation: An attentional integration. Human Factors, 52(3), 381–410. https://doi.org/10.1177/0018720810376055
Rahwan, I., Cebrian, M., Obradovich, N., Bongard, J., Bonnefon, J. F., Breazeal, C., ... & Wellman, M. (2019). Machine behaviour. Nature, 568(7753), 477–486. https://doi.org/10.1038/s41586-019-1138-y
Raisch, S., & Krakowski, S. (2021). Artificial intelligence and management. Academy of Management Review, 46(1), 192–210. https://doi.org/10.5465/amr.2018.0072
Reinkemeyer, L., & Davenport, T. (2023). Transform business operations with process mining. Harvard Business Review. https://hbr.org/2023/10/transform-business-operations-with-process-mining
Russell, S. J., & Norvig, P. (2020). Artificial intelligence: A modern approach (4th ed.). Pearson. ISBN-13:978-0134610993
Ryan, R. M., & Deci, E. L. (2000). Self-determination theory. American Psychologist, 55(1), 68–78. https://doi.org/10.1037/0003-066X.55.1.68
Sadeghian, S., Uhde, A., & Hassenzahl, M. (2024). The soul of work. Proceedings of the ACM on Human-Computer Interaction (CSCW1), 8(CSCW1), Article 130. https://doi.org/10.1145/3637407
Schaufeli, W. B., & Bakker, A. B. (2004). Job demands, job resources, and their relationship with burnout and engagement: A multi-sample study. Journal of Organizational Behavior, 25(3), 293–315. https://doi.org/10.1002/job.248
Schmutz, J. B., Outland, N., Kerstan, S., Georganta, E., & Ulfert, A.-S. (2024). AI-Teaming. Current Opinion in Psychology, 58, 101837. https://doi.org/10.1016/j.copsyc.2024.101837
Seeber, I., Bittner, E. A. C., Briggs, R. O., de Vreede, T., de Vreede, G.-J., & Söllner, M. (2020). Machines as teammates. Information & Management, 57(2), 103174. https://doi.org/10.1016/j.im.2019.103174
Shanahan, M. (2015). The technological singularity. MIT Press. https://doi.org/10.7551/mitpress/10058.001.0001
Shrestha, Y. R., Ben-Menahem, S. M., & von Krogh, G. (2019). Organizational decision-making structures. California Management Review, 61(4), 66–83. https://doi.org/10.1177/0008125619862257
Simon, H. A. (1996). The sciences of the artificial (3rd ed.). MIT Press. ISBN-13:978-0262264495
Sparrow, B., Liu, J., & Wegner, D. M. (2011). Google effects on memory. Science, 333(6043), 776–778. https://doi.org/10.1126/science.1207745
Stanford Institute for Human-Centered AI. (2025). AI Index 2025: State of AI in 10 Charts. Stanford HAI. https://hai.stanford.edu/news/ai-index-2025-state-of-ai-in-10-charts
Sweller, J. (1988). Cognitive load during problem solving. Cognitive Science, 12, 257–285. https://doi.org/10.1207/s15516709cog1202_4
Sweller, J., van Merrienboer, J. J. G., & Paas, F. G. W. C. (1998). Cognitive architecture and instructional design. Educational Psychology Review, 10, 251–296. https://doi.org/10.1023/A:1022193728205
Tang, P. M., Koopman, J., Mai, K. M., De Cremer, D., Zhang, J. H., Reynders, P., Ng, C. T. S., & Chen, I-H. (2023). No person is an island. Journal of Applied Psychology, 108(11), 1766–1789. https://doi.org/10.1037/apl0001103
The state of work 2025: AI + HI and the trends. (2025, May 27). People Managing People. (URL: https://peoplemanagingpeople.com/articles/state-of-work-2025-ai-hi-trends/)
Trist, E. (1981). The evolution of socio-technical systems. Occasional Paper, 2.
Ugwuja, C. G. (2024). Artificial intelligence as a strategic decision-maker. Newport International Journal of Research in Education, 4(2), 57–62. https://doi.org/10.59298/NIJRE/2024/42357628
Ulfert, A.-S., Georganta, E., Centeio Jorge, C., Mehrotra, S., & Tielman, M. (2024). Team trust in human–AI teams. European Journal of Work and Organizational Psychology, 33(2), 158–171. https://doi.org/10.1080/1359432X.2023.2200172
Why success with AI requires elevating workplace relationships. (2025, July 9). Fortune. (URL: https://fortune.com/2025/07/09/success-ai-workplace-relationships/)
Why transparency is key to unlocking AI's full potential. (2025, January 2). World Economic Forum. (URL: https://www.weforum.org/agenda/2025/01/why-transparency-is-key-to-unlocking-ais-full-potential/)
Wu, L., & Ransbotham, S. (2024). Can AI help your company innovate? Harvard Business Review. https://hbr.org/2024/07/can-ai-help-your-company-innovate-it-depends
Zercher, D., Jussupow, E., & Heinzl, A. (2023). When AI joins the team. Proceedings of ECIS 2023, Paper 307. https://aisel.aisnet.org/ecis2023_rp/307
Zercher, D., Jussupow, E., & Heinzl, A. (2025). Team climate in team–AI collaboration. Proceedings of ECIS 2025, Paper 8. https://www.researchgate.net/publication/392759003_Team_Climate_in_Team-AI_Collaboration_Exploring_the_Role_of_Decisional_Ownership_and_Perceived_AI_Team_Membership
Zerilli, J., Knott, A., Maclaurin, J., & Gavaghan, C. (2018). Transparency in algorithmic and human decision-making. Philosophy & Technology, 31(4), 623–641. https://doi.org/10.1007/s13347-017-0260-2
Young, M. S., Brookhuis, K. A., Wickens, C. D., & Hancock, P. A. (2016). An evaluation of cognitive skill degradation in information automation. Proceedings of the Human Factors and Ergonomics Society Annual Meeting, 60(1), 745–749. https://journals.sagepub.com/doi/10.1177/1541931213601043
Zhang, G., Chong, L., Kotovsky, K., & Cagan, J. (2023). Trust in an AI versus a human teammate. Computers in Human Behavior, 139, 107536. https://doi.org/10.1016/j.chb.2022.107536
Zhang, G., He, T., & Lee, M. (2023). Trust in an AI versus a human teammate: The role of team identification and prior experience. Computers in Human Behavior, 139, 107534. https://doi.org/10.1016/j.chb.2022.107534
Zhang, H., & Yang, Y. (2025). Exploring the role of human-AI collaboration in solving scientific problems. Physical Review Physics Education Research, 21(1), 010149. https://doi.org/10.1103/PhysRevPhysEducRes.21.010149
Zheng, C., Wu, Y., Shi, C., Ma, S., Luo, J., & Ma, X. (2023). Competent but rigid. Proceedings of CHI 2023 (No. 130, Article 130). https://doi.org/10.1145/3544548.3581131
2025 Generative AI Report: Learning Fuels Human + AI Collaboration. (2025). University of Phoenix. (URL: https://www.phoenix.edu/blog/2025-generative-ai-report.html)
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99192-
dc.description.abstract本研究探討生成式人工智慧(Generative AI)於組織決策中扮演不同社會角色所帶來的團隊互動效果。透過2×2因素實驗設計,操作AI的互動模式(個人助理 vs. 團隊協作者)與批判來源(人類反思 vs. AI回饋),共61位來自不同背景的參與者進行模擬決策任務。結果顯示,當AI被定位為「團隊協作者」時,顯著提升團隊參與度、討論效率與AI信任感,尤其在人類反思作為批判機制時,效果最為明顯。基於此,本研究提出「AI社會嵌入理論(AISET)」,指出AI若被視為具互動性、情境適應力與社會連結感的參與者,將有助於激發團隊動能並優化協作流程。研究對教育與企業實務皆具啟發性,建議未來AI應設計為具備社會互動能力的團隊成員角色,以提升組織內部決策的效率與創造力。zh_TW
dc.description.abstractThis study examines how the social role framing of generative AI influences team dynamics in organizational decision-making. Using a 2×2 factorial experimental design, 61 participants engaged in simulated strategy discussions under varying conditions of AI interaction (Personal Assistant vs. Team Collaborator) and critique source (Human Reflection vs. GPT Feedback). Results show that when GPT is framed as a Team Collaborator, participants report significantly higher levels of team involvement, discussion efficiency, and trust in AI—particularly when critique is provided through human reflection. To explain these effects, the study proposes the AI Social Embeddedness Theory (AISET), which conceptualizes AI as a socially embedded actor characterized by interactivity, contextual adaptability, and relational integration. Findings suggest that AI framed as an active team member can enhance cognitive engagement and collaborative performance. The research offers practical insights for both educational and organizational settings, encouraging the design of AI systems that support socially aware, team-oriented interaction patterns to improve decision-making quality and innovation potential.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-21T16:45:01Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-08-21T16:45:01Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsTable of Contents
Dedication / Acknowledgements i
中文摘要 ii
Abstract iii
Table of Contents iv
List of Tables and Figures vii
Chapter 1. Introduction 1
1.1 Background and Context 1
1.2 Definitions of AI Roles 2
1.3 Problem Statement and Research Objectives 4
Chapter 2 Literature Review 7
2.1 AI's Impact on Human Cognition in Organizational Settings 7
2.2 The Cognitive Risks of Over-Reliance on AI 9
2.3 Trust Challenges in Human-AI Collaboration at Work 10
2.4 Evolving Roles of AI 12
2.5 Future Directions in Human-AI Teaming 13
2.6 Synthesis and Research Implications 14
Chapter 3 Method 16
3.1 Research Design 16
3.1.1 Independent Variable One: GPT Interaction Mode 17
3.1.2 Independent Variable Two: Critique Method 18
3.2 Research Participants 18
3.2.1 Age Structure 19
3.2.2 Nationality Distribution 19
3.2.3 Academic Background 20
3.2.4 Industry Background 20
3.3 Research Tools 21
3.4 Research Procedures 26
3.5 Data Analysis Methods 29
Chapter 4 Research Findings and Analysis 30
4.1 Descriptive Statistical Analysis 30
4.2 Inferential Statistical Analysis 32
4.2.1 Involvement: Collaborative Role Enhances Engagement 34
4.2.2 Satisfaction: Significant Improvement in Collaborative Mode 35
4.2.3 Discussion Efficiency: Superior Performance in Collaborative Mode 35
4.2.4 Trust in GPT: Collaborative Mode Fosters Greater Trust 36
4.3 In-Depth Inferential Analysis 36
4.3.1 Key Finding: Superiority of Collaborative Mode (Mode B) 36
4.3.2 Exploring Trust: Key Drivers of Enhanced Trust 37
4.3.3 Secondary Analysis: Ruling Out Confounding Factors 37
4.3.4 Post-Hoc Comparisons 38
4.4 Qualitative Findings 38
4.4.1 Theme 1: Information Organization and Efficiency Enhancement 42
4.4.2 Theme 2: Idea Generation and Innovation Stimulation 42
4.4.3 Theme 3: Improving Credibility and Accuracy 42
4.4.4 Theme 4: Enhancing Interactivity and Adaptability 43
4.4.5 Theme 5: Promoting More Creativity and Avoiding Limitations 43
4.5 Conclusion 44
Chapter 5 Discussion 48
5.1 Research Summary 48
5.2 Theoretical Contribution: AI Social Embeddedness Theory (AISET) 49
5.2.1 Introduction: Why a New Theoretical Lens? 49
5.2.2 Core Constructs and Definitions of AISET 49
5.2.3 Underlying Mechanisms of AISET 50
5.2.4 Preliminary Evidence from the Current Study 51
5.2.5 Theoretical Distinction and Contribution of AISET 52
5.3 Practical Applications 52
5.4 Limitations and Future Directions 53
5.5 Conclusion 54
Reference 55
-
dc.language.isoen-
dc.subject團隊協作模式zh_TW
dc.subject生成式人工智慧zh_TW
dc.subject信任建立zh_TW
dc.subject組織決策zh_TW
dc.subjectAI社會嵌入zh_TW
dc.subjectAI social embeddednessen
dc.subjectorganizational decision-makingen
dc.subjecttrust formationen
dc.subjectteam collaboration dynamicsen
dc.subjectgenerative AIen
dc.title從助理到協作者: 生成式 AI 在人機協作智慧決策中的角色zh_TW
dc.titleFrom Assistant to Collaborator: The Role of Generative AI in Hybrid Intelligence Decision-Makingen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee陳譽仁;林嘉薇zh_TW
dc.contributor.oralexamcommitteeYu-Ren Chen;Chia-Wei Linen
dc.subject.keyword生成式人工智慧,團隊協作模式,AI社會嵌入,組織決策,信任建立,zh_TW
dc.subject.keywordgenerative AI,team collaboration dynamics,AI social embeddedness,organizational decision-making,trust formation,en
dc.relation.page61-
dc.identifier.doi10.6342/NTU202502717-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2025-08-06-
dc.contributor.author-college管理學院-
dc.contributor.author-dept企業管理碩士專班-
dc.date.embargo-lift2025-08-22-
顯示於系所單位:管理學院企業管理專班(Global MBA)

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf1.19 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved