請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99192完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 柯冠州 | zh_TW |
| dc.contributor.advisor | Kuan-Chou Ko | en |
| dc.contributor.author | 何則文 | zh_TW |
| dc.contributor.author | Wenzel Herder | en |
| dc.date.accessioned | 2025-08-21T16:45:01Z | - |
| dc.date.available | 2025-08-22 | - |
| dc.date.copyright | 2025-08-21 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-08-01 | - |
| dc.identifier.citation | Adams, F., & Aizawa, K. (2001). The bounds of cognition. Philosophical Psychology, 14(1), 43–64. https://doi.org/10.1080/09515080120033571
Ahmad, S. F., & Han, H. (2023). Impact of artificial intelligence on human loss in decision making, laziness and safety in education. Humanities and Social Sciences Communications, 10, 1–14. https://doi.org/10.1057/s41599-023-01787-8 Ailon, G. (2008). Mirror, mirror on the wall: Culture's consequences in a value test of its own design. Academy of Management Review, 33(4), 885–904. https://doi.org/10.5465/amr.2008.34421995 Ajzen, I. (1991). The theory of planned behavior. Organizational Behavior and Human Decision Processes, 50(2), 179–211. https://doi.org/10.1016/0749-5978(91)90020-T Amabile, T. M. (1988). A model of creativity and innovation in organizations. Research in Organizational Behavior, 10(1), 123–167. Being honest about using AI at work makes people trust you less, research finds. (2025, May 29). University of Arizona News. (URL: https://news.arizona.edu/story/being-honest-about-using-ai-work-makes-people-trust-you-less-research-finds) Binns, R., Van Kleek, M., Veale, M., Lyngs, U., Zhao, J., & Shadbolt, N. (2018). ‘It’s reducing a human being to a percentage’: Perceptions of justice in algorithmic decisions. Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, 1–14. https://doi.org/10.1145/3173574.3173951 Boston Consulting Group. (2024, January 10). Getting real about AI in retail. BCG. https://www.bcg.com/publications/2024/getting-real-about-ai-in-retail Boston Consulting Group. (2025). AI at Work 2025: Momentum Builds, but Gaps Remain. BCG Publications. https://www.bcg.com/publications/2025/ai-at-work-momentum-builds-but-gaps-remain Braun, V., & Clarke, V. (2006). Using thematic analysis in psychology. Qualitative Research in Psychology, 3(2), 77–101. https://doi.org/10.1191/1478088706qp063oa Brynjolfsson, E., Li, D., & Raymond, L. (2023). Experimental evidence on the productivity effects of generative artificial intelligence. National Bureau of Economic Research. https://doi.org/10.3386/w31161 Candrian, C., & Scherer, A. (2022). Rise of the machines: Delegating decisions to autonomous AI. Computers in Human Behavior. https://doi.org/10.1016/j.chb.2022.107308 Chowdhury, S., Budhwar, P., Dey, P. K., Joel-Edgar, S., & Abadie, A. (2022). AI-employee collaboration and business performance. Journal of Business Research, 144, 31–49. https://doi.org/10.1016/j.jbusres.2022.01.069 Clark, A., & Chalmers, D. (1998). The extended mind. Analysis, 58(1), 7–19. https://doi.org/10.1093/analys/58.1.7 Dellermann, D., Calma, A., Lipusch, N., Weber, T., Weigel, S., & Ebel, P. (2019). The future of human-AI collaboration. Proceedings of the 52nd HICSS. https://doi.org/10.24251/HICSS.2019.034 Dellermann, D., Ebel, P., Söllner, M., & Leimeister, J. M. (2019). Hybrid intelligence. Business & Information Systems Engineering, 61(5), 637–643. https://doi.org/10.1007/s12599-019-00595-2 Dietvorst, B. J., Simmons, J. P., & Massey, C. (2015). Algorithm aversion: People erroneously avoid algorithms after seeing them err. Journal of Experimental Psychology: General, 144(1), 114–126. https://doi.org/10.1037/xge0000033 Employees won't trust AI if they don't trust their leaders. (2025, March 21). Harvard Business Review. (URL: https://hbr.org/2025/03/employees-wont-trust-ai-if-they-dont-trust-their-leaders) Floridi, L., & Cowls, J. (2019). A unified framework of five principles for AI in society. Harvard Data Science Review, 1(1). https://doi.org/10.1162/99608f92.8cd550d1 Gaessler, F., & Piezunka, H. (2023). Training with AI: Evidence from chess computers. Strategic Management Journal, 44(11), 2724–2750. https://doi.org/10.1002/smj.3512 Georganta, E., & Ulfert, A.-S. (2024). Would you trust an AI team member? Journal of Occupational and Organizational Psychology, 97(4), 1212–1241. https://doi.org/10.1111/joop.12504 Georganta, E., & Ulfert, A.-S. (2025). Trust and AI weight: Human-AI collaboration in organizational management decision-making. Frontiers in Organizational Psychology. https://doi.org/10.3389/forgp.2025.1419403 Glikson, E., & Woolley, A. W. (2020). Human trust in artificial intelligence. Academy of Management Annals, 14(2), 627–660. https://doi.org/10.5465/annals.2018.0057 Hackman, J. R., & Oldham, G. R. (1976). Motivation through the design of work: Test of a theory. Organizational Behavior and Human Performance, 16(2), 250–279. https://doi.org/10.1016/0030-5073(76)90016-7 Haesevoets, T., De Cremer, D., Dierckx, K., & Van Hiel, A. (2021). Human–Machine Collaboration in Managerial Decision Making. Computers in Human Behavior, 119, 106730. https://doi.org/10.1016/j.chb.2021.106730 Hagemann, V., Rieth, M., Suresh, A., & Kirchner, F. (2023). Human–AI teams—Challenges for a team-centered AI at work. Frontiers in Artificial Intelligence, 6, 1252897. https://doi.org/10.3389/frai.2023.1252897 Hejtmánek, L., Oravcová, I., Motýl, J., Horáček, J., & Fajnerová, I. (2018). Spatial knowledge impairment after GPS guided navigation. International Journal of Human-Computer Studies, 116, 15–24. https://doi.org/10.1016/j.ijhcs.2018.04.006 Hofstede, G. (2001). Culture's consequences: Comparing values, behaviors, institutions, and organizations across nations (2nd ed.). Sage Publications. (URL: https://us.sagepub.com/en-us/nam/cultures-consequences/book226232) Jakesch, M., French, M., Ma, X., Hancock, J. T., & Naaman, M. (2019). AI-mediated communication. Proceedings of the 2019 CHI Conference, 1–13. https://doi.org/10.1145/3290605.3300469 Jarrahi, M. H. (2018). Artificial intelligence and the future of work: Human–AI symbiosis in organizational decision making. Business Horizons, 61, 577–586. https://doi.org/10.1016/j.bushor.2018.03.007 Kahn, W. A. (1990). Psychological conditions of personal engagement and disengagement at work. Academy of Management Journal, 33(4), 692–724. https://doi.org/10.2307/256287 Kahneman, D. (2011). Thinking, fast and slow. Farrar, Straus and Giroux. ISBN-13:978-0374275631 Knowledge at Wharton team. (2025). Why Hybrid Intelligence Is the Future of Human-AI Collaboration. Knowledge at Wharton. https://knowledge.wharton.upenn.edu/article/why-hybrid-intelligence-is-the-future-of-human-ai-collaboration Kolbjørnsrud, V. (2024). Designing the intelligent organization. California Management Review. https://doi.org/10.1177/00081256231211020 Kong, X., Fang, H., Chen, W. et al. Examining human–AI collaboration in hybrid intelligence learning environments: insight from the Synergy Degree Model. Humanit Soc Sci Commun 12, 821 (2025). https://doi.org/10.1057/s41599-025-05097-z Kosmyna, N., Hauptmann, E., Yuan, Y. T., Situ, J., Liao, X.-H., Beresnitzky, A. V., Braunstein, I., & Maes, P. (2025). Your brain on ChatGPT: Accumulation of cognitive debt when using an AI assistant for essay writing task. arXiv preprint arXiv:2506.08872. https://doi.org/10.48550/arXiv.2506.08872 Leichtmann, B., Humer, C., Hinterreiter, A., Streit, M., & Mara, M. (2023). Effects of explainable AI. Computers in Human Behavior, 139, 107539. https://doi.org/10.1016/j.chb.2022.107539 Lou, B., Lu, T., Raghu, T. S., & Zhang, Y. (2025). Unraveling Human–AI Teaming. arXiv preprint arXiv:2504.05755. Lysyakov, M., & Viswanathan, S. (2022). Threatened by AI. Information Systems Research, 34(3), 1191–1210. https://doi.org/10.1287/isre.2022.1184 Malone, T. W., & Bernstein, M. S. (2015). Handbook of collective intelligence. MIT Press. ISBN-13:978-0262029810 Mariani, M. M., Machado, I., Magrelli, V., & Dwivedi, Y. K. (2023). Artificial intelligence in innovation research. Technovation, 122, 102623. https://doi.org/10.1016/j.technovation.2022.102623 Mayer, R. C., Davis, J. H., & Schoorman, F. D. (1995). An integrative model of organizational trust. Academy of Management Review, 20(3), 709–734. https://doi.org/10.5465/amr.1995.9508080335 McAfee, A., Rock, D., & Brynjolfsson, E. (2023). How to capitalize on generative AI. Harvard Business Review. https://hbr.org/2023/11/how-to-capitalize-on-generative-ai MIT Sloan Ideas Made to Matter team. (2025). When humans and AI work best together — and when each is better alone. MIT Sloan Management Review. https://mitsloan.mit.edu/ideas-made-to-matter/when-humans-and-ai-work-best-together-and-when-each-better-alone Mohammed, S. J., & Khalid, M. W. (2025). AI-generated feedback on writing. Language Testing in Asia, 15(7). https://doi.org/10.1186/s40468-025-00343-2 Nonaka, I., & Takeuchi, H. (1995). The knowledge-creating company: How Japanese companies create the dynamics of innovation. Oxford University Press. ISBN-13:978-0195092691 Page, S. E. (2007). The difference. Princeton University Press. https://doi.org/10.1515/9781400830282 Parasuraman, R., & Manzey, D. H. (2010). Complacency and bias in human use of automation: An attentional integration. Human Factors, 52(3), 381–410. https://doi.org/10.1177/0018720810376055 Rahwan, I., Cebrian, M., Obradovich, N., Bongard, J., Bonnefon, J. F., Breazeal, C., ... & Wellman, M. (2019). Machine behaviour. Nature, 568(7753), 477–486. https://doi.org/10.1038/s41586-019-1138-y Raisch, S., & Krakowski, S. (2021). Artificial intelligence and management. Academy of Management Review, 46(1), 192–210. https://doi.org/10.5465/amr.2018.0072 Reinkemeyer, L., & Davenport, T. (2023). Transform business operations with process mining. Harvard Business Review. https://hbr.org/2023/10/transform-business-operations-with-process-mining Russell, S. J., & Norvig, P. (2020). Artificial intelligence: A modern approach (4th ed.). Pearson. ISBN-13:978-0134610993 Ryan, R. M., & Deci, E. L. (2000). Self-determination theory. American Psychologist, 55(1), 68–78. https://doi.org/10.1037/0003-066X.55.1.68 Sadeghian, S., Uhde, A., & Hassenzahl, M. (2024). The soul of work. Proceedings of the ACM on Human-Computer Interaction (CSCW1), 8(CSCW1), Article 130. https://doi.org/10.1145/3637407 Schaufeli, W. B., & Bakker, A. B. (2004). Job demands, job resources, and their relationship with burnout and engagement: A multi-sample study. Journal of Organizational Behavior, 25(3), 293–315. https://doi.org/10.1002/job.248 Schmutz, J. B., Outland, N., Kerstan, S., Georganta, E., & Ulfert, A.-S. (2024). AI-Teaming. Current Opinion in Psychology, 58, 101837. https://doi.org/10.1016/j.copsyc.2024.101837 Seeber, I., Bittner, E. A. C., Briggs, R. O., de Vreede, T., de Vreede, G.-J., & Söllner, M. (2020). Machines as teammates. Information & Management, 57(2), 103174. https://doi.org/10.1016/j.im.2019.103174 Shanahan, M. (2015). The technological singularity. MIT Press. https://doi.org/10.7551/mitpress/10058.001.0001 Shrestha, Y. R., Ben-Menahem, S. M., & von Krogh, G. (2019). Organizational decision-making structures. California Management Review, 61(4), 66–83. https://doi.org/10.1177/0008125619862257 Simon, H. A. (1996). The sciences of the artificial (3rd ed.). MIT Press. ISBN-13:978-0262264495 Sparrow, B., Liu, J., & Wegner, D. M. (2011). Google effects on memory. Science, 333(6043), 776–778. https://doi.org/10.1126/science.1207745 Stanford Institute for Human-Centered AI. (2025). AI Index 2025: State of AI in 10 Charts. Stanford HAI. https://hai.stanford.edu/news/ai-index-2025-state-of-ai-in-10-charts Sweller, J. (1988). Cognitive load during problem solving. Cognitive Science, 12, 257–285. https://doi.org/10.1207/s15516709cog1202_4 Sweller, J., van Merrienboer, J. J. G., & Paas, F. G. W. C. (1998). Cognitive architecture and instructional design. Educational Psychology Review, 10, 251–296. https://doi.org/10.1023/A:1022193728205 Tang, P. M., Koopman, J., Mai, K. M., De Cremer, D., Zhang, J. H., Reynders, P., Ng, C. T. S., & Chen, I-H. (2023). No person is an island. Journal of Applied Psychology, 108(11), 1766–1789. https://doi.org/10.1037/apl0001103 The state of work 2025: AI + HI and the trends. (2025, May 27). People Managing People. (URL: https://peoplemanagingpeople.com/articles/state-of-work-2025-ai-hi-trends/) Trist, E. (1981). The evolution of socio-technical systems. Occasional Paper, 2. Ugwuja, C. G. (2024). Artificial intelligence as a strategic decision-maker. Newport International Journal of Research in Education, 4(2), 57–62. https://doi.org/10.59298/NIJRE/2024/42357628 Ulfert, A.-S., Georganta, E., Centeio Jorge, C., Mehrotra, S., & Tielman, M. (2024). Team trust in human–AI teams. European Journal of Work and Organizational Psychology, 33(2), 158–171. https://doi.org/10.1080/1359432X.2023.2200172 Why success with AI requires elevating workplace relationships. (2025, July 9). Fortune. (URL: https://fortune.com/2025/07/09/success-ai-workplace-relationships/) Why transparency is key to unlocking AI's full potential. (2025, January 2). World Economic Forum. (URL: https://www.weforum.org/agenda/2025/01/why-transparency-is-key-to-unlocking-ais-full-potential/) Wu, L., & Ransbotham, S. (2024). Can AI help your company innovate? Harvard Business Review. https://hbr.org/2024/07/can-ai-help-your-company-innovate-it-depends Zercher, D., Jussupow, E., & Heinzl, A. (2023). When AI joins the team. Proceedings of ECIS 2023, Paper 307. https://aisel.aisnet.org/ecis2023_rp/307 Zercher, D., Jussupow, E., & Heinzl, A. (2025). Team climate in team–AI collaboration. Proceedings of ECIS 2025, Paper 8. https://www.researchgate.net/publication/392759003_Team_Climate_in_Team-AI_Collaboration_Exploring_the_Role_of_Decisional_Ownership_and_Perceived_AI_Team_Membership Zerilli, J., Knott, A., Maclaurin, J., & Gavaghan, C. (2018). Transparency in algorithmic and human decision-making. Philosophy & Technology, 31(4), 623–641. https://doi.org/10.1007/s13347-017-0260-2 Young, M. S., Brookhuis, K. A., Wickens, C. D., & Hancock, P. A. (2016). An evaluation of cognitive skill degradation in information automation. Proceedings of the Human Factors and Ergonomics Society Annual Meeting, 60(1), 745–749. https://journals.sagepub.com/doi/10.1177/1541931213601043 Zhang, G., Chong, L., Kotovsky, K., & Cagan, J. (2023). Trust in an AI versus a human teammate. Computers in Human Behavior, 139, 107536. https://doi.org/10.1016/j.chb.2022.107536 Zhang, G., He, T., & Lee, M. (2023). Trust in an AI versus a human teammate: The role of team identification and prior experience. Computers in Human Behavior, 139, 107534. https://doi.org/10.1016/j.chb.2022.107534 Zhang, H., & Yang, Y. (2025). Exploring the role of human-AI collaboration in solving scientific problems. Physical Review Physics Education Research, 21(1), 010149. https://doi.org/10.1103/PhysRevPhysEducRes.21.010149 Zheng, C., Wu, Y., Shi, C., Ma, S., Luo, J., & Ma, X. (2023). Competent but rigid. Proceedings of CHI 2023 (No. 130, Article 130). https://doi.org/10.1145/3544548.3581131 2025 Generative AI Report: Learning Fuels Human + AI Collaboration. (2025). University of Phoenix. (URL: https://www.phoenix.edu/blog/2025-generative-ai-report.html) | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99192 | - |
| dc.description.abstract | 本研究探討生成式人工智慧(Generative AI)於組織決策中扮演不同社會角色所帶來的團隊互動效果。透過2×2因素實驗設計,操作AI的互動模式(個人助理 vs. 團隊協作者)與批判來源(人類反思 vs. AI回饋),共61位來自不同背景的參與者進行模擬決策任務。結果顯示,當AI被定位為「團隊協作者」時,顯著提升團隊參與度、討論效率與AI信任感,尤其在人類反思作為批判機制時,效果最為明顯。基於此,本研究提出「AI社會嵌入理論(AISET)」,指出AI若被視為具互動性、情境適應力與社會連結感的參與者,將有助於激發團隊動能並優化協作流程。研究對教育與企業實務皆具啟發性,建議未來AI應設計為具備社會互動能力的團隊成員角色,以提升組織內部決策的效率與創造力。 | zh_TW |
| dc.description.abstract | This study examines how the social role framing of generative AI influences team dynamics in organizational decision-making. Using a 2×2 factorial experimental design, 61 participants engaged in simulated strategy discussions under varying conditions of AI interaction (Personal Assistant vs. Team Collaborator) and critique source (Human Reflection vs. GPT Feedback). Results show that when GPT is framed as a Team Collaborator, participants report significantly higher levels of team involvement, discussion efficiency, and trust in AI—particularly when critique is provided through human reflection. To explain these effects, the study proposes the AI Social Embeddedness Theory (AISET), which conceptualizes AI as a socially embedded actor characterized by interactivity, contextual adaptability, and relational integration. Findings suggest that AI framed as an active team member can enhance cognitive engagement and collaborative performance. The research offers practical insights for both educational and organizational settings, encouraging the design of AI systems that support socially aware, team-oriented interaction patterns to improve decision-making quality and innovation potential. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-21T16:45:01Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-08-21T16:45:01Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | Table of Contents
Dedication / Acknowledgements i 中文摘要 ii Abstract iii Table of Contents iv List of Tables and Figures vii Chapter 1. Introduction 1 1.1 Background and Context 1 1.2 Definitions of AI Roles 2 1.3 Problem Statement and Research Objectives 4 Chapter 2 Literature Review 7 2.1 AI's Impact on Human Cognition in Organizational Settings 7 2.2 The Cognitive Risks of Over-Reliance on AI 9 2.3 Trust Challenges in Human-AI Collaboration at Work 10 2.4 Evolving Roles of AI 12 2.5 Future Directions in Human-AI Teaming 13 2.6 Synthesis and Research Implications 14 Chapter 3 Method 16 3.1 Research Design 16 3.1.1 Independent Variable One: GPT Interaction Mode 17 3.1.2 Independent Variable Two: Critique Method 18 3.2 Research Participants 18 3.2.1 Age Structure 19 3.2.2 Nationality Distribution 19 3.2.3 Academic Background 20 3.2.4 Industry Background 20 3.3 Research Tools 21 3.4 Research Procedures 26 3.5 Data Analysis Methods 29 Chapter 4 Research Findings and Analysis 30 4.1 Descriptive Statistical Analysis 30 4.2 Inferential Statistical Analysis 32 4.2.1 Involvement: Collaborative Role Enhances Engagement 34 4.2.2 Satisfaction: Significant Improvement in Collaborative Mode 35 4.2.3 Discussion Efficiency: Superior Performance in Collaborative Mode 35 4.2.4 Trust in GPT: Collaborative Mode Fosters Greater Trust 36 4.3 In-Depth Inferential Analysis 36 4.3.1 Key Finding: Superiority of Collaborative Mode (Mode B) 36 4.3.2 Exploring Trust: Key Drivers of Enhanced Trust 37 4.3.3 Secondary Analysis: Ruling Out Confounding Factors 37 4.3.4 Post-Hoc Comparisons 38 4.4 Qualitative Findings 38 4.4.1 Theme 1: Information Organization and Efficiency Enhancement 42 4.4.2 Theme 2: Idea Generation and Innovation Stimulation 42 4.4.3 Theme 3: Improving Credibility and Accuracy 42 4.4.4 Theme 4: Enhancing Interactivity and Adaptability 43 4.4.5 Theme 5: Promoting More Creativity and Avoiding Limitations 43 4.5 Conclusion 44 Chapter 5 Discussion 48 5.1 Research Summary 48 5.2 Theoretical Contribution: AI Social Embeddedness Theory (AISET) 49 5.2.1 Introduction: Why a New Theoretical Lens? 49 5.2.2 Core Constructs and Definitions of AISET 49 5.2.3 Underlying Mechanisms of AISET 50 5.2.4 Preliminary Evidence from the Current Study 51 5.2.5 Theoretical Distinction and Contribution of AISET 52 5.3 Practical Applications 52 5.4 Limitations and Future Directions 53 5.5 Conclusion 54 Reference 55 | - |
| dc.language.iso | en | - |
| dc.subject | 團隊協作模式 | zh_TW |
| dc.subject | 生成式人工智慧 | zh_TW |
| dc.subject | 信任建立 | zh_TW |
| dc.subject | 組織決策 | zh_TW |
| dc.subject | AI社會嵌入 | zh_TW |
| dc.subject | AI social embeddedness | en |
| dc.subject | organizational decision-making | en |
| dc.subject | trust formation | en |
| dc.subject | team collaboration dynamics | en |
| dc.subject | generative AI | en |
| dc.title | 從助理到協作者: 生成式 AI 在人機協作智慧決策中的角色 | zh_TW |
| dc.title | From Assistant to Collaborator: The Role of Generative AI in Hybrid Intelligence Decision-Making | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 陳譽仁;林嘉薇 | zh_TW |
| dc.contributor.oralexamcommittee | Yu-Ren Chen;Chia-Wei Lin | en |
| dc.subject.keyword | 生成式人工智慧,團隊協作模式,AI社會嵌入,組織決策,信任建立, | zh_TW |
| dc.subject.keyword | generative AI,team collaboration dynamics,AI social embeddedness,organizational decision-making,trust formation, | en |
| dc.relation.page | 61 | - |
| dc.identifier.doi | 10.6342/NTU202502717 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2025-08-06 | - |
| dc.contributor.author-college | 管理學院 | - |
| dc.contributor.author-dept | 企業管理碩士專班 | - |
| dc.date.embargo-lift | 2025-08-22 | - |
| 顯示於系所單位: | 管理學院企業管理專班(Global MBA) | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf | 1.19 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
