請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99191完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 黃良得 | zh_TW |
| dc.contributor.advisor | Lean-Teik Ng | en |
| dc.contributor.author | 蔡承勳 | zh_TW |
| dc.contributor.author | Cheng-Hsun Tsai | en |
| dc.date.accessioned | 2025-08-21T16:44:47Z | - |
| dc.date.available | 2025-08-22 | - |
| dc.date.copyright | 2025-08-21 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-08-02 | - |
| dc.identifier.citation | Ahmad, N., Ansari, M. Y., & Haqqi, T. M. (2020). Role of iNOS in osteoarthritis: Pathological and therapeutic aspects. Journal of Cellular Physiology, 235(10), 6366-6376.
Alquini, G., Carbonero, E. R., Rosado, F. R., Cosentino, C., & Iacomini, M. (2004). Polysaccharides from the fruit bodies of the basidiomycete Laetiporus sulphureus (Bull.: Fr.) Murr. FEMS Microbiology Letters, 230(1), 47-52. Belboul, A., Ashworth, J., Fadel, A., McLoughlin, J., Mahmoud, A., & El Mohtadi, M. (2025). Estrogen induces the alternative activation of macrophages through binding to estrogen receptor-alpha. Experimental and Molecular Pathology, 143, 104971. Braaksma, A., & Schaap, D. J. (1996). Protein analysis of the common mushroom Agaricus bisporus. Postharvest Biology and Technology, 7(1), 119-127. Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1), 248-254. Chan, G. C., Chan, W. K., & Sze, D. M. (2009). The effects of beta-glucan on human immune and cancer cells. Journal of Hematology & Oncology, 2, 25. Chen, S. K., Li, Y. H., Wang, X., Guo, Y. Q., Song, X. X., Nie, S. P., & Yin, J. Y. (2023). Evaluation of the “Relative ordered structure of Hericium erinaceus polysaccharide” from different origins: Based on similarity and dissimilarity. Journal of Agricultural and Food Chemistry, 71(46), 17886-17898. Cheung, P. C. K. (1998). Plasma and hepatic cholesterol levels and fecal neutral sterol excretion are altered in a amsters and straw mushroom Diets1. Journal of Nutrition, 128(9), 1512-1516. Cui, J., & Chisti, Y. (2003). Polysaccharopeptides of Coriolus versicolor: physiological activity, uses, and production. Biotechnology Advances, 21(2), 109-122. Cui, Y., Xin, L., Juanjuan, Y., Qiaozhen, K., Limin, H., & and Lu, J. (2023). Cognition of polysaccharides from confusion to clarity: when the next “omic” will come? Critical Reviews in Food Science and Nutrition, 63(20), 4728-4743. da Silva Milhorini, S., Rutckeviski, R., Centa, A., Ribeiro Smiderle, F., Zavadinack, M., Rosado, F. R., & Iacomini, M. (2025). Different molecular weight fucogalactans from Macrocybe titans mushroom promote distinct effect on breast cancer cell death. Carbohydrate Polymers, 354, 123318. Dai, J., Wu, Y., Chen, S. w., Zhu, S., Yin, H. p., Wang, M., & Tang, J. (2010). Sugar compositional determination of polysaccharides from Dunaliella salina by modified RP-HPLC method of precolumn derivatization with 1-phenyl-3-methyl-5-pyrazolone. Carbohydrate Polymers, 82(3), 629-635. Davila, M., & Du, X. (2023). Primary exploration of mushroom protein hydrolysis and cooking impact on the protein amino acid profiles of Agaricus bisporus and Lentinula edodes mushrooms. International Journal of Gastronomy and Food Science, 32, 100710. De Nicola, A., Soares, T. A., Santos, D. E. S., Bore, S. L., Sevink, G. J. A., Cascella, M., & Milano, G. (2021). Aggregation of lipid A variants: a hybrid particle-field model. Biochimica et Biophysica Acta (BBA) - General Subjects, 1865, 129570. Di Lorenzo, F. (2017). The lipopolysaccharide lipid A structure from the marine sponge-associated bacterium Pseudoalteromonas sp. 2A. Antonie van Leeuwenhoek, 110, 1401. Di Lorenzo, F., Duda, K. A., Lanzetta, R., Silipo, A., De Castro, C., & Molinaro, A. (2022). A journey from structure to function of bacterial lipopolysaccharides. Chemical Reviews, 122(20), 15767-15821. Di Lorenzo, F., Pither, M. D., Martufi, M., Scarinci, I., Guzmán-Caldentey, J., Łakomiec, E., Jachymek, W., Bruijns, S., Santamaría, S. M., & Frick, J. S. (2020). Pairing Bacteroides vulgatus LPS structure with its immunomodulatory effects on human cellular models. ACS Central Science, 6, 1602. Ding, X., Li, T., Zhao, J., Khalid, W., Fan, M., Qian, H., Li, Y., & Wang, L. (2025). Effect of various extraction methods on the physicochemical properties, antioxidant, and anti-inflammatory activities of mung bean (Vigna radiata L.) skin polysaccharides. International Journal of Biological Macromolecules, 311, 143969. DuBois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A., & Smith, F. (1956). Colorimetric method for determination of sugars and related substances. Analytical Chemistry, 28(3), 350-356. Ehren, H. L., Appels, F. V. W., Houben, K., Renault, M. A. M., Wösten, H. A. B., & Baldus, M. (2020). Characterization of the cell wall of a mushroom forming fungus at atomic resolution using solid-state NMR spectroscopy. Cell Surface, 6, 100046. Escarnot, E., Aguedo, M., Agneessens, R., Wathelet, B., & Paquot, M. (2011). Extraction and characterization of water-extractable and water-unextractable arabinoxylans from spelt bran: Study of the hydrolysis conditions for monosaccharides analysis. Journal of Cereal Science, 53(1), 45-52. Fischer, E. (1894). Synthesen in der Zuckergruppe II. Berichte der deutschen chemischen Gesellschaft, 27(3), 3189-3232. Furchgott, R. F., & Zawadzki, J. V. (1980). The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature, 288(5789), 373-376. Gao, J., Li, X., Jia, S., Zeng, H., & Zheng, B. (2023). Structural characterization and antioxidant activity of a glycoprotein isolated from shiitake mushrooms. Food Bioscience, 53, 102608. Guo, D., Liu, C., Zhu, H., Cheng, Y., Guo, Y., Yao, W., Jiang, J., & Qian, H. (2025). Advanced insights into mushroom polysaccharides: Extraction methods, structure-activity, prebiotic properties, and health-promoting effects. International Journal of Biological Macromolecules, 308, 142319. Han, X. Q., Yue, G. L., Yue, R. Q., Dong, C. X., Chan, C. L., Ko, C. H., Cheung, W. S., Luo, K. W., Dai, H., Wong, C. K., Leung, P. C., & Han, Q. B. (2014). Structure elucidation and immunomodulatory activity of a beta glucan from the fruiting bodies of Ganoderma sinense. PLoS One, 9(7), e100380. He, B. L., Zheng, Q. W., Guo, L. Q., Huang, J. Y., Yun, F., Huang, S. S., & Lin, J. F. (2020). Structural characterization and immune-enhancing activity of a novel high-molecular-weight polysaccharide from Cordyceps militaris. International Journal of Biological Macromolecules, 145, 11-20. Hirano, T., Yasukawa, K., Harada, H., Taga, T., Watanabe, Y., Matsuda, T., Kashiwamura, S. i., Nakajima, K., Koyama, K., Iwamatsu, A., Tsunasawa, S., Sakiyama, F., Matsui, H., Takahara, Y., Taniguchi, T., & Kishimoto, T. (1986). Complementary DNA for a novel human interleukin (BSF-2) that induces B lymphocytes to produce immunoglobulin. Nature, 324(6092), 73-76. Ifuku, S., Nomura, R., Morimoto, M., & Saimoto, H. (2011). Preparation of chitin nanofibers from mushrooms. Materials, 4(8), 1417-1425. Ignarro, L. J., Byrns, R. E., Buga, G. M., & Wood, K. S. (1987). Endothelium-derived relaxing factor from pulmonary artery and vein possesses pharmacologic and chemical properties identical to those of nitric oxide radical. Circulation Research, 61(6), 866-879. Jayasooriya, R. G. P. T., Kang, C.-H., Seo, M.-J., Choi, Y. H., Jeong, Y.-K., & Kim, G.-Y. (2011). Exopolysaccharide of Laetiporus sulphureus var. miniatus downregulates LPS-induced production of NO, PGE2, and TNF-α in BV2 microglia cells via suppression of the NF-κB pathway. Food and Chemical Toxicology, 49(11), 2758-2764. Jen, C. I., Lu, M. K., Lai, M. N., & Ng, L. T. (2024). Sulfated polysaccharides of Laetiporus sulphureus fruiting bodies exhibit anti-breast cancer activity through cell cycle arrest, apoptosis induction, and inhibiting cell migration. Journal of Ethnopharmacology, 321, 117546. Jen, C. I., & Ng, L. T. (2025). F2-sulfated polysaccharides of Laetiporus sulphureus suppress triple-negative breast cancer cell proliferation and metastasis through the EGFR-mediated signaling pathway. International Journal of Biological Macromolecules, 306, 141407. Khatua, S., Ghosh, S., & Acharya, K. (2017). Laetiporus sulphureus (Bull.: Fr.) Murr. as Food as Medicine. Pharmacognosy Journal, 9, s1-s15. Kishimoto, T., Hirano, T., Kuritani, T., Yamamura, Y., Ralph, P., & Good, R. A. (1978). Induction of IgG production in human B lymphoblastoid cell lines with normal human T cells. Nature, 271(5647), 756-758. Knirel, Y. A., Knirel, Y., & Valvano, M. (2011). Bacterial Lipopolysaccharides. Krishnamoorthi, R., Srinivash, M., Mahalingam, P. U., & Malaikozhundan, B. (2022). Dietary nutrients in edible mushroom, Agaricus bisporus and their radical scavenging, antibacterial, and antifungal effects. Process Biochemistry, 121, 10-17. Li, H., Feng, J., Liu, C., Hou, S., Meng, J., Liu, J.-Y., Zilong, S., & Chang, M.-C. (2024). Polysaccharides from an edible mushroom, Hericium erinaceus, alleviate ulcerative colitis in mice by inhibiting the NLRP3 inflammasomes and reestablish intestinal homeostasis. International Journal of Biological Macromolecules, 267, 131251. Li, L., Xie, J., Zhang, Z., Xia, B., Li, Y., Lin, Y., Li, M., Wu, P., & Lin, L. (2024). Recent advances in medicinal and edible homologous plant polysaccharides: Preparation, structure and prevention and treatment of diabetes. International Journal of Biological Macromolecules, 258, 128873. Lu, M. K., Jen, C. I., Chao, C. H., Hsu, Y. C., & Ng, L. T. (2023). SPS, a sulfated galactoglucan of Laetiporus sulphureus, exhibited anti-inflammatory activities. International Journal of Biological Macromolecules, 226, 1236-1247. Masuko, T., Minami, A., Iwasaki, N., Majima, T., Nishimura, S.-I., & Lee, Y. C. (2005). Carbohydrate analysis by a phenol–sulfuric acid method in microplate format. Analytical Biochemistry, 339(1), 69-72. Meng, X., Liang, H., & Luo, L. (2016). Antitumor polysaccharides from mushrooms: A review on the structural characteristics, antitumor mechanisms and immunomodulating activities. Carbohydrate Research, 424, 30-41. Mosmann, T. (1983). Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. Journal of Immunological Methods, 65(1), 55-63. Nyman, A. A. T., Aachmann, F. L., Rise, F., Ballance, S., & Samuelsen, A. B. C. (2016). Structural characterization of a branched (1→6)-α-mannan and β-glucans isolated from the fruiting bodies of Cantharellus cibarius. Carbohydrate Polymers, 146, 197-207. Okamoto, K., Kawamura, S., Tagawa, M., Mizuta, T., Zahid, H. M., & Nabika, T. (2020). Production of an antihypertensive peptide from milk by the brown rot fungus Neolentinus lepideus. European Food Research and Technology, 246(9), 1773-1782. Page, M. J., Kell, D. B., & Pretorius, E. (2022). The role of lipopolysaccharide-induced cell signalling in chronic inflammation. Chronic Stress (Thousand Oaks), 6, 24705470221076390. Palacios, I., García-Lafuente, A., Guillamón, E., & Villares, A. (2012). Novel isolation of water-soluble polysaccharides from the fruiting bodies of Pleurotus ostreatus mushrooms. Carbohydrate Research, 358, 72-77. Park, G. S., Shin, J., Hong, S., Gopal, J., & Oh, J.-W. (2024). Anticarcinogenic potential of the mushroom polysaccharide lentinan on gastric and colon cancer cells: Antiproliferative, antitumorigenic, Mu-2-related death-inducing gene, MUDENG ramifications. Journal of Industrial and Engineering Chemistry, 135, 122-130. Paudel, E., Boom, R. M., van Haaren, E., Siccama, J., & van der Sman, R. G. M. (2016). Effects of cellular structure and cell wall components on water holding capacity of mushrooms. Journal of Food Engineering, 187, 106-113. Peng, X. B., Li, Q., Ou, L. N., Jiang, L. F., & Zeng, K. (2010). GC–MS, FT-IR analysis of black fungus polysaccharides and its inhibition against skin aging in mice. International Journal of Biological Macromolecules, 47(2), 304-307. Raschke, W. C., Baird, S., Ralph, P., & Nakoinz, I. (1978). Functional macrophage cell lines transformed by abelson leukemia virus. Cell, 15(1), 261-267. Rietschel, E. T., Brade, L., Brandenburg, K., Flad, H.-D., de Jong-Leuveninck, J., Kawahara, K., Lindner, B., Loppnow, H., Lüderitz, , T., Schade, U., Seydel, U., Sidorczyk, Z., Tacken, A., Zähringer, U., & Brade, H. (1987). Chemical structure and biologic activity of bacterial and synthetic lipid A. Reviews of Infectious Diseases, 9, S527-S536. Rijia, A., Krishnamoorthi, R., Kaviyadharshini, M., & Mahalingam, P. U. (2025). Unlocking fungal fortunes: Cutting-edge extraction techniques and therapeutic possibilities of mushroom bioactive compounds. Food Chemistry Advances, 6, 100895. Saha, A. K., & Brewer, C. F. (1994). Determination of the concentrations of oligosaccharides, complex type carbohydrates, and glycoproteins using the phenol-sulfuric acid method. Carbohydrate Research, 254, 157-167. Samuelsen, A. B. C., Rise, F., Wilkins, A. L., Teveleva, L., Nyman, A. A. T., & Aachmann, F. L. (2019). The edible mushroom Albatrellus ovinus contains a α-L-fuco-α-D-galactan, α-D-glucan, a branched (1 → 6)-β-D-glucan and a branched (1 → 3)-β-d-glucan. Carbohydrate Research, 471, 28-38. Sande, D., Oliveira, G. P. d., Moura, M. A. F. e., Martins, B. d. A., Lima, M. T. N. S., & Takahashi, J. A. (2019). Edible mushrooms as a ubiquitous source of essential fatty acids. Food Research International, 125, 108524. Shan, J., Fu, J., Zhao, Z., Kong, X., Huang, H., Luo, L., & Yin, Z. (2009). Chlorogenic acid inhibits lipopolysaccharide-induced cyclooxygenase-2 expression in RAW264.7 cells through suppressing NF-κB and JNK/AP-1 activation. International Immunopharmacology, 9(9), 1042-1048. Sheng, Z., Wen, L., & Yang, B. (2022). Structure identification of a polysaccharide in mushroom Lingzhi spore and its immunomodulatory activity. Carbohydrate Polymers, 278, 118939. Shi, D., Xu, X., Wang, J., Bu, T., Sun, P., Yang, K., & Cai, M. (2025). Synergistic anti-inflammatory effects of Ganoderma lucidum polysaccharide and ganoderic acid A on LPS-induced RAW264.7 cells by inhibition of TLR4/NF-κB activation. International Journal of Biological Macromolecules, 309, 143074. Song, X., Ren, Z., Wang, X., Jia, L., & Zhang, C. (2020). Antioxidant, anti-inflammatory and renoprotective effects of acidic-hydrolytic polysaccharides by spent mushroom compost (Lentinula edodes) on LPS-induced kidney injury. International Journal of Biological Macromolecules, 151, 1267-1276. Sousa, F. T. G. d., Biering, S. B., Patel, T. S., Blanc, S. F., Camelini, C. M., Venzke, D., Nunes, R. J., Romano, C. M., Beatty, P. R., Sabino, E. C., & Harris, E. (2022). Sulfated β-glucan from Agaricus subrufescens inhibits flavivirus infection and nonstructural protein 1-mediated pathogenesis. Antiviral Research, 203, 105330. Stojković, D. S., Barros, L., Calhelha, R. C., Glamočlija, J., Ćirić, A., van Griensven, L. J., Soković, M., & Ferreira, I. C. (2014). A detailed comparative study between chemical and bioactive properties of Ganoderma lucidum from different origins. International Journal of Food Sciences and Nutrition, 65(1), 42-47. Su, C. H., Lai, M. N., & Ng, L. T. (2017). Effects of different extraction temperatures on the physicochemical properties of bioactive polysaccharides from Grifola frondosa. Food Chemistry, 220, 400-405. Synytsya, A., & Novák, M. (2013). Structural diversity of fungal glucans. Carbohydrate Polymers, 92(1), 792-809. Tian, R., Zhang, Y.-Z., Cheng, X., Xu, B., Wu, H., Liang, Z.-Q., Rahman, M., Wang, Y., & Zeng, N.-K. (2023). Structural characterization, and in vitro hypoglycemic activity of a polysaccharide from the mushroom Cantharellus yunnanensis. International Journal of Biological Macromolecules, 253, 127200. Venturella, G., Ferraro, V., Cirlincione, F., & Gargano, M. L. (2021). Medicinal mushrooms: Bioactive compounds, use, and clinical trials. International Journal of Molecular Sciences, 22(2), 634. Wang, H., Ma, S., Mariga, A. M., Hu, Q., Xu, Q., Su, A., Ma, N., & Ma, G. (2024). Structural characterization and anti-inflammatory activities of novel polysaccharides obtained from Pleurotus eryngii. Food Science and Human Wellness, 13(5), 3031-3042. Wang, J., Wu, C., Chen, Y., Chen, C., Hu, S., & Chang, S. (2014). Antihyperglycemic activity of exopolysaccharide produced by mushroom pleurotus ferulae with submerged liquid culture on streptozotocin-induced diabetic rats. Journal of Food and Nutrition Research, 2(7), 419-424. Wang, K. F., Sui, K. y., Guo, C., & Liu, C. Z. (2017). Improved production and antitumor activity of intracellular protein-polysaccharide from Trametes versicolor by the quorum sensing molecule-tyrosol. Journal of Functional Foods, 37, 90-96. Wu, B., Cui, J., Zhang, C., & Li, Z. (2012). A polysaccharide from Agaricus blazei inhibits proliferation and promotes apoptosis of osteosarcoma cells. International Journal of Biological Macromolecules, 50(4), 1116-1120. Yang, B., Luo, Y., Sang, Y., & Kan, J. (2022). Isolation, purification, structural characterization, and hypoglycemic activity assessment of polysaccharides from Hovenia dulcis (Guai Zao). International Journal of Biological Macromolecules, 208, 1106-1115. Yi, X., Liu, C.-y., Yang, S.-T., Zhu, H., Zhang, Y.-y., Lv, G.-p., & Huang, H. (2025a). Decoding the difference of four species of Cordyceps based on polysaccharides and immunomodulation activity. International Journal of Biological Macromolecules, 294, 139424. Yi, X., Liu, C. y., Yang, S. T., Zhu, H., Zhang, Y. y., Lv, G. p., & Huang, H. (2025b). Decoding the difference of four species of Cordyceps based on polysaccharides and immunomodulation activity. International Journal of Biological Macromolecules, 294, 139424. Zavadinack, M., de Lima Bellan, D., Fernandes Bonaldi, M. P., da Silva Milhorini, S., Cordeiro, L. M. C., Fogagnoli Simas, F., & Iacomini, M. (2024). Polysaccharide fractions extracted from Lactarius quieticolor mushroom exhibit immune stimulatory activities on macrophages. Food Research International, 197, 115205. Zdorovenko, E. L., Valueva, O. A., Kachala, V. V., Shashkov, A. S., Knirel, Y. A., Komaniecka, I., & Choma, A. (2012). Structure of the O-polysaccharide of Azorhizobium caulinodans HAMBI 216; identification of 3-C-methyl-D-rhamnose as a component of bacterial polysaccharides. Carbohydrate Research, 358, 106. Zhang, X., Cai, Z., Mao, H., Hu, P., & Li, X. (2021). Isolation and structure elucidation of polysaccharides from fruiting bodies of mushroom Coriolus versicolor and evaluation of their immunomodulatory effects. International Journal of Biological Macromolecules, 166, 1387-1395. Zheng, D., Liwinski, T., & Elinav, E. (2020). Inflammasome activation and regulation: toward a better understanding of complex mechanisms. Cell Discovery, 6, 36. Zhu, Z., Zhu, B., Sun, Y., Ai, C., Wu, S., Wang, L., Song, S., & Liu, X. (2018). Sulfated polysaccharide from sea cucumber modulates the gut microbiota and its metabolites in normal mice. International Journal of Biological Macromolecules, 120, 502-512. 任家宜,2018。不同物化性質之水溶性多醣體的抗發炎活研究。臺灣大學碩士論文。110頁。 任家宜,2024。本土產硫磺菌含硫多醣體之物化性質、化學結構及抗乳癌活性研究。臺灣大學博士論文。181頁。 陳勁甫,2015。人工培養烏苓參之基源、多醣物化性質及免疫調節活性研究。臺灣大學碩士論文。100頁。 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99191 | - |
| dc.description.abstract | 硫磺菌 (Laetiporus sulphureus) 屬於白肉迷孔菌科真菌,其多醣體已被證實具抗癌及抗發炎等生物活性,因多醣體的複雜性高,不同物種、萃取方法,以及不同產地所取得的多醣體在物化性質與活性上可能有差異。本研究主要目的為探討南投 (NT)、雲南 (YN)、東勢 (DS) 與豐丘 (FQ) 等產地和硫化多糖 (Sulfate polysaccharides, SPS) 及一般多糖 (Polysaccharides, PS) 的萃取方法對硫磺菌多醣體的物化性質與抗發炎活性影響。結果顯示,各產地SPS的產率依序為7.54%、9.46%、4.12%與3.48%,而PS的產率則約為1至1.5%之間。SPS比PS具有較低的總醣與較高的蛋白質含量,而硫酸根含量除FQ產地外,各產地之PS皆高於SPS。SPS的單醣組成以葡萄糖、甘露糖、半乳糖及岩藻糖為主,其分子量分布以2.80 kDa最多。在傅立葉轉換紅外光譜中SPS顯示出羥基、烷基、CHO與C=O振動、C-H、S=O、C-O-C與C-O-H等鍵結,為典型的多醣體圖譜。PS的單醣組成同樣以葡萄糖、甘露糖、半乳糖及岩藻糖為主,各組間的分子量分布相似,皆具有約10-25 kDa與500-600 kDa之分子量群,而PS的官能基種類與SPS相似,屬於多醣體的圖譜。抗發炎活性顯示所有產地之SPS與PS對一氧化氮的抑制效果皆不佳,但所有產地之SPS對TNF-α與IL-6等發炎相關因子的抑制則顯示有良好的效果。這些結果說明各產地之SPS與PS具有明顯物化性質的差異,且所有SPS對於LPS誘導RAW 264.7細胞之發炎因子具有良好的抑制效果,而PS的抑制效果則較差,這些結果皆說明不同萃取方法與產地差異對於多醣體的物化性質與活性具有不同程度的影響。由於南投產地之SPS (NTS) 比其他多醣體具有最佳的抑制TNF-α與IL-6生成效果,因此試驗進一步分析NTS的化學結構。NMR結果顯示,NTS之主鏈由α-(1→6)半乳糖與β-(1→6)葡萄糖構成,且在部分葡萄糖的3-O位置具有甘露糖與葡萄糖鏈的鍵結,而半乳糖的2-O位置則具有甘露糖與岩藻糖殘基。針對不同產地硫磺菌之研究結果表明,在硫化多醣體的萃取方法下,硫磺菌的多醣體皆表現出抗發炎活性,此結果顯示出硫磺菌多醣體在發炎治療與相關藥物開發的潛力。 | zh_TW |
| dc.description.abstract | Laetiporus sulphureus is a fungus belonging to the family Fomitopsidaceae. Polysaccharides extracted from L. sulphureus have been confirmed to exhibit various bioactivities, such as anticancer and anti- inflammatory. However, according to many previous studies, the structures of polysaccharides are complex, their physicochemical properties may vary depending on species, extraction methods, and even origins. This study aimed to investigate the differences in physicochemical properties and anti-inflammatory activities of L. sulphureus polysaccharides obtained from different regions (NT, YN, DS, and FQ) and extraction methods (SPS and PS). Based on the results, the yields of SPS from NT, YN, DS, and FQ regions were 7.54%, 9.46%, 4.12%, and 3.48%, respectively, while the yields of PS were approximately 1% to 1.5%. SPS had lower sugar content and higher protein content than PS. However, except FQ, the sulfate content of SPS was lower than PS. Results of monosaccharide composition showed that SPS and PS mainly consisted of glucose, mannose, galactose, and fucose. SPS from different origins had a molecular weight of 2.80 kDa, and PS of different origins had molecular weight of 10-25 kDa and 500-600 kDa. The FT-IR spectra of SPS and PS showed that all of them have hydroxyl, alkyl, formyl (–CHO), carbonyl (C=O), C–H, sulfonyl (S=O), ether (C–O–C), and hydroxyl (C–O–H) bonds. In anti-inflammatory analysis, both SPS and PS exhibited weak inhibitory effects on nitric oxide production. However, SPS from different origins possessed good inhibitory effects on TNF-α and IL-6 production. These results showed that SPS had stronger anti-inflammatory activity than PS, and the physicochemical properties showed that fruiting bodies from different locations but using the same extraction method possessed similar total sugar content, total protein content, monosaccharides composition, and functional group composition. As the SPS obtained from NT exhibited the best inhibition effects on TNF-α and IL-6 production, further experiment was performed to analyze its chemical structure. The NMR results showed that the main chain of NTS consisted of α-(1→6)-linked galactose and β-(1→6)-linked glucose, and the mannose and glucose side chains were substituted at the 3-O position of certain glucose, while mannose and fucose residues were attached to the 2-O position of galactose. According to the results, SPS from all origins exhibited anti-inflammatory activities. These findings showed that polysaccharides of Laetiporus sulphureus have potential for inflammation treatment and related drug development. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-21T16:44:47Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-08-21T16:44:47Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 謝誌 I
中文摘要 II Abstract IV 目次 VI 圖次 X 表次 XII 第一章、 前言 1 第二章、 文獻回顧 2 2.1. 菇類 2 2.1.1. 菇類簡介 2 2.1.2. 藥用菇類 2 2.2. 菇類多醣體 5 2.2.1. 多醣體與菇類多醣體簡介 5 2.2.2. 菇類多醣體之分子量 5 2.2.3. 生長環境與產地差異 6 2.2.4. 蛋白質與多肽 6 2.2.5. 菇類多醣體之免疫調節活性 6 2.2.6. 菇類多醣體之抗發炎活性 7 2.3. 硫磺菌 10 2.3.1. 硫磺菌簡介 10 2.3.2. 硫磺菌多醣體的結構與生物活性 10 2.4. 巨噬細胞與抗發炎 12 2.4.1. 巨噬細胞 12 2.4.2. 脂多醣與發炎 12 2.4.3. 一氧化氮與iNOS 13 2.4.4. TNF-α與IL-6 13 第三章、 研究動機與目的 16 第四章、 材料與方法 17 4.1. 材料及化學試劑 17 4.2. 含硫多醣體 (SPS) 與純化多醣體 (PS) 之製備 18 4.2.1. 含硫多醣體 (SPS) 之萃取與純化 18 4.2.2. 純化多醣體 (PS) 之萃取與純化 18 4.3. 總醣含量分析 20 4.3.1. 原理 20 4.3.2. 測定方法 20 4.4. 多醣體物化性質分析 21 4.4.1. 蛋白質含量分析 21 4.4.2. 硫酸根含量分析 21 4.4.3. 多醣體分子量分析 21 4.4.4. 單醣組成分析 22 4.4.5. 醣苷鍵種類分析 23 4.5. 細胞培養 25 4.5.1. 細胞種類與培養條件 25 4.5.2. 細胞活化與繼代培養 25 4.5.3. 細胞冷凍保存 25 4.6. 細胞存活率分析 (MTT assay) 27 4.6.1. 原理 27 4.6.2. 實驗步驟 27 4.7. 一氧化氮 (nitric oxide, NO) 產量分析 28 4.7.1. 原理 28 4.7.2. 實驗步驟 28 4.8. TNF-α與IL-6激素定量分析 29 4.8.1. 樣品製備 29 4.8.2. 分析步驟 29 4.9. 多醣體化學結構鑑定分析 31 4.9.1. 核磁共振 (nuclear magnetic resonance, NMR) 光譜分析 31 4.10. 統計分析 32 第五章、 結果與討論 33 5.1. 含硫多醣體 (SPS) 與純化多醣體 (PS) 之產率 33 5.2. 含硫多醣體 (SPS) 與純化多醣體 (PS) 之物化性質差異 35 5.2.1. 總醣、總蛋白與硫酸根含量 35 5.2.2. 分子量分布 37 5.2.3. 單醣組成 43 5.2.4. 官能基組成 47 5.3. 含硫多醣體 (SPS) 與純化多醣體 (PS) 之抗發炎活性 50 5.3.1. 細胞存活率 50 5.3.2. 一氧化氮的抑制 52 5.3.3. TNF-α與IL-6激素的抑制 57 5.4. 南投產地含硫多醣體 (NTS) 之化學結構 67 5.4.1. 1H NMR圖譜 67 5.4.2. 13C NMR圖譜 69 5.4.3. COSY圖譜 70 5.4.4. TOCSY圖譜 72 5.4.5. ROESY圖譜 74 5.4.6. HSQC圖譜 77 5.4.7. HMBC圖譜 79 5.4.8. NTS之結構討論 81 第六章、 結論 85 第七章、 參考文獻 87 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 多醣體 | zh_TW |
| dc.subject | 硫磺菌 | zh_TW |
| dc.subject | 化學結構 | zh_TW |
| dc.subject | 抗發炎 | zh_TW |
| dc.subject | 物化性質 | zh_TW |
| dc.subject | 不同產地 | zh_TW |
| dc.subject | Laetiporus sulphureus | en |
| dc.subject | chemical structure | en |
| dc.subject | different origins | en |
| dc.subject | physicochemical properties | en |
| dc.subject | anti-inflammatory | en |
| dc.subject | polysaccharides | en |
| dc.title | 不同產地硫磺菌菌株的培養子實體多醣體之物化性質及抗發炎活性研究 | zh_TW |
| dc.title | Studies on the physicochemical properties and anti-inflammatory activities of polysaccharides from cultured fruiting bodies of Laetiporus sulphureus of different origins isolated | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.coadvisor | 羅凱尹 | zh_TW |
| dc.contributor.coadvisor | Kai-Yin Lo | en |
| dc.contributor.oralexamcommittee | 盧美光;蘇俊翰 | zh_TW |
| dc.contributor.oralexamcommittee | Mei-Kuang Lu;Chun-Han Su | en |
| dc.subject.keyword | 硫磺菌,多醣體,不同產地,物化性質,抗發炎,化學結構, | zh_TW |
| dc.subject.keyword | Laetiporus sulphureus,polysaccharides,different origins,physicochemical properties,anti-inflammatory,chemical structure, | en |
| dc.relation.page | 98 | - |
| dc.identifier.doi | 10.6342/NTU202502766 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2025-08-06 | - |
| dc.contributor.author-college | 生物資源暨農學院 | - |
| dc.contributor.author-dept | 農業化學系 | - |
| dc.date.embargo-lift | 2025-08-22 | - |
| 顯示於系所單位: | 農業化學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf | 3.85 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
