Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電信工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99190
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor盧信嘉zh_TW
dc.contributor.advisorHsin-Chia Luen
dc.contributor.author楊子霆zh_TW
dc.contributor.authorTzu-Ting Yangen
dc.date.accessioned2025-08-21T16:44:31Z-
dc.date.available2025-08-22-
dc.date.copyright2025-08-21-
dc.date.issued2025-
dc.date.submitted2025-08-04-
dc.identifier.citation[1]P. Popovski, K. F. Trillingsgaard, O. Simeone, and G. Durisi, “5G wireless network slicing for eMBB, URLLC, and mMTC: A communication-theoretic view” IEEE Access, vol. 6, pp. 55765–55779, Sep. 2018
[2]Telcoma Global, “What are the potential use cases and applications of 6G network?” [Online]. Available: https://telcomaglobal.com/p/use-cases-and-applications-of-6g-networks (accessed Mar. 2024).
[3] Xuemin Shen, Jie Ying Gao, Mushu Li, Conghao Zhou, Shisheng Hu, Mingcheng He, and Weihua Zhuang, “Toward immersive communications in 6G,” Frontiers of Computer Science, vol. 4, Art. 1068478, Mar. 2023.
[4]M. H. Lashari, W. Batayneh, and A. Khokhar, “Enhancing precision in tactile Internet-enabled remote robotic surgery: Kalman filter approach,” in Proc. 2024 Int. Wireless Commun. Mobile Comput. (IWCMC), Doha, Qatar,June 2024, pp. 1–6.
[5]M. Trigka and E. Dritsas, “Edge and cloud computing in smart cities,” Future Internet, vol. 17, no. 6, Art. 118, March 2025, doi: 10.3390/fi17060118.
[6]D. M. Pozar, Microwave Engineering, 4th ed. Hoboken, NJ, USA: Wiley, 2012.
[7]Z. Feng, Z. Wei, X. Chen, H. Yang, Q. Zhang and P. Zhang, "Joint communication, sensing, and computation enabled 6G intelligent machine system," in IEEE Network, vol. 35, no. 6, pp. 34-42, November/December 2021, doi: 10.1109/MNET.121.2100320.
[8]H. Uchimura, T. Takenoshita, and M. Fujii, “Development of a ‘laminated waveguide’,” IEEE Trans. Microw. Theory Techn., vol. 46, no. 12, pp. 2438–2443, Dec. 1998.
[9]M. Esquius-Morote, B. Fuchs, J.-F. Zürcher, and J. R. Mosig, “A printed transition for matching improvement of SIW horn antennas,” IEEE Trans. Antennas Propag., vol. 61, no. 4, pp. 1923–1930, Apr. 2013
[10]Teng Li and Zhi Ning Chen, “Wideband substrate-integrated waveguide-fed endfire metasurface antenna array,” IEEE Trans. Antennas Propag, vol. 66, no. 12, pp. 7032–7040, Dec. 2018, doi: 10.1109/TAP.2018.2871716.
[11]Yang Cai, Yingsong Zhang, Liu Yang, Yufan Cao, and Zuping Qian, “Design of low-profile metamaterial-loaded substrate integrated waveguide horn antenna and its array applications,” IEEE Trans. Antennas Propag, vol. 65, no. 7, pp. 3732–3737, Jul. 2017, doi: 10.1109/TAP.2017.2700231.
[12]M. F. Khajeim, G. Moradi, R. S. Shirazi, S. Zhang, and G. F. Pedersen, “Wideband vertically polarized antenna with end-fire radiation for 5G mobile-phone applications,” IEEE Antennas Wireless Propag. Lett., vol. 19, no. 11, pp. 1948–1952, Nov. 2020.
[13]J. Park, S. Y. Lee, and W. Hong, “Wideband 39 GHz vertically polarized end-fire antenna-in-package (AiP) array featuring near-planar profile,” in Proc. 2018 Int. Symp. Antennas Propag. (ISAP), Busan, South Korea, Oct. 2018, pp. 1–2.
[14]C. Seguinot, P. Kennis, J.-F. Legier, F. Huret, E. Paleczny, and L. Hayden, “Multimode TRL: A new concept in microwave measurements—Theory and experimental verification,” IEEE Trans. Microw. Theory Techn., vol. 46, no. 5, pp. 536–542, May 1998, doi: 10.1109/22.668653.
[15]MGC, “MGCHL972LF substrate datasheet.” [Online]. Available: https://www.mgc.co.jp/eng/products/sc/btprint/lineup/hfbt.html
[16]R.-C. Chen, Z.-T. Yang, and H.-C. Lu, “Microstrip line and grounded CPW at 140 GHz and 300 GHz bands on BT substrate,” in Proc. 2024 IEEE Asia-Pacific Microw. Conf. (APMC), Bali, Indonesia, Nov, 2024, pp. 1–4.
[17]Cadence, “AWR TX-Line Calculator.” [Online]. Available: https://www5.cadence.com/awr-tx-line-calculator.html
[18]Tarek Djerafi, Ali Doghri, and Ke Wu, “Substrate integrated waveguide antennas,” in Handbook of Antenna Technologies, Z. N. Chen et al., Eds. Singapore: Springer, 2015, ch. 57, pp. 1–60, doi: 10.1007/978-981-4560-75-7_57-1.
[19]陳昭睿。「應用於6G通訊D-頻段於玻璃基板之水平極化一維端射韋瓦第一維陣列天線封裝」。碩士論文,國立臺灣大學電信工程學研究所,2024年7月。
[20]鄭力元。「新型多頻印刷偶極天線與縮小化印刷摺疊偶極天線設計」。碩士論文,國立交通大學電信工程系所,2008年6月。
[21]羅文信。「新型縮小化超寬頻印刷式天線設計」。碩士論文,國立交通大學電機資訊學院碩士在職專班,2004年6月。
[22]Corning Inc., “EAGLE XG® Slim glass substrate.” [Online]. Available: https://www.corning.com/.../eagle-xgslim.html
[23]Y.-H. Cheng, C.-H. Lin, and Y.-H. Cheng, “Permittivity measurement of PCB materials using terahertz time-domain spectroscopy,” in Proc. 2023 Asia-Pacific Microw. Conf. (APMC), Taipei, Taiwan, Dec. 2023, pp. 635–637.
[24]Kuo, C.-C., Lu, H.-C., Lin, P.-A., Tai, C.-F., Hsin, Y.-M., and Wang, H., “A fully SiP integrated V-band Butler matrix end-fire beam-switching transmitter using flip-chip assembled CMOS chips on LTCC,” IEEE Trans. Microw. Theory Techn., vol. 60, no. 5, pp. 1424–1436, May 2012, doi: 10.1109/TMTT.2012.2187795
[25]E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett., vol. 58, no. 20, pp. 2059–2062, May 1987.
[26]B. Mohajer-Iravani, S. Shahparnia, and O. M. Ramahi, “Coupling reduction in enclosures and cavities using electromagnetic band-gap structures,” IEEE Trans. Electromagn. Compat., vol. 48, no. 2, pp. 292–303, May 2006.
[27]F.-R. Yang, K.-P. Ma, Y. Qian, and T. Itoh, “A uniplanar compact photonic-bandgap (UC-PBG) structure and its applications for microwave circuits,” IEEE Trans. Microw. Theory Techn., vol. 47, no. 8, pp. 1509–1514, Aug. 1999.
[28]A. E. I. Lamminen, A. R. Vimpari, and J. Säily, “UC-EBG on LTCC for 60-GHz frequency-band antenna applications,” IEEE Trans. Antennas Propag., vol. 57, no. 10, pp. 2904–2912, Oct. 2009.
[29]H. Zhou and F. Xu, “Artificial magnetic conductor and its application,” in Proc. 2013 Int. Symp. Antennas Propag., Nanjing, China, Oct. 2013, pp. 1110–1113.
[30]Zhao-Hong Tu, Pin-Feng Chen, Sung-Lin Ho, Min-Wei Li, Tsung-Wen Chiu, and Yu-Hsiang Cheng, “Probe-based antenna measurements at sub-THz frequencies,” 2023 Asia-Pacific Microw Conf. (APMC), Taipei, Taiwan, Dec. 2023, pp. 826–828.
[31]MI-Wave, “20 dB horn antenna datasheet: Model 261D.” [Online]. Available: https://www.miwv.com/.../261D-20dB-Pattern.pdf
[32]S. Erdogan, K.-S. J. Moon, M. Kathaperumal, and M. Swaminathan, “D-band integrated and miniaturized quasi-Yagi antenna array in glass interposer,” IEEE Trans. Terahertz Sci. Technol., vol. 13, no. 3, pp. 270–279, May 2023, doi: 10.1109/TTHZ.2023.3242224.
[33]Chao Gu, Zhiwei Zhang, Fan Qin, Fei Cheng, Xiaobang Shang, Simon Cotton, Jawad Ullah, and Abraham Contreras, “A fully additive manufactured D-band SIW antenna,” in Proceedings of the 18th European Conference on Antennas and Propagation (EuCAP), Glasgow, United Kingdom, March 2024, pp. 1–5, doi: 10.23919/EuCAP60739.2024.10501404.
[34]Y. Dong, A. Turhaner, V. Zhurbenko, and T. K. Johansen, “Wideband tapered slot antenna for D-band applications,” in Proc. 14th Eur. Conf. Antennas Propag. (EuCAP), Copenhagen, Denmark, March 2020, pp. 1–4, doi: 10.23919/EuCAP48036.2020.9135911.
[35]S. B. Yeap, X. Qing, M. Sun, and Z. N. Chen, “140-GHz 2 × 2 SIW horn array on LTCC,” in Proc. 2012 IEEE Asia-Pacific Conf. Antennas Propag. (APCAP), Singapore, Aug. 2012, pp. 279–280, doi: 10.1109/APCAP.2012.6333254.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99190-
dc.description.abstract本論文目的在設計與比較三款應用於D-頻段的垂直極化端射天線陣列,第一部分首先使用IC載板BT製程設計操作頻率在140GHz的微帶線與GCPW。並從量測發現加入了金鈀金金屬表面處理製程的GCPW與未處理時相比增加了約20%的衰減係數。
在輻射場型量測時發現探針與襯墊存在不匹配,造成溢散輻射干擾,在θ=90°方向增益值嚴重下降,在θ=105°方向會產生較大增益。因此皆使用θ=75°方向來比較。
第二部分使用IC載板BT介質設計垂直極化一維基板集成波導號角天線陣列,透過加入印刷型過渡結構改善了阻抗匹配與輻射效率。其量測結果為垂直極化天線單元在140GHz的S11約為-12dB,頻寬範圍從110GHz-160GHz為大約50GHz,增益最大為9.1dBi,H平面HPBW為94°。1x4陣列天線在140GHz的匹配約為-23dB,頻寬涵蓋整個D-band約60GHz,增益最大為14.1dBi,H平面HPBW為28°。
第三部分採用EXG玻璃基板設計以垂直極化單極天線陣列,設計中引入了由玻璃通孔所構成的反射牆結構以提升指向性。1x4陣列模擬頻寬達48GHz,主波束增益為11.1dBi,輻射效率達80.6%,並可在-40°至+40°範圍內進行波束掃描。
第四部分則在無貫孔的石英玻璃IPD基板上實現垂直極化端射天線陣列,使用電磁帶隙架構與平行板的組合創造虛擬磁牆,將電磁場約束於平行板波導內,達成類似傳統波導的傳輸模式。電磁帶隙架構的量測結果顯示在126GHz以上頻段皆具有帶阻特性。以此結構設計的垂直極化天線單元量測結果為匹配皆大於-10dB,顯示其阻抗匹配不佳,輻射場型也與模擬有顯著差異。1x4天線陣列的量測結果為在140GHz匹配約-15dB,頻寬範圍從131GHz-151GHz為大約20GHz,增益最大為9.8dBi,H平面HPBW為20°。
zh_TW
dc.description.abstractThis thesis aims to design and compare three vertically polarized end-fire antenna arrays for D-band applications.
First, microstrip lines and GCPW operating at 140 GHz were fabricated on an IC carrier BT substrate. Measurements revealed that adding an IGEPIG surface finish to the GCPW increased the attenuation constant by about 16 % compared with the bare Cu version.
For radiation-pattern measurements, the mismatch between the GSG probe and the GSG pad produced dispersive radiation that caused the gain to drop sharply at θ = 90° and to peak at θ = 105°, so gain at θ = 75° was adopted for all the follow comparisons.
Next, a substrate-integrated-waveguide horn antenna array was designed on the IC carrier BT substrate. By introducing a printed transition, impedance matching and radiation efficiency were improved. In the measurement, the element antenna exhibits about –12 dB matching at 140 GHz, a 10 dB bandwidth of roughly 50 GHz from 110 to 160 GHz, maximum gain is 9.1 dBi, and an H-plane HPBW of 94°. The 1×4 array shows about –23 dB matching at 140 GHz, a bandwidth covering the entire D-band, a peak gain of 14.1 dBi, and an H-plane HPBW of 28°.
The third part uses an EXG glass substrate to design a vertically polarized monopole antenna array in which a via-wall reflector enhances directivity. For the 1×4 array, simulation gives a bandwidth of 48 GHz, a main-beam gain of 11.1 dBi, a radiation efficiency of 80.6 %, and beam steering from –40° to +40°.
Finally, a vertically polarized end-fire array was implemented on via-less quartz IPD glass. By combining an electromagnetic band-gap (EBG) structure with parallel plates to form a virtual magnetic wall, the electromagnetic field is confined in a parallel-plate waveguide that behaves like a conventional waveguide. Measurements show that the EBG structure presents a stopband above 126 GHz. For element antenna, the measured matching is worse than –10 dB, indicating poor matching, and the radiation pattern deviates markedly from simulation. For the 1 × 4 array, the measured matching is about –15 dB at 140 GHz, the bandwidth is about 20 GHz from 131 to 151 GHz, the peak gain is 9.8 dBi, and the H-plane HPBW is 20°.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-21T16:44:31Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-08-21T16:44:31Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents致謝 i
中文摘要 ii
ABSTRACT iii
目次 iv
圖次 vii
表次 xix
Chapter 1 Introduction 1
1.1 研究背景 1
1.2 研究動機與應用情境 2
1.3 文獻回顧 5
1.4 論文貢獻 16
1.5 章節介紹 17
Chapter 2 IC載板傳輸線設計 19
2.1 IC載板製程疊構 19
2.2 微帶線 20
2.2.1 微帶線設計及模擬 20
2.3 GCPW 22
2.3.1 GCPW設計與模擬 23
2.3.2 GSG pad設計與模擬 25
Chapter 3 IC載板一維GCPW饋入基板集成波導號角天線陣列 28
3.1 基板集成波導簡介 28
3.2 基板集成波導設計與模擬 30
3.3 基板集成波導號角垂直極化天線單元 33
3.3.1 加入印刷型過渡結構設計及模擬 36
3.3.2 垂直極化天線單元加入GSG襯墊設計及模擬 42
3.4 1x4 GCPW饋入基板集成波導號角天線陣列 46
3.4.1 天線陣列設計及模擬 46
3.4.2 波束掃描 57
3.5 1x4一維陣列天線加入功率分路器與GSG pad 59
3.5.1 T型四路功率分路器 59
3.5.2 整體模擬 63
Chapter 4 EXG玻璃基板一維垂直極化單極一維陣列天線 68
4.1 偶極天線與單極天線 68
4.2 EXG玻璃基板製程疊構 72
4.3 單極垂直極化天線單元 73
4.3.1 單極天線加入TGV Via wall設計及模擬 73
4.4 1x4單極一維陣列天線 87
4.4.1 一維陣列天線設計及模擬 87
4.4.2 波束掃描 98
4.5 1x4單極一維陣列天線加入功率分路器及GSG pad 100
5.2.1 T型四路功率分路器設計及模擬 100
4.5.1 整體組合模擬 102
Chapter 5 石英玻璃IPD基板無貫孔波導天線 108
5.1 電磁帶隙架構介紹 108
5.1.1 UC-EBG公式推導 109
5.2 石英玻璃基板製程疊構 110
5.3 石英玻璃IPD基板EBG架構設計及模擬 111
5.3.1 EBG結構測試加入GSG pad設計及模擬 119
5.4 石英玻璃IPD基板無貫孔波導垂直極化天線單元設計及模擬 121
5.4.1 波導側牆虛擬化 122
5.5 石英玻璃IPD基板無貫孔波導一維陣列天線設計及模擬 135
5.5.1 1×4一維陣列天線 135
5.5.2 波束掃描 139
5.6 一維陣列天線加入功率分路器及GSG pad設計及模擬 141
5.6.1 T型四路功率分路器 141
5.6.2 整體模擬 144
Chapter 6 量測結果 148
6.1 量測系統與環境介紹 148
6.2 裸銅IC載板GCPW饋入基板集成波導天線量測 149
6.2.1 垂直極化天線單元S-參數與輻射場型量測 150
6.2.2 裸銅1x4一維陣列天線S-參數與場型量測 159
6.2.3 天線單元與一維陣列天線經表面處理後S-參數與輻射場型量測比較 167
6.3 石英玻璃IPD基板無貫孔波導天線量測 183
6.3.1 天線單元S-參數與輻射場型量測 183
6.3.2 1x4一維陣列天線S-參數與場型量測 187
6.3.3 EBG架構與倒轉微帶線量測結果 190
6.4 IC載板傳輸線量測結果 192
6.4.1 裸銅板微帶線S-參數量測結果 192
6.4.2 裸銅GCPW量測結果 194
6.4.3 GCPW表面處理量測比較 196
Chapter 7 結論及未來展望 200
7.1 結論 200
7.2 未來展望 202
參考文獻 207
-
dc.language.isozh_TW-
dc.subjectD-頻段zh_TW
dc.subjectIC載板zh_TW
dc.subject玻璃基板zh_TW
dc.subjectGCPWzh_TW
dc.subject表面處理zh_TW
dc.subject基板集成波導號角天線陣列zh_TW
dc.subject單極天線陣列zh_TW
dc.subject電磁帶隙架構zh_TW
dc.subject無通孔波導天線陣列zh_TW
dc.subjectIC carrieren
dc.subjectD-banden
dc.subjectelectromagnetic band-gap (EBG)en
dc.subjectmonopole antenna arrayen
dc.subjectsubstrate integrated waveguide horn antenna arrayen
dc.subjectsurface finishen
dc.subjectGCPWen
dc.subjectglass IPDen
dc.subjectBTen
dc.title應用於6G通訊中D-頻段之垂直極化一維端射天線陣列zh_TW
dc.titleVertically Polarized One-Dimensional End-Fire Antenna Array in D-Band for 6G Communicationen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee鄭宇翔;陳晏笙;謝松年zh_TW
dc.contributor.oralexamcommitteeYu-Hsiang Cheng;Yen-Sheng Chen;Sung-Nien Hsiehen
dc.subject.keywordD-頻段,IC載板,玻璃基板,GCPW,表面處理,基板集成波導號角天線陣列,單極天線陣列,電磁帶隙架構,無通孔波導天線陣列,zh_TW
dc.subject.keywordD-band,IC carrier,BT,glass IPD,GCPW,surface finish,substrate integrated waveguide horn antenna array,monopole antenna array,electromagnetic band-gap (EBG),en
dc.relation.page210-
dc.identifier.doi10.6342/NTU202503846-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2025-08-08-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept電信工程學研究所-
dc.date.embargo-lift2025-08-22-
顯示於系所單位:電信工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf25.81 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved