Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 牙醫專業學院
  4. 臨床牙醫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/9918
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor江俊斌
dc.contributor.authorChia-Chuan Changen
dc.contributor.author張家銓zh_TW
dc.date.accessioned2021-05-20T20:49:23Z-
dc.date.available2009-08-14
dc.date.available2021-05-20T20:49:23Z-
dc.date.copyright2008-08-14
dc.date.issued2008
dc.date.submitted2008-06-27
dc.identifier.citationAlnemri ES, Livingston DJ, Nicholson DW, Salvesen G, Thornberry NA, Wong WW, Yuan J. Human ICE/CED-3 Protease Nomenclature. Cell 1996;87: 171-172.
Ambrosini G, Adida C, Sirugo G, and Altieri DC. Induction of apoptosis and inhibition of cell proliferation by survivin gene targeting. J. Biol. Chem. 1998; 273: 11177–11182.
Amelsberg M, Amelsberg A, Ainsworth MA, Hogan DL, Isenberg JI. Cyclic adenosine-3’,5’-monophosphate production is greater in rabbit duodenal crypt than in villus cells. Scand J Gastroenterol 1996;31:233–9.
Arnt CR, Chiorean MV, Heldebrant MP, Gores GJ, Kaufmann SH. Synthetic Smac/
DIABLO peptides enhance the effects of chemotherapeutic agents by binding XIAPand cIAP1 in situ. J Biol Chem 2002;277:44236–43.
Berglund H, Olerenshaw D, Sankar A, Federwisch M, McDonald NQ, Driscoll PC. The three-dimensional solution structure and dynamic properties of the human FADD death domain. J Mol Biol 2000;302:171–88.
Birnbaum, MJ, Clem RJ, Miller LK. An apoptosisinhibiting gene from a nuclear polyhedrosis virus encoding a polypeptide with Cys/His sequence motifs. J Virol 1994;68: 2521–2528.
Boatright KM, Renatus M, Scott FL, Sperandio S, Shin H, Pedersen IM, Ricci JE, Edris WA, Sutherlin DP, Green DR, Salvesen GS. A unified model for apical caspase activation. Mol Cell 2003;11:529–41.
Boldin MP, Goncharov TM, Goltsev YV, Wallach D. Involvement of MACH, a Novel MORT1/FADD-Interacting Protease, in Fas/APO-1- and TNF Receptor–Induced Cell Death. Cell 1996;85: 803-815.
Chai, J, Du, C, Wu, JW, Kyin, S, Wang, X, Shi, Y. Structural and biochemical basis of apoptotic activation by Smac/ DIABLO. Nature 2000;406: 855–862.
Chang H, Yang X, Baltimore D. Dissecting Fas signaling with an altered-specificity
death-domain mutant: requirement of FADD binding for apoptosis but not Jun
N-terminal kinase activation. Proc Natl Acad Sci USA 1999;96:1252–6.
Chen HM. Yen-Ping Kuo M. Lin KH. Lin CY. Chiang CP. Expression of cyclin A is related to progression of oral squamous cell carcinoma in Taiwan. Oral Oncology. 2003 Jul;39(5):476-82.
Chen YK. Huang HC. Lin LM. Lin CC. Primary oral squamous cell carcinoma: an analysis of 703 cases in southern Taiwan. Oral Oncology. 1999 Mar;35(2):173-9,
Chiang CP. Huang JS. Wang JT. Liu BY. Kuo YS. Hahn LJ. Kuo MY. Expression of p53 protein correlates with decreased survival in patients with areca quid chewing and smoking-associated oral squamous cell carcinomas in Taiwan. Journal of Oral Pathology & Medicine. 1999 Feb;28(2):72-6.
Clem, RJ, Miller LK. Control of programmed cell death by the baculovirus genes p35 and IAP. Mol. Cell. Biol.1994;14: 5212–5222.
Crook NE, Clem RJ, Miller LK, An apoptosis-inhibiting baculovirus gene with a zinc finger-like motif. J. Virol. 1993;67:168–174.
Crooke ST. Molecular mechanisms of antisense drugs: RNase H. Antisense Nucleic
Acid Drug Dev 1998;8:133–4.
Dai Z, Zhu WG, Morrison CD, Brena RM, Smiraglia DJ, Raval A, Wu YZ, Rush LJ, Ross P, Molina JR, Otterson GA, Plass C. A comprehensive search for DNA amplification in lung cancer identifies inhibitors of apoptosis cIAP1 and cIAP2 as candidate oncogenes. Hum Mol Genet 2003;12:791 - 801.
Deveraux QL, Reed JC. IAP family proteins—suppressors of apoptosis. Genes Dev 1999;13:239–52.
Deveraux, QL, Takahashi R, Salvesen GS, Reed JC. X-linked IAP is a direct inhibitor of cell death proteases. Nature 1997;388: 300–303.
Deveraux, QL, Roy N, Stennicke HR, Van Arsdale T, Zhou Q, Srinivasula M, Alnemri ES, Salvesen GS, Reed JC. IAPs block apoptotic events induced by caspase-8 and cytochrome c by direct inhibition of distinct caspases. EMBO J.1998;17: 2215–2223.
Du C, Fang M, Li Y, Li L, Wang X. Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition, Cell 2000;102:33–42.
Duckett CS, Nava VE, Gedrich RW, Clem RJ, Van Dongen JL, Gilfillan MC, Shiels H, Hardwick JM, Thompson CB. EMBO J. 1996;15: 2685-2694.
Faccio L, Fusco C, Chen A, Martinotti S, Bonventre JV, Zervos AS. Characterization of a novel human serine prote-Herrase that has extensive homology to bacterial heat shock endoprotease HtrA and is regulated by kidney ischemia. J. Biol. Chem. 2000;275: 2581–2588.
Ferreira CG, van der Valk P, Span SW, Jonker JM, Postmus PE, Kruyt FA, et al. Assessment of IAP (inhibitor of apoptosis) proteins as predictors of response to chemotherapy in advanced non-small-cell lung cancer patients. Ann Oncol 2001;12:799–805.
Gray CW, Ward RV, Karran E, Turconi,S, Rowles A, Viglienghi D, Southan C, Barton A, Fantom KG, West A, Savopoulos J, Hassan NJ, Clinkenbeard H, Hanning C, Amegadzie B, Davis JB, Dingwall C, Livi GP, Creasy CL. Characterization of human HtrA2, a novel serine protease involved in the mammalian cellular stress response. Eur. J. Biochem. 2000;267: 5699–5710.
Gross A, Yin XM, Wang K, Wei MC, Jockel J, Milliman C, Erdjument-Bromage H, Tempst P, Korsmeyer SJ. Caspase cleaved BID targets mitochondria and is
required for cytochrome c release, while BCL-XL prevents this release but not
TNF-R1/Fas death. J Biol Chem 1999;274:1156–63.
Hauser HP, Bardroff M, Pyrowolakis G, Jentsch S. A giant ubiquitin-conjugating enzyme related to IAP apoptosis inhibitors. J. Cell Biol.1998;141: 1415–1422.
Herr I, Debatin KM. Cellular stress response and apoptosis in cancer therapy. Blood 2001;98:2603–14.
Holcik M, Yeh C, Korneluk RG, Chow T. Translational upregulation of X-linked inhibitor of apoptosis (XIAP) increases resistance to radiation induced cell death. Oncogene 2000;19:4174–7.
Hu SI, Carozza M, Klein M, Nantermet P, Luk D, Crowl RM. Human HtrA, an evolutionarily conserved serine protease identified as a differentially expressed gene product in osteoarthritic cartilage. J. Biol. Chem. 1997;273: 34406–34412.
Imoto I, Tsuda H, Hirasawa A, Miura M, Sakamoto M, Hirohashi S, Inazawa J. Expression of cIAP1, a target for 11q22 amplification, correlates with resistance of cervical cancers to radiotherapy. Cancer Res.2002;62: 4860–4866.
Imoto I, Yang ZQ, Pimkhaokham A, Tsuda H, Shimada Y, Imamura M, Ohki M, Inazawa J. Identification of cIAP1 as a candidate target gene within an amplicon at 11q22 in esophageal squamous cell carcinomas. Cancer Res.2001;61: 6629–6634.
Jeng JH. Kuo ML. Hahn LJ. Kuo MY. Genotoxic and non-genotoxic effects of betel quid ingredients on oral mucosal fibroblasts in vitro. Journal of Dental Research. 1994 May ;73(5):1043-9.
Jesenberger V, Jentsch S. Deadly encounter: ubiquitin meets apoptosis. Nat Rev Mol Cell Biol 2002;3:112–21.
Kang J, Schaber M, Srinivasula S, Srinivasula M, Alnemri ES, Litwack G, Hall DJ, Bjornsti MA. Cascades of mammalian caspase activation in the yeast Saccharomyces cerevisiae. J Biol Chem 1999;274:3189–98.
Kempkensteffen C, Hinz S, Christoph F, Kollermann J, Krause H, Schrader M, Schostak M, Miller K, Weikert S. Expression parameters of the inhibitors of apoptosis cIAP1 and cIAP2 in renal cell carcinomas and their prognostic relevance. Int. J. Cancer 2006;120: 1081–1086
Kluck RM, Bossy-Wetzel E, Green DR, Newmeyer DD. The release of cytochrome
c from mitochondria: a primary site for Bcl-2 regulation of apoptosis. Science (WashDC) 1997;275:1132–6.
Krajewska M, Krajewski S, Banares S, Huang X, Turner B, Bubendorf L, Kallioniemi OP, Shabaik A, Vitiello A, Peehl D, Gao GJ, Reed JC. Elevated expression of inhibitor of apoptosis proteins in prostate cancer. Clin Cancer Res 2003;9:4914–25.
Krajewska M, Kim H, Kim C, Kang H, Welsh K, Matsuzawa SI, Tsukamoto M, Thomas RG, Assa-munt N, Zhe P, Suzuki K, Perucho M, Krajewski S, Reed JC. Analysis of apoptosis protein expression in early-stage colorectal cancer suggests opportunities for new prognostic biomarkers. Clin Cancer Res 2005;11:5451 - 61.
Kulik G, Carson JP, Vomastek T, Overman K, Gooch BD, Srinivasula S, Alnemri E, Nunez G, Weber MJ. Tumor necrosis factor alpha induces BID cleavage and bypasses antiapoptotic signals in prostate cancer LNCaP cells. Cancer Res 2001;61:2713–9.
Kuo MYP, Huang JS, Kok SH, Kuo YS, Chiang CP, Prognostic role of p21WAF1 expression in areca quid chewing and smoking-associated oral squamous cell carcinoma in Taiwan. Journal of Oral Pathology & Medicine. 2002 Jan :31(1):16-22,.
Kuo MYP. Lin CY. Hahn LJ. Cheng SJ. Chiang CP. Expression of cyclin D1 is correlated with poor prognosis in patients with areca quid chewing-related oral squamous cell carcinomas in Taiwan. Journal of Oral Pathology & Medicine. ;1999 Apr:28(4):165-9,
LaCasse EC, Baird S, Korneluk RG, MacKenzie AE. The inhibitors of apoptosis (IAPs) and their emerging role in cancer. Oncogene 1998;17:3247–59.
Li J, Feng Q, Kim JM, Schneiderman D, Liston P, Li M, Vanderhyden B, Faught W, Fung MFK, Senterman M, Korneluk RG, Tsang BK. Human ovarian cancer and cisplatin resistance: possible role of inhibitor of apoptosis proteins. Endocrinology 2001;142:370 - 80.
Li W, Srinivasula SM, Chai J, Li P, Wu JW, Zhang Z, Alnemri ES, Shi Y. Structural insights into the pro-apoptotic function of mitochondrial serine protease HtrA2/Omi. Nat Struct Biol 2002;9:436–41.
Lin CY, Hung HC, Chiang CP, Kuo MYP. Survivin expression predicts poorer prognosis in patients with areca-quid chewing-related oral squamous cell carcinoma in Taiwan. Oral Oncol 2005;41:645-54.
Lin PY, Yu CH, Wang JT, Chen HH, Cheng SJ, Kuo MYP, Chiang CP. Expression of hypoxia-inducible factor-1α is significantly associated with the progression and prognosis of oral squamous cell carcinomas in Taiwan. J Oral Pathol Med 2008;37:18-25.
Liu SS, Tsang BK, Cheung AN, Xue WC, Cheng DK, Ng TY, Wong LC, Ngan HY Anti-apoptotic proteins, apoptotic and proliferative parameters and their prognostic significance in cervical carcinoma. Eur J Cancer 2001;37:1104- 10.
Liston P, Fong WG, Korneluk RG. The inhibitors of apoptosis: there is more to life than Bcl2. Oncogene 2003;22:8568–80.
Liston, P, Roy N, Tamai K, Lefebvre C, Baird S, Cherton-Horvat G, Farahani R, McLean M, Ikeda J, MacKenzie A, Korneluk RG. Suppression of apoptosis in mammalian cells by NAIP and a related family of IAP genes. Nature 1996;379: 349–353.
Liu Z, Sun C, Olejniczak ET, Meadows RP, Betz SF, Oost T, Herrmann J, Wu JC, Fesik SW. Structural basis for binding of Smac/DIABLO to the XIAP BIR3 domain. Nature (Lond) 2000;408:1004–8.
Mansouri A, Zhang Q, Ridgway LD, Tian L, Claret FX. Cisplatin resistance in an ovarian carcinoma is associated with a defect in programmed cell death control through XIAP regulation. Oncol Res 2003;13:399–404.
McEleny KR, Watson RW, Coffey RN, O’Neill AJ, Fitzpatrick JM. Inhibitors of apoptosis proteins in prostate cancer cell lines. Prostate 2002;51:133–40.
Muzio M, Chinnaiyan AM, Kischkel FC, O'Rourke K, Shevchenko A, Ni J, Sca di C, Bretz JD, ZhangM, Gentz R, Mann M, Kreammer PH, Peter ME and Dixit VM.
Cell 1996;85: 817-827.
Nachmias B, Ashhab Y, Ben-Yehuda D. The inhibitor of apoptosis protein family (IAPs): an emerging therapeutic target in cancer. Semin Cancer Biol 2004;14:231–43.

Nishihara H, Kizaka-Kondoh S, Insel PA, Eckmann L. Inhibition of apoptosis in normal and transformed intestinal epithelial cells by cAMP through induction of inhibitor of apoptosis protein (IAP)-2. Proc Natl Acad Sci USA 2003;100:8921–6.
Rajcan-Separovic, E., P. Liston, C. Lefebvre, and R.G. Korneluk. Assignment of human inhibitor of apoptosis protein (IAP) genes xiap, hiap-1, and hiap-2 to chromosomes Xq25 and 11q22-q23 by fluorescence in situ hybridization. Genomics 1996;37: 404–406.
Rothe M, Pan M-G, Henzel WJ, Ayres TM, Goeddel DV. The TNFR2-TRAF
signaling complex contains two novel proteins related to baculoviral inhibitor of
apoptosis proteins. Cell 1995;83:1243–52.
Roy, N., M.S. Mahadevan, M. McLean, G. Shutler, Z. Yaraghi, R. Farahani, S. Baird, Besner-Johnson A., Lefebvre C., Kang X., Salih M., Aubry H., Tamai K., Guan X., Ioannou P., Crawford T.O., Jong P.J. de, Surh L., Ikeda J.-E., Korneluk R.G.,
and MacKenzie A. The gene for neuronal apoptosis inhibitory protein is partially deleted in individuals with spinal muscular atrophy. Cell 1995;80: 167–178.
Roy N, Deveraux QL, Takashashi R, Salvesen GS, Reed JC. The c-IAP-1 and c-IaP-2 proteins are direct inhibitors of specific caspases. EMBO J. 1997;16: 6914–6925.
Saleh A, Srinivasula S, Acharya S, Fishel R, Alnemri E. Cytochrome c and dATPmediated oligomerization of Apaf-1 is a prerequisite for procaspase-9 activation. J Biol Chem 1999;274:17941–5.
Sanna MG, da Silva Correia J, Ducrey O, Lee J, Nomoto K, Schrantz N, Deveraux QL, Ulevitch RJ. IAP suppression of apoptosis involves distinct mechanisms: the TAK1/JNK1 signaling cascade and caspase inhibition. Mol Cell Biol 2002;22:1754–66.
Salvesen GS, Dixit VM. Caspases: intracellular signaling by proteolysis. Cell 1997;
91:443–6.
Savopoulos, J.W., Carter, P.S., Turconi, S., Pettman, G.R., Karran, E.H., Gray, C.W., Ward, R.V., Jenkins, O., and Creasy, C.L. Expression, purification, and functional analysis of the human serine protease HtrA2. Protein Expr. Purif. 2000;19: 227–234.
Stehlik C, de Martin R, Kumabashiri I, Schmid JA, Binder BR, Lipp J. Nuclear factor (NF)–kappaB–regulated X-chromosome–linked iap gene expression protects endothelial cells from tumor necrosis factor alpha–induced apoptosis. J Exp Med 1998;188:211 - 6.
Stennicke HR, Ju¨rgensmeier JM, Shin H, Deveraux Q, Wolf BB, Yang X, Zhou Q, Ellerby HM, Ellerby LM, Bredesen D, Green DR, Reed JC, Froelich CJ, Salvesen GS. Pro-caspase-3 is a major physiologic target of caspase-8. J Biol Chem 1998;273:27084–90.
Sundqvist K. Liu Y. Nair J. Bartsch H. Arvidson K. Grafstrom RC. Cytotoxic and genotoxic effects of areca nut-related compounds in cultured human buccal epithelial cells. Cancer Research. 1989 Oct ;1 49(19):5294-8,.
Suzuki Y, Nakabayashi Y, Takahashi R. Ubiquitin-protein ligase activity of X-linked inhibitor of apoptosis protein promotes proteasomal degradation of caspase-3 and enhances its anti-apoptotic effect in Fas-induced cell death. Proc Natl Acad Sci USA 2001;98:8662–7.
Takahashi R, Deveraux Q, Tamm I, Welsh K, Assa-Munt N, Salvesen GS, Reed JC. A single BIR domain of XIAP sufficient for inhibiting caspases. J. Biol. Chem. 1998;273: 7787– 7790.
Tang D, Lahti JM, Kidd VJ. Caspase-8 activation and bid cleavage contribute to
MCF7 cellular execution in a caspase-3-dependent manner during staurosporinemediated apoptosis. J Biol Chem 2000;275:9303–7.
Tanimoto T, Tsuda H, Imazeki N,Ohno Y, Imoto I, Inazawa J, Matsubara O. Nuclear expression of cIAP-1, an apoptosis inhibiting protein,predicts lymph node metastasis and poor patient prognosisin head and neck squamous cell carcinomas, Cancer Letters 2005;224: 141–151
Verhagen AM, Ekert PG, Pakusch M, Silke J, Connolly LM, Reid GE, Moritz RL, Simpson RJ, Vaux DL. Identification of DIABLO, a mammalian protein that promotes apoptosis by binding to and antagonizing IAP proteins, Cell 2000;102 :43–53
Wang CY, Mayo MW, Korneluk RG, Goeddel DV, Baldwin AS Jr. NF-kappaB antiapoptosis: induction of TRAF1 and TRAF2 and c-IAP1 and c-IAP2 to suppress caspase-8 activation. Science 1998;281:1680 - 3.
Yang Y, Fang S, Jensen JP, Weissman AM, Ashwell JD. Ubiquitin protein ligase activity of IAPs and their degradation in proteasomes in response to apoptotic stimuli. Science 2000;288:874–7.
Young SS, Liston P, Xuan JY, McRoberts C, Lefebvre CA, Korneluk RG. Genomic organization of the physical map of the human inhibitors of apoptosis: HIAP1, HIAP2. Mamm Genome. 1999;10(1):44-8
Yuan J, Horvitz HR. The Caenorhabditis elegans cell death gene ced-4 encodes a novel protein and is expressed during the period of extensive programmed cell death. Development. 1992;116(2):309-20 .
Zou H, Henzel WJ, Liu X, Lutschg A, Wang X. Apaf-1, a human protein homologous
to C. elegans CED-4, participates in cytochrome c-dependent activation of caspase-3. Cell 1997;90:405–13.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/9918-
dc.description.abstract背景: 細胞凋亡抑制蛋白1 (cIAP-1)的過度表現,已經在不同的人類癌症中被發現,且和腫瘤的大小,淋巴結的轉移,腫瘤分期,復發和預後等有關。
方法: 在本研究中,我們利用免疫組織化學染色法,探討cIAP-1蛋白質在73例口腔鱗狀細胞癌(OSCC),76例口腔上皮變異(OED;23例輕度,34例中度,19例重度上皮變異),31例正常口腔黏膜(NOM)之表現。計算cIAP-1在OSCC、OED、和NOM細胞質的染色強度(staining intensity, SI)和染色指標(labeling indices, LIs,定義為在所有細胞中陽性染色細胞的百分比)並比較組間差異。利用統計分析OSCCs細胞質LIs和臨床參數或存活率間的關連性。
結果: 結果顯示平均細胞質cIAP-1 LIs從NOM (23±22%), 經OED (50±25%) 至OSCC 樣本 (73±17%),呈統計上有意義增加 (NOM v.s. OED or OSCC, P=0.000; OED v.s. OSCC, P=0.000)。平均細胞質cIAP-1 LIs和OSCCs和局部淋巴轉移(P=0.000),和較高的臨床分期(P=0.045)有明顯相關。
結論: 我們的結果顯示,cIAP-1廣泛地表現在正常的、變異的與惡性的口腔上皮細胞之細胞質中。而cIAP-1在細胞質的表現從NOM至OED至OSCC有顯著的增加。量測OSCC樣本細胞質cIAP-1的表現,也許可預測口腔癌的進程、復發和預後。
關鍵字: 細胞凋亡抑制蛋白1,口腔癌,口腔癌前病變
zh_TW
dc.description.abstractBackground: Overexpression of cellular inhibitor of apoptosis protein 1 (cIAP-1) has been demonstrated in a variety of human cancers and found to be associated with the lymph node metastasis, clinical stage, recurrence, or prognosis of these cancers.
Methods: In this study, we examined the expression of cIAP-1 protein in 73 specimens of oral squamous cell carcinoma (OSCC), 76 specimens of oral epithelial dysplasia (OED), and 31 specimens of normal oral mucosa (NOM) by immunohistochemistry. The cytoplasmic cIAP-1 labeling indices (LIs) in OSCC, OED, and NOM samples were calculated and compared between groups. The correlation between the cytoplasmic cIAP-1 LI in OSCCs and clinicopathological parameters or survival of OSCC patients was analyzed statistically.
Results: The mean cytoplasmic cIAP-1 LIs increased significantly from NOM (23 ± 22%) through OED (50 ± 25%) to OSCC samples (73 ± 17%) (P = 0.000). A significant correlation was found between the higher mean cytoplasmic cIAP-1 LIs and OSCCs with positive lymph node metastasis (P = 0.000) or more advanced clinical stages (P=0.045).
Conclusion: Our results suggest that the increased expression of cIAP-1 is an early event in oral carcinogenesis and the cIAP-1 may be a biomarker for OSCCs. Measuring the amount of cytoplasmic cIAP-1 expression in OSCC samples may predict the oral cancer progression in Taiwan.
Key words: cellular inhibitor of apoptosis protein 1, oral cancer, oral precancer
en
dc.description.provenanceMade available in DSpace on 2021-05-20T20:49:23Z (GMT). No. of bitstreams: 1
ntu-97-R95422001-1.pdf: 1099851 bytes, checksum: 4e8ab802b32c2a4d3b8d4996259e2f32 (MD5)
Previous issue date: 2008
en
dc.description.tableofcontents目 錄
口試委員會審定書
謝誌
中文摘要 7
Abstract 8
Introduction 9
Background 11
Purposes of this study 13
Literature Review 14
Part 1: Introduction of oral squamous cell carcinoma 14
Epidemiology in the world 14
Epidemiology in Taiwan 14
Etiology 15
Clinical presentation 17
Histologic features 18
Grading of oral squamous cell carcinoma 19
Our previous studies on oral cancers 19
Part 2: IAP family proteins 20
Structure 21
Gene locationa 23
Part 3: Associated proteins—Caspase 23
Structure 23
Caspase activation pathway 24
i. The Mitochondrial Pathway of Caspase Activation 25
ii. The Death Receptor Pathway of Caspase Activation 25
iii. Convergence Point and Cross-Talk 25
Part 4: Associated proteins—Smac/DIABLO 26
Part 5: Associated proteins—HtrA2 26
Part 6: Mechanisms of IAPs-mediated inhibition of apoptosis 27
Caspase inhibition 27
Signal transduction pathways 27
Ubiquitylation 28
Part 7: Regulation of IAPs 28
Part 8: The emerging role of IAPs in cancers 31
Part 9: IAPs as therapeutic targets 32
Antisense Oligonucleotides 32
Small molecule 33
Part 10: cIAP-1 expression in normal tissue 33
Part 11: cIAP-1 expression in cancers 34
Part 12: cIAP-1 expression in OSCC 37
Materials and Methods
Part 1: Patients and specimens 39
Part 2: Immunohistochemical staining for cIAP-1 40
Part 3: Statistical analysis 41
Results
Part 1: Expression of cIAP-1 and mean LIs for OSCC, OED, and NOM samples 43
Part 2: Correlation between the mean cIAP-1 LI in OSCCs
and clinicopathological parameters of OSCC patients 43
Part 3: Correlation between the mean cIAP-1 LI in OSCCs and oral habitsof OSCC patients 43
Part 4: Correlation between cytoplasmic cIAP-1 LI in OSCCs and survival of OSCC patients 44
Discussion 45
Conclusions 49
References 50
Tables 60
Figures 64

Tables
Table 1. The mean cIAP-1 labeling indices (LI) in normal oral mucosa (NOM), oral epithelial dysplasia (OED), and oral squamous cell carcinoma (OSCC) samples 60
Table 2. Correlation between cytoplasmic cIAP-1 labeling indices (LI) in OSCC samples and clinicopathological parameters of OSCC patients 61
Table 3. Correlation between cytoplasmic cIAP-1 labeling indices (LI) in OSCC samples and oral habits (OH) of OSCC patients 62
Table 4. Univariate and multivariate survival analyses of cIAP-1 LI and clinicopathological parameters in 73 patients with OSCC by Cox proportional hazard regression model 63

Figures
Figure 1. Immunohistochemical staining for cIAP-1 64
Figure 2. Kaplan–Meier survival curves of 73 patients with oral SCC followed completed or more than 5 years 68
dc.language.isoen
dc.title細胞凋亡抑制蛋白1於口腔鱗狀細胞癌與口腔癌前病變之表現zh_TW
dc.titleExpression of cellular inhibitor of apoptosis protein 1 in oral squamous cell carcinomas and precancerous lesionsen
dc.typeThesis
dc.date.schoolyear96-2
dc.description.degree碩士
dc.contributor.oralexamcommittee關學婉,張龍昌
dc.subject.keyword細胞凋亡抑制蛋白1,口腔癌,口腔癌前病變,zh_TW
dc.subject.keywordcellular inhibitor of apoptosis protein 1,oral cancer,oral precancer,en
dc.relation.page69
dc.rights.note同意授權(全球公開)
dc.date.accepted2008-06-27
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept臨床牙醫學研究所zh_TW
顯示於系所單位:臨床牙醫學研究所

文件中的檔案:
檔案 大小格式 
ntu-97-1.pdf1.07 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved