請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99182完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 黃育熙 | zh_TW |
| dc.contributor.advisor | Yu-Hsi Huang | en |
| dc.contributor.author | 蔡博璿 | zh_TW |
| dc.contributor.author | Bo-Shiuan Tsai | en |
| dc.date.accessioned | 2025-08-21T16:42:34Z | - |
| dc.date.available | 2025-08-22 | - |
| dc.date.copyright | 2025-08-21 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-08-04 | - |
| dc.identifier.citation | [1] L. E. Parker, "ALLIANCE: An architecture for fault tolerant multirobot cooperation," IEEE transactions on robotics and automation, vol. 14, no. 2, pp. 220-240, 2002.
[2] F. R. Noreils, "Toward a robot architecture integrating cooperation between mobile robots: Application to indoor environment," The international journal of robotics research, vol. 12, no. 1, pp. 79-98, 1993. [3] C. R. Kube and H. Zhang, "Collective robotics: From social insects to robots," Adaptive behavior, vol. 2, no. 2, pp. 189-218, 1993. [4] B. R. Donald, J. Jennings, and D. Rus, "Information invariants for distributed manipulation," The International Journal of Robotics Research, vol. 16, no. 5, pp. 673-702, 1997. [5] L. E. Parker, "On the design of behavior-based multi-robot teams," Advanced Robotics, vol. 10, no. 6, pp. 547-578, 1995. [6] S. Li, S. Chen, B. Liu, Y. Li, and Y. Liang, "Decentralized kinematic control of a class of collaborative redundant manipulators via recurrent neural networks," Neurocomputing, vol. 91, pp. 1-10, 2012. [7] Y. Zhang and J. Wang, "Obstacle avoidance for kinematically redundant manipulators using a dual neural network," IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), vol. 34, no. 1, pp. 752-759, 2004. [8] Q.-Y. Zhou, J. Park, and V. Koltun, "Open3D: A modern library for 3D data processing," arXiv preprint arXiv:1801.09847, 2018. [9] D. Podgorelec et al., "LiDAR-Based Maintenance of a Safe Distance between a Human and a Robot Arm," Sensors, vol. 23, no. 9, p. 4305, 2023. [Online]. Available: https://www.mdpi.com/1424-8220/23/9/4305. [10] S. Chitta, I. Sucan, and S. Cousins, "Moveit![ros topics]," IEEE robotics & automation magazine, vol. 19, no. 1, pp. 18-19, 2012. [11] J. Pan, S. Chitta, and D. Manocha, "FCL: A general purpose library for collision and proximity queries," in 2012 IEEE international conference on robotics and automation, 2012: IEEE, pp. 3859-3866. [12] J. R. Sánchez-Ibáñez, C. J. Pérez-del-Pulgar, and A. García-Cerezo, "Path planning for autonomous mobile robots: A review," Sensors, vol. 21, no. 23, p. 7898, 2021. [13] K. Karur, N. Sharma, C. Dharmatti, and J. E. Siegel, "A Survey of Path Planning Algorithms for Mobile Robots," Vehicles, vol. 3, no. 3, pp. 448-468, 2021. [Online]. Available: https://www.mdpi.com/2624-8921/3/3/27. [14] S. Huang, R. S. H. Teo, and K. K. Tan, "Collision avoidance of multi unmanned aerial vehicles: A review," Annual Reviews in Control, vol. 48, pp. 147-164, 2019. [15] S. M. LaValle and J. J. Kuffner, "Rapidly-exploring random trees: Progress and prospects: Steven m. lavalle, iowa state university, a james j. kuffner, jr., university of tokyo, tokyo, japan," Algorithmic and computational robotics, pp. 303-307, 2001. [16] S. Karaman and E. Frazzoli, "Sampling-based algorithms for optimal motion planning," The international journal of robotics research, vol. 30, no. 7, pp. 846-894, 2011. [17] O. Khatib, "Real-time obstacle avoidance for manipulators and mobile robots," The international journal of robotics research, vol. 5, no. 1, pp. 90-98, 1986. [18] J.-O. Kim and P. Khosla, "Real-time obstacle avoidance using harmonic potential functions," 1992. [19] E. Rimon, Exact robot navigation using artificial potential functions. Yale University, 1990. [20] S. S. Ge and Y. J. Cui, "New potential functions for mobile robot path planning," IEEE Transactions on robotics and automation, vol. 16, no. 5, pp. 615-620, 2000. [21] C. Tingbin and Z. Qisong, "Robot motion planning based on improved artificial potential field," in Proceedings of 2013 3rd international conference on computer science and network technology, 2013: IEEE, pp. 1208-1211. [22] M. Melchiorre, L. Salamina, L. S. Scimmi, S. Mauro, and S. Pastorelli, "Experiments on the Artificial Potential Field with Local Attractors for Mobile Robot Navigation," Robotics, vol. 12, no. 3, p. 81, 2023. [Online]. Available: https://www.mdpi.com/2218-6581/12/3/81. [23] W. Peters and W. Ranson, "Digital imaging techniques in experimental stress analysis," Optical engineering, vol. 21, no. 3, pp. 427-431, 1982. [24] H. Lu and P. Cary, "Deformation measurements by digital image correlation: Implementation of a second-order displacement gradient," Experimental mechanics, vol. 40, pp. 393-400, 2000. [25] M. Sutton, C. Mingqi, W. Peters, Y. Chao, and S. McNeill, "Application of an optimized digital correlation method to planar deformation analysis," Image and Vision Computing, vol. 4, no. 3, pp. 143-150, 1986. [26] G. Vendroux and W. Knauss, "Submicron deformation field measurements: Part 2. Improved digital image correlation," Experimental mechanics, vol. 38, pp. 86-92, 1998. [27] S. Baker and I. Matthews, "Lucas-kanade 20 years on: A unifying framework," International journal of computer vision, vol. 56, pp. 221-255, 2004. [28] S. Baker and I. Matthews, "Equivalence and efficiency of image alignment algorithms," in Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001, 2001, vol. 1: IEEE, pp. I-I. [29] B. Pan, K. Li, and W. Tong, "Fast, robust and accurate digital image correlation calculation without redundant computations," Experimental Mechanics, vol. 53, pp. 1277-1289, 2013. [30] S. Garrido-Jurado, R. Muñoz-Salinas, F. J. Madrid-Cuevas, and M. J. Marín-Jiménez, "Automatic generation and detection of highly reliable fiducial markers under occlusion," Pattern Recognition, vol. 47, no. 6, pp. 2280-2292, 2014. [31] E. Olson, "AprilTag: A robust and flexible visual fiducial system," in 2011 IEEE international conference on robotics and automation, 2011: IEEE, pp. 3400-3407. [32] A. Koubaa, Robot Operating System (ROS). Springer, 2017. [33] P. Jiang, D. Ergu, F. Liu, Y. Cai, and B. Ma, "A Review of Yolo algorithm developments," Procedia computer science, vol. 199, pp. 1066-1073, 2022. [34] M. Hussain, "YOLO-v1 to YOLO-v8, the rise of YOLO and its complementary nature toward digital manufacturing and industrial defect detection," Machines, vol. 11, no. 7, p. 677, 2023. [35] M. A. R. Alif and M. Hussain, "YOLOv1 to YOLOv10: A comprehensive review of YOLO variants and their application in the agricultural domain," arXiv preprint arXiv:2406.10139, 2024. [36] J. Terven, D.-M. Córdova-Esparza, and J.-A. Romero-González, "A comprehensive review of yolo architectures in computer vision: From yolov1 to yolov8 and yolo-nas," Machine learning and knowledge extraction, vol. 5, no. 4, pp. 1680-1716, 2023. [37] T. Diwan, G. Anirudh, and J. V. Tembhurne, "Object detection using YOLO: Challenges, architectural successors, datasets and applications," multimedia Tools and Applications, vol. 82, no. 6, pp. 9243-9275, 2023. [38] E. Sansebastiano and A. P. del Pobil, "The relationship between “c-space”,“heuristic methods”, and “sampling based planner”," in Motion Planning: IntechOpen, 2021. [39] V. Bazarevsky, Y. Kartynnik, A. Vakunov, K. Raveendran, and M. Grundmann, "Blazeface: Sub-millisecond neural face detection on mobile gpus," arXiv preprint arXiv:1907.05047, 2019. [40] V. Bazarevsky, I. Grishchenko, K. Raveendran, T. Zhu, F. Zhang, and M. Grundmann, "Blazepose: On-device real-time body pose tracking," arXiv preprint arXiv:2006.10204, 2020. [41] A. Grunnet-Jepsen and D. Tong, "Depth post-processing for intel® realsense™ d400 depth cameras," New Technologies Group, Intel Corporation, vol. 3, 2018. [42] E. S. Gastal and M. M. Oliveira, "Domain transform for edge-aware image and video processing," in ACM SIGGRAPH 2011 papers, 2011, pp. 1-12. [43] C. B. Barber, D. P. Dobkin, and H. Huhdanpaa, "The quickhull algorithm for convex hulls," ACM Transactions on Mathematical Software (TOMS), vol. 22, no. 4, pp. 469-483, 1996. [44] R. Sulzer, R. Marlet, B. Vallet, and L. Landrieu, "A survey and benchmark of automatic surface reconstruction from point clouds," IEEE Transactions on Pattern Analysis and Machine Intelligence, 2024. [45] L. Balan and G. M. Bone, "Real-time 3D collision avoidance method for safe human and robot coexistence," in 2006 IEEE/RSJ international conference on intelligent robots and systems, 2006: IEEE, pp. 276-282. [46] P. Bosscher and D. Hedman, "Real‐time collision avoidance algorithm for robotic manipulators," Industrial Robot: An International Journal, vol. 38, no. 2, pp. 186-197, 2011. [47] M. Zollhöfer et al., "State of the art on monocular 3D face reconstruction, tracking, and applications," in Computer graphics forum, 2018, vol. 37, no. 2: Wiley Online Library, pp. 523-550. [48] S. Galliani, K. Lasinger, and K. Schindler, "Massively parallel multiview stereopsis by surface normal diffusion," in Proceedings of the IEEE international conference on computer vision, 2015, pp. 873-881. [49] K. A. Tychola, I. Tsimperidis, and G. A. Papakostas, "On 3D Reconstruction Using RGB-D Cameras," Digital, vol. 2, no. 3, pp. 401-421, 2022. [Online]. Available: https://www.mdpi.com/2673-6470/2/3/22. [50] D. Chetverikov, D. Svirko, D. Stepanov, and P. Krsek, "The trimmed iterative closest point algorithm," in 2002 International Conference on Pattern Recognition, 2002, vol. 3: IEEE, pp. 545-548. [51] P. J. Besl and N. D. McKay, "Method for registration of 3-D shapes," in Sensor fusion IV: control paradigms and data structures, 1992, vol. 1611: Spie, pp. 586-606. [52] S. Secil and M. Ozkan, "A collision-free path planning method for industrial robot manipulators considering safe human–robot interaction," Intelligent Service Robotics, vol. 16, no. 3, pp. 323-359, 2023. [53] X. Tang, H. Zhou, and T. Xu, "Obstacle avoidance path planning of 6-DOF robotic arm based on improved A* algorithm and artificial potential field method," Robotica, vol. 42, no. 2, pp. 457-481, 2024. [54] N. Wang, J. Lin, K. Zhong, and X. Zhang, "Research on Point Cloud Processing Algorithm Applied to Robot Safety Detection," in Intelligent Robotics and Applications: 13th International Conference, ICIRA 2020, Kuala Lumpur, Malaysia, November 5–7, 2020, Proceedings 13, 2020: Springer, pp. 469-479. [55] A. C. Reddy, "Difference between Denavit-Hartenberg (DH) classical and modified conventions for forward kinematics of robots with case study," in International conference on advanced materials and manufacturing technologies (AMMT), 2014: JNTUH College of Engineering Hyderabad Chandigarh, pp. 267-286. [56] M. Zhuang, G. Li, and K. Ding, "Obstacle avoidance path planning for apple picking robotic arm incorporating artificial potential field and A* algorithm," IEEE Access, vol. 11, pp. 100070-100082, 2023. [57] N. AbuJabal, M. Baziyad, R. Fareh, B. Brahmi, T. Rabie, and M. Bettayeb, "A Comprehensive Study of Recent Path-Planning Techniques in Dynamic Environments for Autonomous Robots," Sensors, vol. 24, no. 24, p. 8089, 2024. [Online]. Available: https://www.mdpi.com/1424-8220/24/24/8089. [58] S. Karaman, M. R. Walter, A. Perez, E. Frazzoli, and S. Teller, "Anytime motion planning using the RRT," in 2011 IEEE international conference on robotics and automation, 2011: IEEE, pp. 1478-1483. [59] I. Noreen, A. Khan, and Z. Habib, "Optimal path planning using RRT* based approaches: a survey and future directions," International Journal of Advanced Computer Science and Applications, vol. 7, no. 11, 2016. [60] Y. Chu, Q. Chen, and X. Yan, "An Overview and Comparison of Traditional Motion Planning Based on Rapidly Exploring Random Trees," Sensors, vol. 25, no. 7, p. 2067, 2025. [Online]. Available: https://www.mdpi.com/1424-8220/25/7/2067. [61] I. Noreen, A. Khan, and Z. Habib, "A comparison of RRT, RRT* and RRT*-smart path planning algorithms," International Journal of Computer Science and Network Security (IJCSNS), vol. 16, no. 10, p. 20, 2016. [62] N. Covic, B. Lacevic, and D. Osmankovic, "Path planning for robotic manipulators in dynamic environments using distance information," in 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2021: IEEE, pp. 4708-4713. [63] J. Wang, W. Chi, C. Li, and M. Q.-H. Meng, "Efficient robot motion planning using bidirectional-unidirectional RRT extend function," IEEE Transactions on Automation Science and Engineering, vol. 19, no. 3, pp. 1859-1868, 2021. [64] X. Fan, Y. Guo, H. Liu, B. Wei, and W. Lyu, "Improved artificial potential field method applied for AUV path planning," Mathematical Problems in Engineering, vol. 2020, no. 1, p. 6523158, 2020. [65] S. B. Niku, Introduction to robotics: analysis, systems, applications. Prentice hall New Jersey, 2001. [66] S.-O. Park, M. C. Lee, and J. Kim, "Trajectory planning with collision avoidance for redundant robots using jacobian and artificial potential field-based real-time inverse kinematics," International Journal of Control, Automation and Systems, vol. 18, no. 8, pp. 2095-2107, 2020. [67] J. Mišeikis, K. Glette, O. J. Elle, and J. Torresen, "Multi 3D camera mapping for predictive and reflexive robot manipulator trajectory estimation," in 2016 IEEE Symposium Series on Computational Intelligence (SSCI), 2016: IEEE, pp. 1-8. [68] R. Terasawa, Y. Ariki, T. Narihira, T. Tsuboi, and K. Nagasaka, "3d-cnn based heuristic guided task-space planner for faster motion planning," in 2020 IEEE International Conference on Robotics and Automation (ICRA), 2020: IEEE, pp. 9548-9554. [69] P. Hintjens, ZeroMQ: messaging for many applications. " O'Reilly Media, Inc.", 2013. [70] M. A. Sebok and H. G. Tanner, "Cooperative planning for physically interacting heterogeneous robots," Frontiers in Robotics and AI, vol. 11, p. 1172105, 2024. [71] P. M. Fresnillo, S. Vasudevan, and W. M. Mohammed, "An approach for the bimanual manipulation of a deformable linear object using a dual-arm industrial robot: cable routing use case," in 2022 IEEE 5th International Conference on Industrial Cyber-Physical Systems (ICPS), 2022: IEEE, pp. 1-8. [72] 李霽儒,馬劍清,「提升數位影像相關法效能並應用於跨尺度動態問題量測與機械手臂之系統整合」,碩士論文,機械工程學研究所,臺灣大學,2021。 [73] 謝佳軒,馬劍清,「數位影像相關法於精密量測與人機共工系統的整合應用」,碩士論文,機械工程學研究所,臺灣大學,2022。 [74] 陳彥霖,馬劍清,「立體數位影像相關法與深度學習系統整合應用於三維量測、姿態辨識、手臂控制」,碩士論文,機械工程學研究所,臺灣大學,2023。 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99182 | - |
| dc.description.abstract | 智慧工廠為因應高度客製化及頻繁變化生產需求,逐漸引入多機械手臂協作系統增加生產靈活性及安全性,因此具備感知、決策及即時反應能力的多機械手臂跨平台協作與自主避障功能,為實現柔性自動化及人機協作的關鍵技術。本研究整合實務上常見的Window、Ubuntu作業系統,基於上銀與達明機械手臂間即時協作與避障功能,實現異平台機械手臂共工協作之概念。
系統架構透過多處理器、共享記憶體即時傳輸資料,並以ZeroMQ完成跨作業系統之通訊,確保資料傳輸即時性及穩定同步傳輸,並且基於機器視覺使用深度相機結合YOLO影像辨識模型以及Mediapipe辨識人體關鍵點,即時辨識夾取物和障礙物,作為夾取及避障策略之依據。 在路徑規劃與避障策略上,本論文整合全局規劃的快速探索隨機樹(Rapidly-exploring Random Tree Star, RRT*)及局部規劃的人工勢能場(Artificial Potential Field)演算法,以人工勢能場結合逆向運動控制各軸轉角,搭配六邊形引導方式或結合RRT*方法,可有效解決人工勢能場容易陷入局部極小值的問題。本論文將藉由靜態及動態障礙物實驗進行驗證,並且同步以數位影像相關法(Digital Image Correlation, DIC)觀測機械手臂取物及避障的軌跡。 研究結果成功整合異平台及異廠牌機械手臂,達成即時通訊、物件辨識及避障協作,使系統經封裝後具備高度彈性及實用性,提供跨系統多機械手臂協作及人機共工之參考架構。 | zh_TW |
| dc.description.abstract | To meet the increasing demands of mass customization and dynamic production in smart factories, the implementation of collaborative multi-robot arm systems has become essential for enhancing manufacturing flexibility and operational safety. Consequently, the development of cross-platform collaboration and autonomous obstacle avoidance capabilities—equipped with perception, decision-making, and real-time responsiveness—has become a key technology for enabling flexible automation and human-robot collaboration.
This dissertation proposes a system that integrates two industrial robot arms—HIWIN and Techman—operating on distinct operating systems, Windows and Ubuntu, respectively. The proposed framework enables real-time cross-platform cooperation and obstacle avoidance between heterogeneous robotic platforms. A multi-processor architecture is adopted to manage data exchange through shared memory, and inter-process communication across operating systems is achieved using the ZeroMQ messaging protocol, which ensures low-latency and synchronized data transmission. In terms of perception, the system incorporates depth cameras and leverages state-of-the-art deep learning models. The YOLO (You Only Look Once) object detection algorithm is employed for real-time object recognition, while MediaPipe is used to identify human body keypoints. These visual cues serve as critical input for real-time obstacle identification and motion planning. For motion planning and obstacle avoidance, this study integrates a global planner—Rapidly-exploring Random Tree Star (RRT*)—with a local planner—Artificial Potential Field (APF). The APF method is applied in the joint space to compute repulsive forces for each joint and convert them into angular adjustments using inverse kinematics and the Jacobian matrix. Additionally, a hexagonal guidance strategy or RRT*-based replanning is introduced to mitigate the issue of local minima commonly encountered in potential field methods. The combined approach enables efficient and collision-free path planning in both static and dynamic environments. The proposed system is experimentally validated through a series of collaborative manipulation tasks involving both static and dynamic obstacles. Furthermore, Digital Image Correlation (DIC) is employed to capture and analyze the motion trajectories of the robot arms during object picking and obstacle avoidance. The results demonstrate the successful integration of heterogeneous robotic systems across different platforms and manufacturers, achieving real-time communication, object recognition, and collaborative obstacle avoidance. The final system, once modularized, exhibits high flexibility and practicality, offering a reference architecture for cross-platform multi-robot collaboration and human-robot coexistence in smart manufacturing environments. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-21T16:42:34Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-08-21T16:42:34Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 論文口試委員審定書 I
謝辭 II 摘要 III Abstract IV 目次 VI 圖次 IX 表次 XX 第一章 緒論 1 1.1 研究動機 1 1.2 文獻回顧 3 1.3 內容簡介 8 第二章 機械手臂軟硬體介紹 11 2.1 機器人作業系統Robotic Operating System (ROS) 11 2.2 深度學習模型介紹 12 2.2.1 深度學習之模型架構 12 2.2.2 卷積神經網絡 14 2.3 數位影像相關法原理介紹 16 2.3.1 數位影像相關法之基本原理 16 2.3.2 重要參數說明 20 2.3.3 數位影像相關法種類 22 2.4 機械手臂系統之規格介紹 27 2.4.1 上銀機械手臂 27 2.4.2 達明機械手臂 28 2.4.3 景深攝影機RealSense D435i 29 2.4.4 數位工業相機 30 第三章 機器立體視覺於深度形貌重建 52 3.1 機器學習及影像處理 52 3.1.1 YOLO物件辨識模型 53 3.1.2 影像處理 57 3.1.3 人體姿態檢測模型 60 3.2 物體三維形貌重建 61 3.2.1 二維手眼座標轉換方法 61 3.2.2 物體深度處理及形貌重建 64 3.2.3 人體姿態深度處理及建立模型 67 3.2.4 影像與點雲資訊即時傳輸 68 3.3 深度影像疊圖 69 3.3.1 雙相機深度影像配準疊合 70 3.3.2 立體視覺比對結果 72 第四章 機械手臂避障控制 103 4.1 正向運動學建構機械手臂簡易模型 103 4.1.1 上銀機械手臂模型 104 4.1.2 達明機械手臂模型 106 4.1.3 碰撞偵測計算 107 4.2 基於快速隨機生成樹之避障方法 108 4.2.1 快速隨機生成樹原理 108 4.2.2 編碼器回授重建路徑 111 4.2.3 單點避障控制優化方法 112 4.3 基於人工勢能場之避障方法 114 4.3.1 人工勢能場避障原理 115 4.3.2 人工勢能場優化方法 116 4.3.3 單點避障控制方法 121 4.3.4 結合正六邊形導引之機械手臂關節角度控制避障 122 4.3.5 結合快速探索隨機樹之機械手臂關節角度控制避障 125 4.4 情境一: 機械手臂取放物件避障與路徑規劃 127 4.4.1 機械手臂三維座標轉換方法 128 4.4.2 數位影像相關法於避障路徑追蹤 131 4.5 情境二: 人機互動即時避障與路徑規劃 133 4.5.1 機械手臂動態避障 133 第五章 多手臂整合協作於共工任務 194 5.1 跨系統之通訊整合 194 5.1.1 通訊原理 194 5.1.2 雙機械手臂通訊架構 196 5.2 雙機械手臂整合與共工 198 5.2.1 雙手臂之手眼校正方法 198 5.2.2 達明機械手臂控制方法 199 5.2.3 雙手臂任務介紹及協作方法 201 5.2.4 分佈式雙臂協作系統 202 第六章 結論與未來展望 223 6.1 結論 223 6.2 未來展望 225 參考文獻 228 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 雙機械手臂協作 | zh_TW |
| dc.subject | 快速探索隨機樹 | zh_TW |
| dc.subject | 人工勢能場 | zh_TW |
| dc.subject | 關節座標路徑規劃 | zh_TW |
| dc.subject | 動態避障 | zh_TW |
| dc.subject | Rapidly-exploring Random Tree | en |
| dc.subject | Dual-Arm Robot Collaboration | en |
| dc.subject | Dynamic Obstacle Avoidance | en |
| dc.subject | Joint-Space Path Planning | en |
| dc.subject | Artificial Potential Field | en |
| dc.title | 基於深度學習之深度相機於雙臂共工及即時避障 | zh_TW |
| dc.title | Deep Learning-Based Depth Camera for Dual-Arm Cooperation and Real-Time Obstacle Avoidance | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 郭重顯;廖展誼;吳亦莊 | zh_TW |
| dc.contributor.oralexamcommittee | Chung-Hsien Kuo;Liao Chan-Yi;Yi-Zhuang Wu | en |
| dc.subject.keyword | 雙機械手臂協作,快速探索隨機樹,人工勢能場,關節座標路徑規劃,動態避障, | zh_TW |
| dc.subject.keyword | Dual-Arm Robot Collaboration,Rapidly-exploring Random Tree,Artificial Potential Field,Joint-Space Path Planning,Dynamic Obstacle Avoidance, | en |
| dc.relation.page | 233 | - |
| dc.identifier.doi | 10.6342/NTU202502807 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2025-08-07 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 機械工程學系 | - |
| dc.date.embargo-lift | N/A | - |
| 顯示於系所單位: | 機械工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 未授權公開取用 | 15.86 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
