Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 機械工程學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99177
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor黃漢邦zh_TW
dc.contributor.advisorHan-Pang Huangen
dc.contributor.author羅漢為zh_TW
dc.contributor.authorCarlos Javier Espinola Rotelaen
dc.date.accessioned2025-08-21T16:41:22Z-
dc.date.available2025-08-22-
dc.date.copyright2025-08-21-
dc.date.issued2025-
dc.date.submitted2025-08-05-
dc.identifier.citation[1] Leonid Reznik. Fuzzy Controllers. Butterworth-Heinemann, Oxford, UK, 1997.
[2] Gang Chen, C. I. J. Douch, and Miao Zhang. Accuracy-based learning classifier systems for multistep reinforcement learning: A fuzzy logic approach. IEEE Transactions on Evolutionary Computation, 20(6):953–971, December 2016.
[3] Meng Bi. Control of robot arm motion using trapezoid fuzzy two-degree-of-freedom pid algorithm. Symmetry, 12(4):665, April 2020.
[4] Xiaowei Gu, Jing Han, Qiang Shen, and Plamen P. Angelov. Autonomous learning for fuzzy systems: A review. Artificial Intelligence Review, 56(8):7549–7595, August 2023.
[5] Hari Om Bansal, Rajamayyoor Sharma, and P. R. Shreeraman. Pid controller tuning techniques: A review. Journal of Control Engineering and Technology, 2(4):168–175, 2012.
[6] Zilong Wang, Fan Li, Yutian Men, Tianxiang Fu, Xing Yang, and Rong Song. Deep deterministic policy gradient with reward function based on fuzzy logic for robotic peg-in-hole assembly tasks. Applied Sciences, 12(6):3181, March 2022.
[7] Panagiotis Kofinas and Anastasios I. Dounis. Online tuning of a pid controller with a fuzzy reinforcement learning mas for flow rate control of a desalination unit. Electronics, 8(2):231, February 2019.
[8] Jan Jantzen. Design of fuzzy controllers. Technical Report, Department of Automation, Technical University of Denmark, 1998.
[9] Yogesh V. Hote and Shivam Jain. Pid controller design for load frequency control: Past, present and future challenges. IFAC-PapersOnLine, 51(4):604–609, 2018.
[10] Kiam Heong Ang, Gregory Chong, and Yun Li. Pid control system analysis, design, and technology. IEEE Transactions on Control Systems Technology, 13(4):559–576, July 2005.
[11] Lotfi A. Zadeh. Fuzzy sets. Information and Control, 8(3):338–353, June 1965.
[12] S. Chettibi and S. Chikhi. Dynamic fuzzy logic and reinforcement learning for adaptive energy efficient routing in mobile ad-hoc networks. Applied Soft Computing, 38:321–328, January 2016.
[13] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan Wierstra, and Martin Riedmiller. Playing atari with deep reinforcement learning. arXiv preprint arXiv:1312.5602, 2013. NIPS Deep Learning Workshop 2013.
[14] Richard S Sutton and Andrew G Barto. Reinforcement Learning: An Introduction. MIT Press, 2018.
[15] Ahmed Iqdymat and Grigore Stamatescu. Reinforcement learning of a six-dof industrial manipulator for pick-and-place application using efficient control in warehouse management. Sustainability, 17(2):432, 2025.
[16] Ahmad Al-Mahasneh, Mohammed Abu Mallouh, Mustafa Awwad Al-Khawaldeh, Basel Jouda, Omar Shehata, and Mohammed Baniyounis. Online reinforcement learning control of robotic arm in presence of high variation in friction forces. Systems Science & Control Engineering, 11(1):2251521, 2023.
[17] Scott Fujimoto, Herke van Hoof, and David Meger. Addressing function approximation error in actor-critic methods. arXiv preprint arXiv:1802.09477, 2018.
[18] Joshua Achiam. Spinning up in deep reinforcement learning. OpenAI Documentation, 2018. Accessed: 2025-01-27.
[19] Ping-Huan Kuo, Sing-Yan Chen, Po-Hsun Feng, Chen-Wen Chang, Chiou-Jye Huang, and Chao-Chung Peng. Reinforcement learning-based fuzzy controller for autonomous guided vehicle path tracking. Advanced Engineering Informatics, 65:103180, 2025.
[20] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level control through deep reinforcement learning. Nature, 518(7540):529–533, 2015.
[21] Mark W. Spong, Seth Hutchinson, and M. Vidyasagar. Robot Modeling and Control. Wiley, New York, NY, 2006.
[22] Bruno Siciliano, Lorenzo Sciavicco, Luigi Villani, and Giuseppe Oriolo. Robotics: Modelling, Planning and Control. Springer, London, UK, 2009.
[23] J. Denavit and R. S. Hartenberg. A kinematic notation for lower-pair mechanisms based on matrices. Journal of Applied Mechanics, 22(2):215–221, June 1955.
[24] Yuanqing Li, Yueming Hu, Zhiming Song, and Chuanjun Hou. Inverse kinematics and coordination of a hybrid redundant manipulator based on virtual decomposition method. Mathematical Problems in Engineering, 2018:1–13, 2018.
[25] Yi-Hsiu Lee. Safe cooperative control and dynamics path planning of dual manipulators. Master’s thesis, Department of Mechanical Engineering, College of Engineering, National Taiwan University, Taipei, Taiwan, January 2021.
[26] Jun Nakanishi, Rick Cory, Michael Mistry, Jan Peters, and Stefan Schaal. Operational space control: A theoretical and empirical comparison. The International Journal of Robotics Research, 27(6):737–757, June 2008.
[27] Tomomichi Sugihara. Solvability-unconcerned inverse kinematics by levenberg-marquardt method. Journal of the Robotics Society of Japan, 29(3):269–277, 2011.
[28] Wisam Subhi Al Dayyeni and Hussam Saleh Mahmood. Pid control perspective: Techniques and uses. Edison Journal for Electrical and Electronics Engineering, 3(1):1–8, 2025.
[29] Karl J. Åström and Tore Hägglund. PID Controllers: Theory, Design, and Tuning. Instrument Society of America, Research Triangle Park, NC, 1995.
[30] Zeynep Yilmazer Hitit, Ismet Kocer, Gokce Kus, Nermin Zeynep Arslan, Elif Pinar Dal, and Habipcan Koz. Optimal pid control with anti-windup in neutralization process. International Advanced Researches and Engineering Journal, 7(3):138–145, December 2023.
[31] MathWorks. Reinforcement learning toolbox, 2023. Release R2023b.
[32] Ebrahim H. Mamdani. Application of fuzzy algorithms for control of simple dynamic plant. Proceedings of the Institution of Electrical Engineers, 121(12):1585–1588, 1974.
[33] Stephen Brawner. Solidworks to URDF exporter, 2024.
[34] MathWorks. Robotics system toolbox: Trajectory generation. MATLAB Documentation, 2024. Accessed: 2025-04-10.
[35] Di Zhao, Zhenyu Ding, Wenjie Li, Sen Zhao, and Yuhong Du. Cascaded fuzzy reward mechanisms in deep reinforcement learning for comprehensive path planning in textile robotic systems. MDPI Journal of Robotics, 15(4):233–249, 2023.
[36] Ken Shoemake. Animating rotation with quaternion curves. ACM SIGGRAPH Computer Graphics, 19(3):245–254, July 1985.
[37] Luigi Biagiotti and Claudio Melchiorri. Trajectory Planning for Automatic Machines and Robots. Springer, Berlin, Germany, 2008.
[38] MathWorks. Robotics system toolbox: Coordinate transformations. MATLAB Documentation, 2024. Accessed: 2025-04-10.
[39] MathWorks. Robotics System Toolbox UserCMD#39;s Guide, 2024. Accessed: 2025-06-07.
[40] Charles W. Wampler. Manipulator inverse kinematics solutions based on vector formulations and damped least-squares methods. IEEE Transactions on Systems, Man, and Cybernetics, 16(1):93–101, 1986.
[41] Stefano Chiaverini, Bruno Siciliano, and Olav Egeland. Review of the damped least-squares inverse kinematics with experiments on an industrial robot manipulator. IEEE Transactions on Control Systems Technology, 2(2):123–134, 1994.
[42] Kevin M. Lynch and Frank C. Park. Modern Robotics: Mechanics, Planning, and Control. Cambridge University Press, Cambridge, UK, 2017.
[43] Fuyw. Furl: Visual-language models as fuzzy rewards. arXiv preprint, arXiv:2406.00645, 2023.
[44] Jinxin Zhan, Xiaodong Yue, Zihao Li, and Kai Han. Accelerating deep reinforcement learning with fuzzy logic rules. In Lecture Notes in Artificial Intelligence, volume 14687, pages 455–467. Springer, 2023.
[45] T. Nguyen. Fuzzy logic guided reward function variation: An oracle for testing reinforcement learning programs. arXiv preprint, arXiv:2406.19812, 2024.
[46] Gaël Guennebaud, Benoît Jacob, et al. Eigen library. http://eigen.tuxfamily.org/, 2024. Accessed: 2025-03-20.
[47] Yean-Yia Lin. Vibration suppression of a six-axis manipulator using input shaping approach. Master’s thesis, National Taiwan University, Taipei, Taiwan, 7 2018. In Chinese: 輸入塑形應用於六軸機械手臂之抑振控制.
[48] Chen-Yu Tzou. Safely cooperative planning and control of multi-robot manipulators. Master’s thesis, National Taiwan University, Taipei, Taiwan, 7 2017. In Chinese: 多機械手臂之安全協同規劃與控制.
[49] Chien-Yao Tseng. Arm-slam: an application combining robot arm and slam. Master’s thesis, National Taiwan University, Taipei, Taiwan, 7 2024. In Chinese: Arm-SLAM: 機器手臂與 SLAM 結合之應用.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99177-
dc.description.abstract改善機器人操控器的效能與運動精確性,一直是控制系統領域中的重要研究主題之一。本文提出了一種應用於六自由度機器人操控器的自適應控制架構設計,目的是提升其在變動環境中的追蹤能力與反應效率。此控制系統整合了強化學習與模糊邏輯技術,以實現即時調整比例-微分(PD)控制器的控制參數。所設計的模糊獎勵機制可用於即時評估整體控制表現,考慮因素包括偏差大小、其變化速率以及施加的控制力。該模糊評估系統結合了 TD3(Twin Delayed Deep Deterministic Policy Gradient)強化學習演算法,這是一種基於actor-critic架構的先進策略學習方法。透過與外部環境的互動,系統能逐步學習出最適的控制策略,並根據模糊獎勵提供的回饋來調整 PD 控制器的增益設定。在 Simulink 環境中結合 MATLAB 工具箱所進行的模擬實驗,驗證了該控制器的有效性。透過對六自由度機器手臂的實驗,展示了其在實際應用中的控制表現。這些模擬比較了結合模糊邏輯與強化學習的自適應控制策略與傳統固定增益PID控制器之間的性能差異。結果顯示,該創新方法在追蹤精度方面有顯著提升,且更能適應系統動態的變化。此一控制框架在機器人手臂及其他複雜機電系統的自主控制領域中,具備潛在的應用價值與貢獻。zh_TW
dc.description.abstractImproving the performance and accuracy of robotic manipulators has been a very important research areas in control systems engineering. This article presents the development of an adaptive control framework for a six-DOF robotic manipulator, aiming to improve its motion accuracy and responsiveness in a dynamic environment. The proposed controller focuses on the online tuning of a proportional derivative controller parameters combining reinforcement learning with fuzzy logic. The fuzzy reward system is designed to evaluate system performance in real time, considering error, error rate, and applied control force. Fuzzy rewards are combined with a reinforcement learning method, the Twin Delayed Deep Deterministic Policy Gradient algorithm operates using an actor-critic methodology. TD3 lets the system achieve a better control policy which engages with the environment and adjusts the PD controller’s gains based on feedback from fuzzy rewards. The simulations conducted in Simulink with the use of Matlab toolboxes confirmed the efficacy of the controller. The experiments done with the six-DOF robot arm showed its performance in real-life applications. These simulations assessed the performance of an adaptive control strategy that utilizes fuzzy logic and reinforcement learning against a conventional fixed-gain PID controller. The findings indicated that the novel approach notably enhanced tracking precision and adaptability to changes in system dynamics. This control framework could potentially contribute in the area of autonomous control systems for robotic arms and other intricate mechatronic systems.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-21T16:41:22Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-08-21T16:41:22Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsContents
摘要 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i
Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii
List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x
List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv
Nomenclature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv
Chapter 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Organization of Thesis . . . . . . . . . . . . . . . . . . . . . . . . 3
Chapter 2 Background and Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1 Proportional-Derivative (PD) Controllers . . . . . . . . . . . . . . 8
2.1.1 Principles of PD Control . . . . . . . . . . . . . . . . . . 8
2.1.2 Stability and Performance Analysis . . . . . . . . . . . . 10
2.1.3 Advantages and Limitations . . . . . . . . . . . . . . . . 11
2.2 Introduction to Fuzzy Logic Controllers . . . . . . . . . . . . . . . 12
2.2.1 Mathematical Foundation of Fuzzy Sets . . . . . . . . . . 12
2.2.2 Fuzzy Set Operations . . . . . . . . . . . . . . . . . . . . 13
2.2.3 Membership Functions . . . . . . . . . . . . . . . . . . . 14
2.2.4 Fuzzy Logic Controller Architecture . . . . . . . . . . . . 16
2.2.5 Fuzzy Inference Systems: Mamdani vs Sugeno . . . . . . 18
2.2.6 Types of Fuzzy Inference Systems . . . . . . . . . . . . . 19
2.2.7 Comparative Analysis of Fuzzy Inference Systems . . . . 21
2.2.8 Application Considerations in Robotic Control . . . . . . 22
2.3 Reinforcement Learning for Control Systems . . . . . . . . . . . . 23
2.3.1 Overview of Reinforcement Learning (RL) Techniques . . 23
2.3.2 Agent-Environment Interaction . . . . . . . . . . . . . . 24
2.3.3 Mathematical Framework . . . . . . . . . . . . . . . . . 25
2.3.4 Value Functions and Bellman Equations . . . . . . . . . . 27
2.3.5 Temporal Difference Learning . . . . . . . . . . . . . . . 29
2.3.6 Policy Gradient Methods . . . . . . . . . . . . . . . . . . 30
2.3.7 Deep Deterministic Policy Gradient (DDPG) . . . . . . . 30
2.3.8 Twin Delayed Deep Deterministic Policy Gradient Enhancements . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.3.9 Comparison of DDPG and TD3 . . . . . . . . . . . . . . 35
2.3.10 Practical Applications . . . . . . . . . . . . . . . . . . . 35
2.3.11 Other RL Algorithms . . . . . . . . . . . . . . . . . . . . 36
Chapter 3 Kinematics and Dynamics of the Robot Arm . . . . . . . . . . . . . . . . . . . . . 37
3.1 Kinematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.1.1 Forward Kinematics . . . . . . . . . . . . . . . . . . . . 40
3.1.2 Jacobian Matrix . . . . . . . . . . . . . . . . . . . . . . . 40
3.1.3 Inverse Kinematics . . . . . . . . . . . . . . . . . . . . . 42
3.1.4 Singular and Joint Limit Avoidance . . . . . . . . . . . . 44
3.2 Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.2.1 Computed Torque Control with PID . . . . . . . . . . . . 45
3.2.2 Task-Space PID Control . . . . . . . . . . . . . . . . . . 46
3.3 Challenges and Control Objectives . . . . . . . . . . . . . . . . . 48
3.3.1 Non-linearities, Joint Coupling, and External Disturbances 48
Chapter 4 PD Controller Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.1 Mathematical Foundation of PD Control . . . . . . . . . . . . . . 49
4.1.1 PD Control Law . . . . . . . . . . . . . . . . . . . . . . 49
4.1.2 Integration with Computed Torque Control . . . . . . . . 50
4.1.3 Closed-Loop Analysis . . . . . . . . . . . . . . . . . . . 50
4.2 Limitations and Motivations for Adaptive Control . . . . . . . . . 51
4.2.1 Fundamental Limitations of Fixed-Gain PD Control . . . 51
4.2.2 Performance Trade-offs . . . . . . . . . . . . . . . . . . 53
Chapter 5 TD3-Based PD Controller with Fuzzy Reward System . . . . . . . . . . . . 54
5.1 Agent, State, and Action Space Definition . . . . . . . . . . . . . 54
5.1.1 Multi-Agent Architecture . . . . . . . . . . . . . . . . . . 54
5.1.2 TD3 Algorithm for PD Gain Tuning . . . . . . . . . . . . 56
5.1.2.1 TD3 Algorithm Implementation . . . . . . . . . . . . . 67
5.1.3 State Space Definition . . . . . . . . . . . . . . . . . . . 69
5.1.4 Action Space Definition . . . . . . . . . . . . . . . . . . 70
5.2 Environment Modeling . . . . . . . . . . . . . . . . . . . . . . . 71
5.2.1 Simulation Environment Setup . . . . . . . . . . . . . . . 71
5.2.2 Episode Structure . . . . . . . . . . . . . . . . . . . . . . 71
5.3 Fuzzy Reward System Design . . . . . . . . . . . . . . . . . . . . 72
5.3.1 Fuzzy Control Surface Visualization . . . . . . . . . . . . 73
5.3.2 Fuzzy Rules for Reward Calculation . . . . . . . . . . . . 77
5.3.3 Defuzzification . . . . . . . . . . . . . . . . . . . . . . . 79
5.3.4 Complete Reward Function . . . . . . . . . . . . . . . . 79
5.4 TD3 Algorithm Implementation . . . . . . . . . . . . . . . . . . . 81
5.4.1 Network Architecture . . . . . . . . . . . . . . . . . . . . 81
5.4.2 Training Configuration . . . . . . . . . . . . . . . . . . . 82
5.4.3 Hardware and Software Setup . . . . . . . . . . . . . . . 83
5.4.4 Training Process . . . . . . . . . . . . . . . . . . . . . . 83
5.5 Implementation in MATLAB/Simulink . . . . . . . . . . . . . . . 85
5.5.1 Simulink Model Architecture . . . . . . . . . . . . . . . 85
5.5.2 Training vs Application Phase Equations . . . . . . . . . 86
5.5.3 Real-Time Implementation Considerations . . . . . . . . 87
Chapter 6 Simulation Results and Performance Analysis . . . . . . . . . . . . . . . . . . . . 89
6.1 Simulation Model and Setup . . . . . . . . . . . . . . . . . . . . . 89
6.2 Simulation Environment . . . . . . . . . . . . . . . . . . . . . . . 91
6.2.1 Trajectory Generation and Planning . . . . . . . . . . . . 92
6.2.2 Robot Dynamics and Control Implementation . . . . . . . 94
6.3 Performance Analysis and Results . . . . . . . . . . . . . . . . . . 96
6.4 Visualization and Graphical Analysis . . . . . . . . . . . . . . . . 99
6.5 Performance Summary and Comparative Analysis . . . . . . . . . 100
6.6 Robot Visualization and Trajectory Analysis . . . . . . . . . . . . 104
6.7 Computational Efficiency . . . . . . . . . . . . . . . . . . . . . . 106
6.7.1 Profiling Setup and Methodology . . . . . . . . . . . . . 106
6.8 Discussion and Analysis Summary . . . . . . . . . . . . . . . . . 108
Chapter 7 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
7.1 Software Platform . . . . . . . . . . . . . . . . . . . . . . . . . . 111
7.1.1 Eigen Library . . . . . . . . . . . . . . . . . . . . . . . . 111
7.1.2 Open Source Graphics Library . . . . . . . . . . . . . . . 111
7.2 Hardware Platform . . . . . . . . . . . . . . . . . . . . . . . . . . 113
7.2.1 Kinematic Configuration . . . . . . . . . . . . . . . . . . 113
7.2.2 Dynamic Properties . . . . . . . . . . . . . . . . . . . . . 114
7.2.3 Motor Specifications . . . . . . . . . . . . . . . . . . . . 114
7.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . 115
7.3.1 Situation 1 . . . . . . . . . . . . . . . . . . . . . . . . . 115
7.3.2 Situation 2 . . . . . . . . . . . . . . . . . . . . . . . . . 115
7.3.3 Situation 3 . . . . . . . . . . . . . . . . . . . . . . . . . 117
7.4 RMSE Analysis Results . . . . . . . . . . . . . . . . . . . . . . . 119
7.4.1 Square Drawing Experimental Results . . . . . . . . . . . 122
7.4.2 Star Drawing Experimental Results . . . . . . . . . . . . 123
7.4.3 Line Drawing Experimental Results . . . . . . . . . . . . 124
7.4.4 Experimental Performance Analysis Summary . . . . . . 124
Chapter 8 Conclusion and Future Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
8.1 Summary of Contributions . . . . . . . . . . . . . . . . . . . . . . 126
8.2 Limitations and Challenges . . . . . . . . . . . . . . . . . . . . . 127
8.3 Future Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
-
dc.language.isoen-
dc.subject模糊邏輯控制zh_TW
dc.subject動態環境zh_TW
dc.subject控制參數最佳化zh_TW
dc.subject比例微分控制zh_TW
dc.subject自適應控制zh_TW
dc.subject機器人操作臂zh_TW
dc.subject位置與力的追蹤zh_TW
dc.subjectTD3 演算 法zh_TW
dc.subject自調式控制器zh_TW
dc.subject強化學習zh_TW
dc.subject即時控制zh_TW
dc.subjectRobotic Manipulatoren
dc.subjectTD3 Algorithmen
dc.subjectSelf-Tuning Controlleren
dc.subjectControl Parameter Optimizationen
dc.subjectDynamic Environmenten
dc.subjectReal-time Controlen
dc.subjectReinforcement Learningen
dc.subjectProportional-Derivative Controlen
dc.subjectAdaptive Controlen
dc.subjectPosition and Force Trackingen
dc.subjectFuzzy Logic Controlen
dc.title基於 TD3 演算法與模糊獎勵系統的 PD 控制器參數最 佳化之設計與應用zh_TW
dc.titleDesign and Application of PD Controller Parameter Optimization using TD3 Algorithm with Fuzzy Reward Systemen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee林峻永;劉孟昆;李廣齊zh_TW
dc.contributor.oralexamcommitteeChun-Yeon Lin;Meng-Kun Liu;Kuang-Chyi Leeen
dc.subject.keyword機器人操作臂,模糊邏輯控制,強化學習,自調式控制器,TD3 演算 法,位置與力的追蹤,自適應控制,比例微分控制,即時控制,動態環境,控制參數最佳化,zh_TW
dc.subject.keywordRobotic Manipulator,Fuzzy Logic Control,Reinforcement Learning,Self-Tuning Controller,TD3 Algorithm,Position and Force Tracking,Adaptive Control,Proportional-Derivative Control,Real-time Control,Dynamic Environment,Control Parameter Optimization,en
dc.relation.page134-
dc.identifier.doi10.6342/NTU202503257-
dc.rights.note未授權-
dc.date.accepted2025-08-07-
dc.contributor.author-college工學院-
dc.contributor.author-dept機械工程學系-
dc.date.embargo-liftN/A-
Appears in Collections:機械工程學系

Files in This Item:
File SizeFormat 
ntu-113-2.pdf
  Restricted Access
19.42 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved