請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99174完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 于昌平 | zh_TW |
| dc.contributor.advisor | Chang-Ping Yu | en |
| dc.contributor.author | 葉晉廷 | zh_TW |
| dc.contributor.author | Chin-Ting Yeh | en |
| dc.date.accessioned | 2025-08-21T16:40:40Z | - |
| dc.date.available | 2025-08-22 | - |
| dc.date.copyright | 2025-08-21 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-08-03 | - |
| dc.identifier.citation | 1. Atoyebi, O. D., Iwuozor, K. O., Emenike, E. C., Anamayi, D. S., & Adeniyi, A. G. (2023). Physical and mechanical properties of locally fabricated geopolymer–plastic ceiling boards. Results in Engineering, 19, 101230.
2. Aubert, J. E., Maillard, P., Morel, J. C., & Al Rafii, M. (2016). Towards a simple compressive strength test for earth bricks? Materials and Structures, 49, 1641–1654. 3. Azizi, K., Moraveji, M. K., & Najafabadi, H. A. (2017). Characteristics and kinetics study of simultaneous pyrolysis of microalgae Chlorella vulgaris, wood and polypropylene through TGA. Bioresource Technology, 243, 481–491. 4. Akinwande, A. A., Oyediran, A. O., Balogun, O. A., Balogun, R. B., El Hachem, C., Accouche, O., & Azab, M. (2024). Experimental analysis and optimization of kenaf fiber-lateritic bricks using glass powder as partial cement replacement. Scientific African, 26, e02457. 5. Arostegui, A., Sarrionandia, M., Aurrekoetxea, J., & Urrutibeascoa, I. (2006). Effect of dissolution-based recycling on the degradation and the mechanical properties of acrylonitrile–butadiene–styrene copolymer. Polymer Degradation and Stability, 91(11), 2768–2774. 6. Aneke, F. I., & Shabangu, C. (2021). Green-efficient masonry bricks produced from scrap plastic waste and foundry sand. Case Studies in Construction Materials, 14, e00515. 7. Arostegui, A., Sarrionandia, M., Aurrekoetxea, J., & Urrutibeascoa, I. (2006). Effect of dissolution-based recycling on the degradation and the mechanical properties of acrylonitrile–butadiene–styrene copolymer. Polymer Degradation and Stability, 91(11), 2768–2774. 8. Atkins, P., & de Paula, J. (2010). Physical chemistry (9th ed.). Oxford University Press. 9. ASTM International. (2018). ASTM D570-98(2018): Standard test method for water absorption of plastics. ASTM International. 10. Blundell, S. J., & Blundell, K. M. (2010). Thermal physics (2nd ed.). Oxford University Press. 11. Bae, J. W., & Kim, H. R. (2021). Radioactivity analysis for EPS waste using organic solvents. Nuclear Engineering and Technology, 53(11), 3717–3722. 12. Biradar, S. V., Kumar, A. S., Gowri, T. V., & Alisha, S. S. (2024). Comparative study on properties of plastic bricks with conventional bricks. Journal of Physics: Conference Series, 2779, 012088. 13. Badylak, S., Philips, E., Batich, C., Jackson, M., & Wachnicka, A. (2021). Polystyrene microplastic contamination versus microplankton abundances in two lagoons of the Florida Keys. Scientific Reports, 11, Article 6029. 14. Chauhan, S. S., Kumar, B., Singh, P. S., Khan, A., Goyal, H., & Goyal, S. (2019). Fabrication and testing of plastic sand bricks. IOP Conference Series: Materials Science and Engineering, 691, 012083. 15. Díaz, A. E., Di Lalla, N., & Hernandez, A. L. (2024, October 28). Mechanical and thermal analysis of a brick with plastic waste: Energy consumption of a social housing unit with conventional bricks vs. plastic bricks [Preprint]. SSRN. 16. Gao, J., Fu, X.-T., Ding, M.-M., & Fu, Q. (2010). Studies on partial compatibility of PP and PS. Chinese Journal of Polymer Science, 28(5), 647–656. 17. García, M. T., Gracia, I., Duque, G., de Lucas, A., & Rodríguez, J. F. (2009). Study of the solubility and stability of polystyrene wastes in a dissolution recycling process. Waste Management, 29(6), 1814–1818. 18. Gounden, K., Mwangi, F. M., Mohan, T. P., & Kanny, K. (2024). Improving the performance properties of plastic–sand bricks with Kaolin Clay. Environment, Development and Sustainability. 19. Gil-Jasso, N. D., Segura-González, M. A., Soriano-Giles, G., Neri-Hipolito, J., López, N., Mas-Hernández, E., Barrera-Díaz, C. E., Varela-Guerrero, V., & Ballesteros-Rivas, M. F. (2019). Dissolution and recovery of waste expanded polystyrene using alternative essential oils. Fuel, 239, 611–616. 20. Hu, H.-L., Kuo, C.-H., Lin, H.-I., Chen, T.-W., Chen, N.-B., & Tseng, F.-Y. (2020). Environmental impact assessment and reduction benefit analysis of recycled and virgin EPS materials. Industrial Pollution Control, 149, 149–161. 21. Ishida, T. (2020). Removal of fish odors from Styrofoam packaging to improve recycling potential using Hansen solubility parameters. Recycling, 5(4), 30. 22. Islam, M. J., & Shahjalal, M. (2021). Effect of polypropylene plastic on concrete properties as a partial replacement of stone and brick aggregate. Case Studies in Construction Materials, 15, e00627. 23. Ikechukwu, A. F., & Naghizadeh, A. (2022). Utilization of plastic waste material in masonry bricks production towards strength, durability and environmental sustainability. Journal of Sustainable Architecture and Civil Engineering, 30(1), 66–77 24. Jiao, T., Cao, J., Zhao, Y., Zhang, B., Ge, J., Men, K., Zhang, H., & Wang, X. (2024). From white pollution to green coating—PS/PANI anti-corrosive coatings from waste PS foams. Chemical Engineering Journal, 487, 150383. 25. Kopecká, R., Kubínová, I., Sovová, K., Mravcová, L., Vítež, T., & Vítežová, M. (2022). Microbial degradation of virgin polyethylene by bacteria isolated from a landfill site. SN Applied Sciences, 4, Article 302. 26. Koottatep, T. (2023). Non-recyclable plastics: Management practices and implications. In Marine plastics abatement (pp. 285–310). 27. Krishnan, A. K., Wong, Y. C., Zhang, Z., & Arulrajah, A. (2024). A transition towards circular economy with the utilisation of recycled fly ash and waste materials in clay, concrete and fly ash bricks: A review. Journal of Building Engineering, 98, Article 111210. 28. Li, H., Aguirre-Villegas, H. A., Allen, R. D., Bai, X., Benson, C. H., Beckham, G. T., Bradshaw, S. L., Brown, J. L., Brown, R. C., Cecon, V. S., Curley, J. B., Curtzwiler, G. W., Dong, S., Gaddameedi, S., García, J. E., Hermans, I., Kim, M. S., Ma, J., Mark, L. O., Mavrikakis, M., … Huber, G. W. (2022). Expanding plastics recycling technologies: Chemical aspects, technology status and challenges. Green Chemistry, 24(23), 8899–9002. 29. Moulai Arbi, Y. S. E., Bentahar, M., & Mahmoudi, N. (2024). Characterization of high-performance composite bricks fabricated from recycled HDPE/PS blends and brick powder. Materials Research Express, 11(12), 125302. 30. Murthi, P., Bhavani, M., Mushtaq, M. S., Jauhar, M. O., & Rama Devi, V. (2021). Development of relationship between compressive strength of brick masonry and brick strength. Materials Today: Proceedings, 39(Part 1), 258–262. 31. Maneeth, P. D., Pramod, K., Kumar, K., & Shetty, S. (2014). Utilization of waste plastic in manufacturing of plastic-soil bricks. International Journal of Engineering Research & Technology (IJERT), 3(8), 1–4. 32. Morel, J.-C., Pkla, A., & Walker, P. (2007). Compressive strength testing of compressed earth blocks. Construction and Building Materials, 21(2), 303–309. 33. Nishizaki, H., Yoshida, K., & Wang, J. H. (1980). Comparative study of various methods for thermogravimetric analysis of polystyrene degradation. Journal of Applied Polymer Science, 25(12), 2869–2877. 34. Oti, J. E., Kinuthia, J. M., & Bai, J. (2009). Compressive strength and microstructural analysis of unfired clay masonry bricks. Engineering Geology, 109(3–4), 230–240. 35. O'Farrell, M., Wild, S., & Sabir, B. B. (2001). Pore size distribution and compressive strength of waste clay brick mortar. Cement and Concrete Composites, 23(1), 81–91. 36. PlasticsEurope. (2022). Plastics – the facts 2022: An analysis of European plastics production, demand and waste data. 37. Romani, A., Kulas, D., Curro, J., Shonnard, D. R., & Pearce, J. M. (2025). Recycled filtered contaminants from liquid-fed pyrolysis as novel building composite material. Journal of Building Engineering, 102, 112025. 38. Saviano, F., Lignola, G. P., & Parisi, F. (2024). Experimental compressive and shear behaviour of clay brick masonry with degraded joints. Construction and Building Materials, 452, Article 138880. 39. Salisu, A., & Maigari, Y. S. (2022). Polystyrene and its recycling: A review. In Proceedings of the Materials Science and Technology Society of Nigeria (MSN), Kaduna State Chapter (MSNKAD ID 2141). 40. Singh, R. K., Ruj, B., Sadhukhan, A. K., & Gupta, P. (2020). A TG-FTIR investigation on the co-pyrolysis of the waste HDPE, PP, PS and PET under high heating conditions. Fuel, 262, 116552. 41. Šutka, A., Šutka, A., Dundurs, H., del Rosal, B., Iesalnieks, M., Mālnieks, K., Linarts, A., Barlow, A. J., Leon, R. T., Ellis, A. V., & Sherrell, P. C. (2024). Recycled polystyrene waste to triboelectric nanogenerators: Volumetric electromechanically responsive laminates from same-material contact electrification. Advanced Energy & Sustainability Research. 42. Saleh, H. M., Salman, A. A., Faheim, A. A., & El-Sayed, A. M. (2021). Influence of aggressive environmental impacts on clean, lightweight bricks made from cement kiln dust and grated polystyrene. Case Studies in Construction Materials, 15, e00759. 43. Shi, Y., Wang, N., Li, Z.-X., & Ding, Y. (2021). Experimental studies on the dynamic compressive and tensile strength of clay brick under high strain rates. Construction and Building Materials, 272, 121908. 44. Tarekegn, B. W., Furgasa, B. N., & Hajji, B. M. (2021). Suitability and utilization study on waste plastic brick as alternative construction material. Journal of Civil, Construction and Environmental Engineering, 6(1), 9–12. 45. Zhao, Y.-B., Lv, X.-D., & Ni, H.-G. (2018). Solvent-based separation and recycling of waste plastics: A review. Chemosphere, 209, 707–720. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99174 | - |
| dc.description.abstract | 本研究旨在探討以溶劑回收法製備再生塑膠磚的可行性,並評估其在力學,熱性質及環境耐久性方面的表現。其次,為了降低傳統聚苯乙烯(Polystyrene, PS)廢棄物在焚化與掩埋處理過程中所造成的環境衝擊,本研究嘗試以丙酮作為溶劑,將發泡性 PS 廢料有效溶解並體積縮減,結合聚丙烯(Polypropylene, PP)粒料,進行混合,壓製,乾燥等步驟,製備具建材應用潛力之塑膠磚體。
首先,本研究透過系列實驗驗證不同 PS:PP 配比對磚體成型性,抗壓強度之影響,並進行熱重分析(TGA),傅立葉轉換紅外光譜儀(FTIR),掃描式電子顯微鏡(SEM)與能譜分析(EDS)等材料性質鑑定,確認樣品中未摻雜無機填充劑,整體組成以高分子材料為主,且力學與熱性質表現穩定。此外,藉由酸雨浸泡試驗與凍融循環試驗模擬實際環境下之耐久性情形,結果顯示其抗壓強度未明顯下降,具有良好耐候性。進一步將受損或瑕疵樣品回收再溶解後重新製磚,亦成功製備出第二代磚體,顯示本製程具備材料循環再利用潛力。 綜合各項試驗結果顯示,溶劑法製備再生塑膠磚不僅能有效降低 PS 體積,提升回收效率,亦能在不使用無機填料的情況下製成具強度與耐久性之建材產品。相較於傳統機械或熱熔製程,本研究提出之製程簡易,能耗低,且所使用原料皆為回收塑膠,具備高環保指標與商品化潛力,未來可應用於臨時隔間牆,戶外舖面,社區回收設施等非結構性建材場域。 | zh_TW |
| dc.description.abstract | This study investigates the feasibility of producing recycled plastic bricks using a solvent-based recovery method and evaluates their mechanical properties, thermal behavior, and environmental durability. To address the environmental issues caused by the incineration and landfilling of traditional polystyrene (PS) waste, acetone was employed as a solvent to effectively dissolve and reduce the volume of expanded PS. The resulting solution was then mixed with polypropylene (PP) pellets and processed through pressing, drying, to form bricks suitable for construction applications.
First, the influence of different PS:PP ratios on brick formability, compressive strength, and thermal conductivity was examined. Analytical methods including thermogravimetric analysis (TGA), Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDS) confirmed that the samples consisted purely of polymeric materials without inorganic fillers. The results indicated stable mechanical and thermal performance. Moreover, durability under environmental stress was assessed using rain immersion and freeze-thaw cycle tests. Despite exposure to these conditions, the compressive strength of the bricks remained above required standards, demonstrating good weather resistance. Additionally, bricks that were damaged or defective were successfully redissolved and reformed into second-generation bricks, verifying the potential for closed-loop recycling within the same process. Overall, the experimental results show that the solvent-based method not only significantly reduces the volume of PS waste but also produces durable building materials without the addition of inorganic additives. Compared with conventional mechanical or thermal recycling techniques, this approach is simpler, more energy-efficient, and exclusively uses recycled plastic feedstock. The resulting bricks show potential for use in non-structural applications such as temporary partitions, outdoor walkways, and community recycling infrastructure. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-21T16:40:40Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-08-21T16:40:40Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 國立台灣大學碩士學位論文口試委員會審定書 i
致謝 ii Chinese Abstract iii English Abstract iv Table of Contents vi List of Figures ix List of Tables xi Chapter 1 Research Background and Objectives 1 1.1 Research Background 1 1.2 Research Motivation and Objectives 3 Chapter 2 Literature Review 7 2.1 Introduction to Main Materials and Their Properties 7 2.1.1 Introduction to Thermoplastics 7 2.1.2 Introduction to Thermosets 8 2.1.3 Global Production Distribution of Major Plastics 10 2.1.4 Polystyrene (PS)and Its Main Types 12 2.1.5 Physical and Chemical Properties of Polystyrene(PS) 15 2.1.6 Physical and Chemical Properties of Polypropylene (PP) 16 2.1.7 Solvent Characteristics and Applications of Acetone 17 2.2 Evidence of PS Microplastic Pollution 19 2.3 Recycling Challenges of EPS 21 2.4 Plastic Recycling and Reuse Technologies 23 2.4.1 Four Categories of Plastic Recycling 24 2.4.2 Effects of Thermal Reprocessing (Primary and Secondary Recycling) 26 2.4.3 Mechanism and Advantages of the Solvent Dissolution Method (Tertiary Recycling) 28 2.5 Compatibility of the PS-PP Blended System 30 2.5.1 Hansen Solubility Parameters and Ra, RED Analysis 30 2.6 Green Building Material Standards and Characteristics 36 2.7 Brick Standards and Overview 40 2.8 Specifications and Classification of Sand-Lime Bricks (CNS 2220) 43 Chapter 3 Materials and Methods 45 3.1Chemicals and Equipment 45 3.1.1Laboratory Chemicals and Consumables 45 3.1.2 Laboratory Instruments and Equipment 46 3.2 Experimental Procedure 47 3.3 Process Design and Forming Method 48 3.3.1 Comparison of Process Flow and Selection Basis 48 3.3.2 Pre-treatment and Drying Process of Raw Materials 50 3.3.3 Polystyrene Pelletization and Solvent Recovery 52 3.3.4 Granulation and Mixing Procedure Design 58 3.3.5 Molding and Casting Conditions 60 3.3.6 Influence of Stress Dispersion During Composite Mixing and Molding 62 3.4 Physical Property Testing Methods 64 3.4.1 Density Measurement 64 3.4.2 Water Absorption Test 66 3.4.3 Thickness Swelling Rate Test 67 3.5 Mechanical Property Testing Methods 68 3.5.1 Compressive Strength Test 68 3.6 Thermal Properties and Thermal Stability Testing Methods 70 3.6.1 Thermal Conductivity Estimation (Transient Heating Method) 70 3.6.2 Thermogravimetric Analysis (TGA) 74 3.7 Chemical Structure Analysis 76 3.7.1 Functional Group Identification by FTIR 76 3.8 Microstructural Analysis Methods 79 3.8.1 SEM Observation of Pore Structures 79 3.8.2 EDS Surface Elemental Analysis 81 3.9 Durability Testing Methods 83 3.9.1 Frost Resistance Test 83 3.9.2 Rainwater Resistance Test 85 3.10 Feasibility Verification of Redissolution and Reuse 87 3.10.1 Recycling and Remanufacturing of Damaged Samples 88 Chapter 4 Experimental Results and Discussion 91 4.1 Density Test Results 91 4.2 Properties of Recycled Bricks 94 4.2.1 Density Test Results of Recycled Bricks 94 4.2.2 Water Absorption Test Results 96 4.2.3 Thickness Swelling Rate Test Results 98 4.3 Mechanical Property Analysis 100 4.3.1 Compressive Strength 100 4.4 Thermal Properties and Thermal Stability Results 102 4.4.1 Thermal Conductivity Estimation Result 102 4.4.2 TGA Results and Thermal Stability Comparison 105 4.5 Chemical Analysis Results 109 4.5.1 FTIR Spectral Analysis 109 4.6 Microstructural and Elemental Analysis Results 112 4.6.1 SEM Structure Observation 112 4.6.2 EDS Surface Element Analysis 114 4.7 Durability Test Results 117 4.7.1 Rainwater Resistance Test Results 117 4.7.2 Frost Resistance Test Result 119 4.8 Feasibility Discussion on Redissolution of Damaged Bricks 122 Chapter 5 Conclusion and Recommendations 125 5.1 Research Conclusions 125 5.2 Technical and Application Recommendations 126 5.3 Future Research and Commercialization Direction 128 References 130 | - |
| dc.language.iso | en | - |
| dc.subject | 再生塑膠磚 | zh_TW |
| dc.subject | 建材應用 | zh_TW |
| dc.subject | 丙酮 | zh_TW |
| dc.subject | 聚丙烯(PP) | zh_TW |
| dc.subject | 聚苯乙烯(PS) | zh_TW |
| dc.subject | 溶劑回收法 | zh_TW |
| dc.subject | solvent-based recycling | en |
| dc.subject | polypropylene (PP) | en |
| dc.subject | recycled plastic bricks | en |
| dc.subject | solvent-based | en |
| dc.subject | polystyrene (PS) | en |
| dc.subject | acetone | en |
| dc.subject | construction applications | en |
| dc.title | 以溶劑法回收聚苯乙烯製作再生建材磚之可行性研究 | zh_TW |
| dc.title | Feasibility Study on the Production of Recycled Construction Bricks from Solvent-Recovered Polystyrene | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 周佩欣;林伯勳 | zh_TW |
| dc.contributor.oralexamcommittee | Pei-Hsin Chou;Po-Hsun Lin | en |
| dc.subject.keyword | 再生塑膠磚,溶劑回收法,聚苯乙烯(PS),聚丙烯(PP),丙酮,建材應用, | zh_TW |
| dc.subject.keyword | recycled plastic bricks,solvent-based,solvent-based recycling,polystyrene (PS),polypropylene (PP),acetone,construction applications, | en |
| dc.relation.page | 137 | - |
| dc.identifier.doi | 10.6342/NTU202503578 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2025-08-06 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 環境工程學研究所 | - |
| dc.date.embargo-lift | 2030-08-03 | - |
| 顯示於系所單位: | 環境工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 未授權公開取用 | 2.54 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
