請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99173完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 吳忠幟 | zh_TW |
| dc.contributor.advisor | Chung-Chih Wu | en |
| dc.contributor.author | 凌聖沅 | zh_TW |
| dc.contributor.author | Sheng-Yuan Ling | en |
| dc.date.accessioned | 2025-08-21T16:40:27Z | - |
| dc.date.available | 2025-08-22 | - |
| dc.date.copyright | 2025-08-21 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-08-06 | - |
| dc.identifier.citation | Alexopoulos, A. (2010) “Effective-medium theory of surfaces and metasurfaces containing two-dimensional binary inclusions” Physical Review E, 81(4), 046607.
Zhang, SY; Wong, CL; Zeng, SW; Bi, RZ; Tai, K; Dholakia, K; Olivo, M. (2021)“Metasurfaces for biomedical applications: imaging and sensing from a nanophotonics perspective” Nanophotonics, 10(1), 259-293. Luo, Y; Tseng, ML; Vyas, S; Kuo, HY; Chu, CH; Chen, MK; Lee, HC; Chen, WP; Su, VC; Shi, X. (2022) “Metasurface-Based Abrupt Autofocusing Beam for Biomedical Applications” Small Methods, 6(4), 2101228. Barulin, A; Nguyen, DD; Kim, Y; Ko, C.H.; Kim, I. (2024) “Metasurfaces for Quantitative Biosciences of Molecules, Cells, and Tissues: Sensing and Diagnostics” ACS Photonics, 11(3), 904-916. Decker, M; Staude, I; Falkner, M; Dominguez, J; Neshev, DN; Brener, I; Pertsch, T; Kivshar, YS. (2016) “High-efficiency light-wave control with all-dielectric optical Huygens’ metasurfaces” Advanced Optical Materials, 3(6), 813-820. Li, XS; Zhou, HT; Wang, YF; Wang, YS. (2021) “Modulation of acoustic self-accelerating beams with tunable curved metasurfaces” Applied Physics Letters, 118(2), 023503. Shen, SY; Ruan, ZH; Yuan, Y; Tan, HP. (2022) “Conditions for establishing the 'Generalized Snell's law of refraction' in all-dielectric metasurfaces: theoretical bases for design of high-efficiency beam deflection metasurfaces” Nanophotonics, 11(1), 21-32. Liu, Y; Zhang, D; Li, W; & Zhang, S. (2021) “Generalized Snell's law for metasurfaces with phase discontinuities” Journal of Optics, 23(4), 045102. Wu, T; Zhang, XQ; Xu, Q; Plum, E; Chen, KJ; Xu, YH; Lu, YC; Zhang, HF; Zhang, ZY. (2021) “Dielectric Metasurfaces for Complete Control of Phase, Amplitude, and Polarization” Advanced Optical Materials, 10(1), 2101223. Smy, TJ; Stewart, SA; Rahmeier, JGN; Gupta, S. (2020) “FDTD Simulation of Dispersive Metasurfaces With Lorentzian Surface Susceptibilities” IEEE Access, 8, 83027-83040. Cole, JB. (1997) “A high-accuracy realization of the Yee algorithm using non-standard finite differences” IEEE Transactions On Microwave Theory And Techniques, 45(6), 991-996. Chen, XB; Yang, F; Li, MK; Xu, SH. (2020) “Analysis of Nonlinear Metallic Metasurface Elements Using Maxwell-Hydrodynamic Model With Time-Domain Perturbation Method” IEEE Transactions On Antennas And Propagation, 68(3), 2213-2223. Chen, HT; Taylor, AJ; Yu, NF. (2016) “A review of metasurfaces: physics and applications” Reports On Progress In Physics, 79(7), 076401. Phan, T; Sell, D; Wang, EW; Doshay, S; Edee, K; Yang, JJ ; Fan, JA. (2019) “Highefficiency, large-area, topology-optimized metasurfaces” Light-Science & Applications, 8, 48. Yuzhong W; Cheng P; Qiming W; Yongheng M; Yayun C; Jiaran Q. (2023) “Phase Only Compact Radiation-Type Metasurfaces for Customized Far-Field Manipulation” IEEE Transactions on Microwave Theory and Techniques, 71(9), 4119-4128. Pustovalova, A.; Boytsova, E; Aubakirova, D.; Bruns, M; Tverdokhlebov, S; Pichugin, V. (2020) “Formation and structural features of nitrogen-doped titanium dioxide thin films grown by reactive magnetron sputtering” Applied Surface Science, 534, 147572. Wang, YH; Rahman, KH; Wu, CC; Chen, KC. (2020) “A Review on the Pathways of the Improved Structural Characteristics and Photocatalytic Performance of Titanium Dioxide (TiO2) Thin Films Fabricated by the Magnetron-Sputtering Technique” Catalysts, 10(6), 598. He, SK; Tian, Y; Zhou, HM; Zhu, MM; Li, CX; Fang, B; Hong, Z; Jing, XF. (2025)“Review for Micro‐Nano Processing Technology of Microstructures and Metadevices” Advanced Functional Materials, 35(24). Luo, Y., Tseng, M. L., Vyas, S., Kuo, H. Y., Chu, C. H., Chen, M. K., Lee, H. C., Chen, W. P., Su, V. C., Shi, X., Misawa, H., Tsai, D. P., & Yang, P. C. (2022)“Metasurface-based abrupt autofocusing beam for biomedical applications” Small Methods, 6(4), 2101228. Yoshimoto, K, Higgins, C, Raghunathan, A, Hartley, J. G, Goldfarb, D. L, Kato, H, Petrillo, K, Colburn, M. E, Schefske, J, Wood, O, Wallow, T. I. (2011) “Revisit pattern collapse for 14nm node and beyond” Proceedings of SPIE - The International Society for Optical Engineering, 7972, 79720K. Liu, BW; Cheng, JL; Zhao, MX; Yao, J; Liu, XY; Chen, SH; Shi, L; Tsai, DP; Geng, ZH; Chen, MK. (2024) “Metalenses phase characterization by multi-distance phase retrieval” Light-Science & Applications, 13(1), 182. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99173 | - |
| dc.description.abstract | 本研究旨在設計並實現一款具聚焦功能之可見光波段超穎介面透鏡(metalens),並系統性探討其製程參數、封裝條件對光學效能之影響。設計上採用高折射率二氧化鈦(TiO₂)作為奈米柱材料,透過調變其橫向尺寸以實現0°至360°的相位延遲控制,並配合廣義斯乃爾定律完成聚焦之空間相位配置。模擬結果顯示,超穎透鏡在有無封裝條件下皆能有效聚焦光場,而加入光學封裝膠後不僅未造成效率明顯下降,亦未干擾相位控制,反而可進一步抑制旁瓣、提升聚焦集中度。
製程方面,採用電子束微影與乾式蝕刻技術成功製作高深寬比之奈米柱陣列,並於各製程階段進行SEM結構確認。封裝方面,採用真空輔助滲透方式提升膠體進入奈米柱間隙的能力,並透過SEM壓痕觀察佐證膠體與結構間之密合。實驗量測部分,搭建光學平台進行聚焦掃描與效率量測,實測效率達88.4 %,與模擬結果高度一致,並具良好成像解析能力。此外,即使在早期製程中曾出現部分奈米柱倒塌,其光學功能亦未完全喪失,並且具有效率46.8%,顯示本設計具良好容錯性與製程穩定性。 本研究所提出之超穎透鏡結構不僅具備高效率特性,亦驗證封裝策略對實用應用之可行性與穩定助益,為未來微型光學系統與生醫影像應用奠定關鍵基礎。 | zh_TW |
| dc.description.abstract | This study presents the design, fabrication, and characterization of a visible wavelength metalens with focusing functionality, and investigates the influence of fabrication and encapsulation conditions on its optical performance. The metalens consists of high-refractive-index titanium dioxide (TiO₂) nanopillars with varying lateral dimensions to achieve 0° to 360° phase modulation, based on generalized Snell's law.
Simulation results demonstrate effective focusing under both encapsulated and non-encapsulated conditions. With NOA81 optical adhesive as an encapsulation layer, the device maintains high efficiency and phase accuracy, while exhibiting improved side lobe suppression and enhanced focus intensity. The fabrication process involves electron beam lithography and dry etching to produce high-aspect-ratio nanopillars. SEM imaging confirms structural integrity after each step. A vacuum-assisted encapsulation method enhances NOA81 infiltration, with imprint patterns on the cured surface serving as indirect evidence. Optical measurements show a post-lens efficiency of 88.4%, matching simulations. Even in early batches with partial pillar collapse, the lens retained focusing functionality with 46.8% efficiency, indicating strong fabrication tolerance. Overall, this work demonstrates a practical and robust metalens with high efficiency and packaging stability, suitable for compact optical systems and biomedical imaging applications. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-21T16:40:27Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-08-21T16:40:27Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員審定書 Ⅰ
誌謝 Ⅱ 摘要 Ⅳ Abstract Ⅴ 目次 Ⅵ 圖次 Ⅷ 表次 XI 第一章 緒論 1 1.1傳統透鏡與平面超穎透鏡簡介 1 1.2超穎介面在生醫影像中的應用潛力 3 1.3 超穎介面波前調控基本原理 4 1.3.1 惠更斯原理 4 1.3.2 廣義斯乃爾與相位梯度設計 6 1.4 時域有限差分法模擬 8 1.5 研究動機與論文結構 10 第一章圖表 12 第二章 用於內視鏡光學之超穎介面透鏡之研製 17 2.1 前言 17 2.2 超穎介面設計與模擬 18 2.2.1 單元結構參數掃描 18 2.2.2 相位設計流程與自動化佈圖 19 2.2.3 基板折射率對光學行為之影響 20 2.3 超穎介面製作 22 2.3.1 超穎介面製作流程 23 2.4 封裝條件對超穎介面結構與光學性能之影響 28 2.4.1 模擬分析封裝材料對超穎介面光學效應之影響 28 2.4.2 封裝方式比較與結構滲透性觀察 30 2.5 超穎介面透鏡之結果與討論 32 2.5.1 實驗結果影像 32 2.5.2 量測系統架設與結果分析 34 第二章圖表 36 第三章 總結 61 3.1 總結 61 參考文獻 63 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 超穎透鏡 | zh_TW |
| dc.subject | 超穎介面 | zh_TW |
| dc.subject | 聚焦效率 | zh_TW |
| dc.subject | FDTD模擬 | zh_TW |
| dc.subject | 奈米結構 | zh_TW |
| dc.subject | 二氧化鈦 | zh_TW |
| dc.subject | 光學封裝 | zh_TW |
| dc.subject | Metalens | en |
| dc.subject | Focusing efficiency | en |
| dc.subject | FDTD simulation | en |
| dc.subject | Titanium dioxide | en |
| dc.subject | Optical encapsulation | en |
| dc.subject | Nanopillar | en |
| dc.subject | Metasurface | en |
| dc.title | 超穎介面透鏡之研製與應用 | zh_TW |
| dc.title | Development and Applications of Metasurface Lenses | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 張志豪;蔡志宏 | zh_TW |
| dc.contributor.oralexamcommittee | Chih-Hao Chang;Chih-Hung Tsai | en |
| dc.subject.keyword | 超穎介面,超穎透鏡,光學封裝,二氧化鈦,奈米結構,FDTD模擬,聚焦效率, | zh_TW |
| dc.subject.keyword | Metasurface,Metalens,Optical encapsulation,Titanium dioxide,Nanopillar,FDTD simulation,Focusing efficiency, | en |
| dc.relation.page | 65 | - |
| dc.identifier.doi | 10.6342/NTU202503274 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2025-08-08 | - |
| dc.contributor.author-college | 重點科技研究學院 | - |
| dc.contributor.author-dept | 元件材料與異質整合學位學程 | - |
| dc.date.embargo-lift | 2025-08-22 | - |
| 顯示於系所單位: | 元件材料與異質整合學位學程 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf | 4.94 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
