Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99171Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 汪立本 | zh_TW |
| dc.contributor.advisor | Li-Pen Wang | en |
| dc.contributor.author | 魏麒凌 | zh_TW |
| dc.contributor.author | Chi-Ling Wei | en |
| dc.date.accessioned | 2025-08-21T16:40:00Z | - |
| dc.date.available | 2025-08-22 | - |
| dc.date.copyright | 2025-08-21 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-08-01 | - |
| dc.identifier.citation | 1. Jose P. Peixoto and Abraham H. Oort. Physics of Climate. Springer, New York, 1992.
2. Isaac M. Held. The gap between simulation and understanding in climate modeling. Bulletin of the American Meteorological Society, 86(11):1609–1614, 2005. doi:10.1175/BAMS-86-11-1609. 3. Peter Bauer, Alan Thorpe, and Gilbert Brunet. The quiet revolution of numerical weather prediction. Nature, 525(7567):47–55, 2015. doi: 10.1038/nature14956. 4. Gregory Flato, Jochem Marotzke, Babatunde Abiodun, Pascale Braconnot, Sin Chan Chou, William Collins, Peter Cox, Fatima Driouech, Seita Emori, Veronika Eyring, et al. Evaluation of climate models. In T.F. Stocker, D. Qin, G.K. Plattner, M. Tig- nor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, and P.M. Midgley, editors, Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, pages 741–866. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 2013. 5. Tim N. Palmer. A nonlinear dynamical perspective on climate prediction. Journal of Climate, 14(3):591–603, 2001. doi:10.1175/1520-0442(2001)014<0591: ANDPOC>2.0.CO;2. 6. Elizabeth J. Kendon, Neil M. Roberts, Hayley J. Fowler, Malcolm J. Roberts, Si-mon C. Chan, and Catherine A. Senior. Do convection-permitting regional climate models improve projections of future precipitation change? Bulletin of the American Meteorological Society, 98(1):79–93, 2017. doi: 10.1175/BAMS-D-15-0004.1. 7. Christoph Schär, Nikolina Ban, Erich M. Fischer, Heiner Körnich, Jessica D. Lundquist, Christian Schär, and Nicole van Lipzig. Kilometer-scale climate models: Prospects and challenges. Bulletin of the American Meteorological Society, 101(5): E567–E587, 2020. doi:10.1175/BAMS-D-18-0167.1. 8. Eric F. Wood, Joshua K. Roundy, Tara J. Troy, Rens van Beek, Marc F.P. Bierkens, Eleanor Blyth, Ad de Roo, Petra Döll, Michael Ek, Jay Famiglietti, , et al. Hyper-resolution global land surface modeling: Meeting a grand challenge for monitoring earth’s terrestrial water. Water Resources Research, 47(5):W05301, 2011. doi:10.1029/2010WR010090. 9. Martyn P. Clark, Dmitri Kavetski, and Fabrizio Fenicia. A unified approach for process-based hydrologic modeling: 1. modeling concept. Water Resources Research, 47(9):W09301, 2011. doi: 10.1029/2010WR010173. 10. Shaun Lovejoy and Daniel Schertzer. The Weather and Climate: Emergent Laws and Multifractal Cascades. Cambridge University Press, 2013. doi:10.1017/CBO9781139130012. 11. Daniel Schertzer and Shaun Lovejoy. Physical modeling and analysis of rain and clouds by anisotropic scaling of multiplicative processes. Journal of Geophysical Research: Atmospheres, 92(D8):9693–9714, 1987. doi: 10.1029/JD092iD08p09693. 12. Philipp de Vrese, Stefan Hagemann, and Martin Claussen. Subgrid variability and its impact on the land–atmosphere exchange of energy and moisture. Hydrology and Earth System Sciences, 20(12):4895–4914, 2016. doi: 10.5194/hess-20-4895-2016. 13. Graeme L. Stephens, Deborah G. Vane, Ronald J. Boain, Gerald G. Mace, Kenneth Sassen, Zhien Wang, Anthony J. Illingworth, Edward J. O’Connor, William B. Rossow, and Stephen L. Durden. The remote sensing of clouds and precipitation from space: A review. Journal of the Atmospheric Sciences, 67(7):2448–2472, 2010. doi:10.1175/2010JAS3393.1. 14. Michael F. Wehner. Resolved scales and prediction of extreme events in the community atmosphere model. Journal of Climate, 26(21):7767–7784, 2013. doi:10.1175/JCLI-D-13-00005.1. 15. Andreas F. Prein, Wolfgang Langhans, Giorgia Fosser, Alfonso Ferrone, Nikolina Ban, Klaus Goergen, Denise Keller, Merja H. Tölle, Oliver Gutjahr, Frauke Feser, and Erwan Brisson. A review on regional convection-permitting climate modeling: Demonstrations, prospects, and challenges. Reviews of Geophysics, 53(2):323–361, 2015. doi:10.1002/2014RG000475. 16. Auguste Gires, Ioulia Tchiguirinskaia, Daniel Schertzer, Shaun Lovejoy, and Alexis Berne. Impact of small scale rainfall variability on urban hydrology: A multi-fractal approach. Urban Water Journal, 11(4):333–343, 2014. doi:10.1080/1573062X.2013.h821642. 17. Auguste Gires, Ioulia Tchiguirinskaia, Daniel Schertzer, and Shaun Lovejoy. Multifractal characterisation of high-resolution rainfall time series: Relevance of the universal multifractal model for hydrological applications. Hydrology and Earth System Sciences, 22(3):1467–1486, 2018. doi:10.5194/hess-22-1467-2018. 18. Yao Zhang, Bri-Mathias Hodge, Anthony Florita, Joshua M. Freedman, and Sue Ellen Haupt. Wind gust forecasting for the renewable energy industry using nonparametric methods. Energies, 7(7):4477–4498, 2014. doi: 10.3390/en7074477. 19. Marc F.P. Bierkens, Victoria A. Bell, Peter Burek, Nathaniel Chaney, Petra Döll, Niels Drost, and et al. Hyper-resolution global hydrological modelling: What is next? Hydrological Processes, 29(2):310–320, 2015. doi: 10.1002/hyp.10391. 20. Douglas Maraun, Fredrik Wetterhall, Andrew M. Ireson, Richard E. Chandler, Elizabeth J. Kendon, Martin Widmann, Stefan Brienen, Henning W. Rust, Thomas Sauter, Maria Themessl, et al. Precipitation downscaling under climate change: Recent developments to bridge the gap between dynamical models and the end user. Reviews of Geophysics, 48(3):RG3003, 2010. doi:10.1029/2009RG000314. 21. Murugesu Sivapalan, Eric F. Wood, and Keith J. Beven. Scale issues in hydrological modelling: A review. Hydrological Processes, 17(4):389–403, 2003. doi:10.1002/hyp.936. 22. Martyn P. Clark, Bart Nijssen, Jessica D. Lundquist, Dmitri Kavetski, David E. Rupp, Ross A. Woods, Jim E. Freer, Ethan D. Gutmann, Andy W. Wood, Levi D. Brekke, and Jeffrey R. Arnold. The representation of physical processes in hydrological models: Current challenges and future directions. Water Resources Research, 52(3):5095–5142,2016. doi:10.1002/2015WR017200. 23. Christian Onof, Richard E. Chandler, Antonis Kakou, Paul Northrop, Howard S. Wheater, and Valerie Isham. Modelling rainfall using a stochastic model: which model for which purpose? Hydrology and Earth System Sciences, 4(2):283–296, 2000. doi:10.5194/hess-4-283-2000. 24. Patrick Willems. A nonparametric statistical disaggregation method for generating high‐resolution rainfall time series conditioned on daily observations. Hydrology and Earth System Sciences, 5(2):175–190, 2001. doi: 10.5194/hess-5-175-2001. 25. Robert L. Wilby, Stewart P. Charles, Eduardo Zorita, Bertrand Timbal, Penny Whetton, and Linda O. Mearns. Guidelines for use of climate scenarios developed from statistical downscaling methods. Intergovernmental Panel on Climate Change (IPCC), 2004. 26. Mathieu Vrac, Michael Stein, and Katharine Hayhoe. Statistical downscaling of precipitation: Application to france. Climate Research, 34(3):229–245, 2007. doi:10.3354/cr034229. 27. Markku Rummukainen. State-of-the-art with regional climate models. WIREs Climate Change, 1(1):82–96, 2010. doi: 10.1002/wcc.8. 28. Patrick Willems and Mathieu Vrac. Statistical downscaling methods in climate impact assessments: Recent developments and future challenges. Climate Change Impact on Urban Drainage Systems, 47:349–367, 2011. Available at: https://orbi.uliege.be/handle/2268/94737. 29. Thomas Vandal, Evan Kodra, Jennifer Dy, and Auroop R. Ganguly. Deepsd: Generating high resolution climate change projections through single image super resolution. Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pages 1663–1672, 2017. doi: 10.1145/3097983.3098004. 30. William J. Gutowski, Filippo Giorgi, Bokyeong Lee, Grigory Nikulin, Chris Lennard, Bruce Hewitson, Iain Pinto, Moetasim Ashfaq, and et al. The ongoing need for high-resolution regional climate models: Process understanding and stakeholder information. Bulletin of the American Meteorological Society, 101(5):E664–E683,2020. doi:10.1175/BAMS-D-19-0117.1. 31. Daniel S. Wilks. Stochastic weather generators for climate-change downscaling: A review. Climatic Change, 70(1–2):189–216, 2002. doi:10.1023/A:1020519303647. 32. Chris G. Kilsby, Paul D. Jones, Annette Burton, Andy C. Ford, Hayley J. Fowler, Colin Harpham, Philip James, Anne Smith, and Robert L. Wilby. A daily weather generator for use in climate change studies. Environmental Modelling Software, 22 (12):1705–1719, 2007. doi: 10.1016/j.envsoft.2007.02.005. 33. Shaun Lovejoy and Daniel Schertzer. Rainfall scaling and multifractal probability distributions. Journal of Applied Meteorology, 29(11):1167–1177, 1990. doi:10.1175/1520-0450(1990)029<1167:RSAMPD>2.0.CO;2. 34. Thomas M. Over and Vijay K. Gupta. A multiscaling model of spatial variability of rainfall. Water Resources Research, 32(11):2825–2833, 1996. doi:10.1029/96WR01255. 35. M. Menabde, A. Seed, and G. Pegram. Space-time modelling of rainfall using a dynamic scaling cascade. Water Resources Research, 33(4):907–918, 1997.doi:10.1029/96WR03708. 36. Assela Pathirana and Srikantha Herath. Multifractal modelling and simulation of rainfall fields in the humid tropics. Hydrology and Earth System Sciences, 6(4): 695–708, 2002. doi:10.5194/hess-6-695-2002. 37. V. Venugopal, Efi Foufoula-Georgiou, and S. Yatheendradas. An empirical investigation of the scaling and multifractal properties of rainfall time series. Journal of Geophysical Research: Atmospheres 111(D20):D20113, 2006. doi: 10.1029/2005JD006478. 38. L. de Montera, L. Barthès, C. Mallet, and P. Gole. Downscaling of rainfall time series: a review of current approaches and a new multifractal method. Journal of Hydrology, 351(1–2):121–130, 2010. doi: 10.1016/j.jhydrol.2007.12.028. 39. Benoit B. Mandelbrot. Intermittent turbulence in self-similar cascades: divergence of high moments and dimension of the carrier. Journal of Fluid Mechanics, 62(2): 331–358, 1974. doi: 10.1017/S0022112074000711. 40. L. de Montera, C. Mallet, and L. Barthès. Multifractal analysis of discrete rainfall time series: Comparison of methods and application to a semi-arid region. Journal of Hydrology, 379:351–359, 2009. doi:10.1016/j.jhydrol.2009.10.015. 41. S. Lovejoy and D. Schertzer. On the simulation of continuous in scale universal multifractals, part i: Spatially continuous processes. Computers Geosciences, 36(11):1393–1403, 2010. ISSN 0098-3004. doi: https://doi.org/10.1016/j.cageo.2010.04.010. 42. Auguste Gires, Ioulia Tchiguirinskaia, and Daniel Schertzer. Blunt extension of discrete universal multifractal cascades: development and application to downscaling. Hydrological Sciences Journal, 65(7)1204–1220, May 2020. ISSN 0262-6667. doi:10.1080/02626667.2020.1736297. 43. Ching-Chun Chou, Auguste Gires, Ioulia Tchiguirinskaia, Daniel JM Schertzer, and Li-Pen Wang. Observation of different multifractal phase transitions over three typhoon events. Authorea Preprints, 2025. doi:https://doi.org/10.22541/essoar.174982611.10248569/v1. 44. D. Lavallée, S. Lovejoy, and P. Ladoy. Nonlinear variability and landscape topography: analysis and simulation. In L. De Cola and N. Lam, editors, Fractals in geography, pages 171–205. Prentice-Hall, Englewood Cliffs, NJ, 1993. 45. J. M. Chambers, C. L. Mallows, and B. W. Stuck. A method for simulating stable random variables. Journal of the American Statistical Association, 71(354):340344, 1976. ISSN 01621459, 1537274X. URL http://www.jstor.org/stable/2285309. 46. A. Gires, I. Tchiguirinskaia, and D. Schertzer. 3d trajectories and velocities of rainfall drops in a multifractal turbulent wind field. Atmospheric Measurement Techniques, 15(19):5861–5875, 2022. doi:10.5194/amt-15-5861-2022. 47. A. Gires, Ioulia Tchiguirinskaia, and Daniel Schertzer. Generating a missing half of multifractal fields with a blunt extension of discrete cascades. Hydrological Sciences Journal, 68:1–15, 01 2023. doi: 10.1080/02626667.2022.2154160. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99171 | - |
| dc.description.abstract | 地球物理模型面臨著「尺度空缺」(scaling gap)問題,也就是計算能力的限制使其無法解析觀測極端事件時所必需的小尺度過程。統計降尺度(Statistical downscaling)為此提供了有效的解決方案,而離散乘法級聯(Discrete Multiplicative Cascades, DMCs)是此領域的常用工具。然而,DMCs 具有非平穩性(non-stationarity)的缺點,會產生人為的、與網格對齊的偽影。「鈍級聯」(Blunt Cascade)擴展雖能透過平滑化場來解決此問題,但其高昂的計算成本限制了它的實際應用。
本文介紹了一種名為「LazyTree」的演算法,這是一種用於生成動態多重碎形場的記憶體高效方法。該演算法採用惰性求值(lazy evaluation)策略,透過切片(slices)生成與處理場,從而大幅減少記憶體使用與計算時間。此方法能夠生成傳統方法難以處理的高解析度、多維度場。論文詳細說明了該演算法在標準 DMCs 及計算要求更高的鈍級聯擴展中的實作方式,並提出一種與此節省記憶體方法相容的即時多重碎形分析(Double Trace Moment)方案。 在 GPU 上進行的驗證實驗表明,對於一個三維時空級聯,LazyTree 與傳統方法相比,達成了近 1000 倍的加速,且記憶體使用量顯著減少。由 LazyTree 生成的場(包含經典級聯與鈍級聯)其統計特性也證實與普適多重碎形(UM)理論一致。透過克服過去的計算障礙,LazyTree 演算法使鈍級聯擴展得以實際應用於高要求的模擬中,例如模擬湍流風場中的雨滴軌跡,為多重碎形模型開闢了新的研究途徑。 | zh_TW |
| dc.description.abstract | Geophysical models face a "scaling gap" where computational limitations prevent the resolution of fine-scale processes, which are critical for observing extreme events . Statistical downscaling offers a solution, and Discrete Multiplicative Cascades (DMCs) are a common tool for this purpose . However, DMCs suffer from non-stationarity, which introduces artificial, grid-aligned patterns . The "Blunt Cascade" extension was proposed to resolve this by smoothing the field, but this comes at a significant computational cost that limits its practical use.
This paper introduces the "LazyTree" algorithm, a memory-efficient method for generating dynamic multifractal fields. The algorithm uses a lazy evaluation strategy, generating and processing the field in slices, which dramatically reduces memory usage and computational time. This approach allows for the generation of high-resolution, multi-dimensional fields that would be intractable with conventional methods. The paper details the algorithm's implementation for both standard DMCs and the more demanding Blunt Extension, proposing an on-the-fly adaptation for multifractal analysis (Double Trace Moment) that is compatible with the memory-saving approach. Validation experiments, conducted on a GPU, demonstrate that LazyTree achieves nearly 1000-fold speed-up and uses significantly less memory compared to traditional methods for a 3D space-time cascade. The statistical properties of fields generated by LazyTree, for both classic and blunt cascades, are shown to be consistent with Universal Multifractal (UM) theory. By overcoming previous computational barriers, the LazyTree algorithm enables the practical application of the Blunt Extension to demanding simulations, such as modeling raindrop trajectories in turbulent wind fields, opening new avenues for multifractal modeling. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-21T16:40:00Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-08-21T16:40:00Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | Acknowledgements i
摘要 iii Abstract v Contents vii List of Figures ix Chapter 1 Introduction 1 Chapter 2 Universal Multifractal Discrete Cascade 7 2.1 Universal Multifractal (UM) Framework 7 2.2 Discrete Multiplicative Cascade 10 2.3 Blunt Extension of Discrete Universal Multifractal Cascade 13 Chapter 3 A LazyTree algorithm for generating multifractal fields 17 3.1 LazyTree cascade process 17 3.2 LazyTree Algorithm 19 3.3 Multifractal Analysis on LazyTree 21 3.4 LazyTree Modification for Blunt Extension 24 Chapter 4 Case studies 27 4.1 Discrete multiplicative cascade: classic 27 4.2 Discrete multiplicative cascade: Blunt extension 34 Chapter 5 Conclusion 41 References 43 | - |
| dc.language.iso | en | - |
| dc.subject | 演算法 | zh_TW |
| dc.subject | 多重碎形 | zh_TW |
| dc.subject | Multifractal | en |
| dc.subject | algorithm | en |
| dc.title | 開發以樹狀結構動態生成多重碎型場之演算法 | zh_TW |
| dc.title | LazyTree: An efficient cascade algorithm for multifractal field generation | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 張書瑋;周佳靚 | zh_TW |
| dc.contributor.oralexamcommittee | Shu-Wei Chang;Chia-Ching Chou | en |
| dc.subject.keyword | 多重碎形,演算法, | zh_TW |
| dc.subject.keyword | Multifractal,algorithm, | en |
| dc.relation.page | 50 | - |
| dc.identifier.doi | 10.6342/NTU202502948 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2025-08-06 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 土木工程學系 | - |
| dc.date.embargo-lift | 2025-08-22 | - |
| Appears in Collections: | 土木工程學系 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| ntu-113-2.pdf | 47.24 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
