請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99168完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 周家蓓 | zh_TW |
| dc.contributor.advisor | Chia-Pei Chou | en |
| dc.contributor.author | 歐逸宣 | zh_TW |
| dc.contributor.author | Yi-Syuan Ou | en |
| dc.date.accessioned | 2025-08-21T16:39:22Z | - |
| dc.date.available | 2025-08-22 | - |
| dc.date.copyright | 2025-08-21 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-08-01 | - |
| dc.identifier.citation | 1.交通部,交通工程規範,2021年。
2.Federal Highway Administration. (n.d.). Nighttime visibility for safety. U.S. Department of Transportation. https://www.fhwa.dot.gov/innovation/everydaycounts/edc_7/nighttime_visibility.cfm 3.Burghardt, T.E. H. Mosböck, A. Pashkevich, M. Fiolic, Horizontal road markings for human and machine vision, Transp. Res. Procedia 48 (2020) 3622– 3633, doi:http://dx.doi.org/10.1016/j.trpro.2020.08.089 4.中華民國國家標準 CNS 15834:2015,道路標線使用性能,經濟部標準檢驗局,2015 年。 5.ASTM Standard E2302-03a (2016). Standard Test Method for Measurement of the Luminance Coefficient Under Diffuse Illumination of Pavement Marking Materials Using a Portable Reflectometer. ASTM International, Pennsylvania, USA. 2016. 6.United States Department of Transportation - Federal Highway Administration. (2023). Manual on Uniform Traffic Control Devices (MUTCD). 7.ASTM D7942 - 15. (2023). Standard Specification for Thermoplastic Pavement Markings in Non Snow Plow Areas. 8.日本高速道路株式會社,レーンマク施工管理要領,2017年。 9.中華人民共和國國家標準,道路交通標線質量要求和檢測方法,2009年。 10.Carina, F. (2022). Nordic certification system for road marking materials. Version 9:2022. 11.Cawangan jalan. (2017). STANDARD SPECIFICATION FOR ROAD WORKS JKR/SPJ/2017-S6. 12.Indian roads congress. (2015). IRC-35:2015. Code of Practice for Road Marking (Second Revision). 13.Austroads technical specification. (2021). ATS-4110-21 Longitudinal Pavement Marking. 14.中華民國國家標準 CNS 4342:2016,交通反光標誌用玻璃珠,經濟部標準檢驗局,2016 年。 15.AASHTO. (2013). AASHTO M247-13: Glass beads used in pavement markings. American Association of State Highway and Transportation Officials, Washington, DC, USA. 16.MIGLETZ, James; FISH, Joseph K.; GRAHAM, Jerry L. Roadway delineation practices handbook. 1994 17.Pike,Adam M. Songjukta Datta.(2020) Effect of Glass Bead Refractive Index on Pavement Marking Retroreflectivity Considering Passenger Vehicle and Airplane Geometries. SAGE. DOI: 10.1177/0361198120935869 18.Kalchbrenner, J. (1988). Large glass beads for pavement markings [PDF document]. Transportation Research Record, 1230, 1-9. 19.周琦芮,「道路標線之反光性能規範探討與我國之初步分析」,國立臺灣大學土木工程學系碩士論文,民國105年8月。 20.Shin, S. Y., Lee, J. I., Chung, W. J., Cho, S.-H., & Choi, Y. G.(2019)。Assessing the Refractive Index of Glass Beads for Use in Road-marking Applications via Retroreflectance Measurement。《Current Optics and Photonics》,3(5),415–422。doi:10.3807/COPP.2019.3.5.415 21.Wei, C., Li, S., Wu, K., Zhang, Z., & Wang, Y.(2021)。Damage inspection for road markings based on images with hierarchical semantic segmentation strategy and dynamic homography estimation。《Automation in Construction》,131,103876。doi:10.1016/j.autcon.2021.103876 22.Burghardt, Tomasz E. Harald Mosböck, Anton Pashkevich, Mario Fiolić, Horizontal road markings for human and machine vision, Transportation Research Procedia, Volume 48, 2020, Pages 3622-3633, ISSN 2352-1465, https://doi.org/10.1016/j.trpro.2020.08.089. 23.Michael J. Rich, Robert E. Maki, and Jill Morena, 2002. Development of a Pavement Marking Management System Measurement of Glass Sphere Loading in Retroreflective Pavement Paints. Transportation Research Record 1794 . Paper No. 02-3056. 24.Zhang Guanghua, Hummer Joseph E., Rasdorf William, 2010. Impact of Bead Density on Paint Pavement Marking Retroreflectivity. Journal of Transportation Engineering. doi: 10.1061/(ASCE)TE.1943 5436.0000142. 25.Vedam, K., & Stoudt, M. D. (1978). Retroreflection from spherical glass beads in highway pavement markings. 2: Diffuse reflection (a first approximation calculation).Applied Optics, 17(10), 1568–1573. https://doi.org/10.1364/AO.17.001568 26.Grosges, T., 2008. Retro-reflection of glass beads for traffic road stripe paints. Opt. Mater. 30, 1549e1554. 27.Janda, F., Pangerl, S., & Schindler, A. (2013, July). A road edge detection approach for marked and unmarked lanes based on video and radar. In 16th International Conference on Information Fusion (Istanbul, Turkey, July 9–12, 2013). 28.Zhao, L., Cai, Z., Xie, J., & Ren, X. (2012, May). Road markings extraction based on threshold segmentation. In 2012 9th International Conference on Fuzzy Systems and Knowledge Discovery (FSKD). 29.Sani, Z. M., Abd Ghani, H., Besar, R., & Loi, W. S. (2016). Daytime road marker recognition using grayscale histogram and pixel values. Internetworking Indonesia Journal, 8(1), 11–18. 30.Tian, Y., Gelernter, J., Wang, X., Chen, W., Gao, J., Zhang, Y., & Li, X. (2018). Lane marking detection via deep convolutional neural network. Neurocomputing, 280, 46–55. https://doi.org/10.1016/j.neucom.2017.09.091 31.Ahmad, T., Ilstrup, D., Emami, E., & Bebis, G. (2017, June). Symbolic road marking recognition using convolutional neural networks. In 2017 IEEE Intelligent Vehicles Symposium (IV) (pp. 1428–1433). https://doi.org/10.1109/IVS.2017.7995926 32.曾翊瑄,「雙校標線材料配比分析與實務應用探討」,國立臺灣大學土木工程學系碩士論文,民國112年8月。 33.Lee, S., Koh, E., Jeon, S., & Kim, R. E. (2024). Pavement marking construction quality inspection and night visibility estimation using computer vision. Case Studies in Construction Materials, 20, e02953. https://doi.org/10.1016/j.cscm.2024.e02953 34.董皓,「雙效標線之長期績效與成本效益分析」,國立臺灣大學土木工程學系碩士論文,民國 113 年 7 月。 Breiman, L.(2001)。Random forests。Machine Learning, 45(1), 5–32。https://doi.org/10.1023/A:101093340432 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99168 | - |
| dc.description.abstract | 標線在交通工程中扮演極為關鍵的角色,主要負責引導用路人正確判斷行車方向,特別是在視野不佳的夜間或雨天環境下,反光性能更直接影響駕駛者對標線的辨識能力,同時也影響自駕車系統中機器視覺對道路資訊的準確解讀。為確保標線具備良好的可視性,需仰賴有效且即時的反光性能檢測。然而,目前常用的標線反光性能檢測方式,主要依賴反光儀等專業設備進行量測,雖然具有高準確度與穩定性,但其設備成本昂貴,限制了其在日常維護中的普及性。
本研究提出一種結合影像辨識與機器學習的反光性能預測方法。首先,透過手機拍攝標線表面之近距離影像,並使用 YOLOv8 模型進行訓練,以辨識出影像中每顆玻璃珠的位置與裸露直徑,進一步擷取影像中所有玻璃珠數量、大小與表面面積等物理特徵。為克服影像中玻璃珠尺寸無法直接得知之問題,本研究進一步建立裸露直徑對原始玻璃珠尺寸的分類模型,使用多元邏輯斯回歸將玻璃珠分至對應粒徑區間,藉此推估其原尺寸並計算沉降率。此外,為分析玻璃珠特徵與標線回歸反射輝度係數( RL )之關係,本研究分別針對標線試片與實地道路標線收集反光數據,並搭配隨機森林回歸模型建構預測模型,以驗證所提方法之準確性與穩定性。結果顯示,在 RL 預測中,標線試片資料之測試集 R² 為 0.779,實地標線資料則達到 R² 為 0.876,顯示本方法在不同場景皆能有效反映玻璃珠對反光性能之影響,並具備良好的預測能力。 | zh_TW |
| dc.description.abstract | Road markings play a critical role in traffic engineering by guiding road users in correctly determining driving directions. This function becomes especially crucial under low-visibility conditions such as nighttime or rainy weather, where retroreflective performance directly affects both drivers’ ability to perceive road markings and the accuracy of machine vision systems used in autonomous vehicles. To ensure sufficient visibility of road markings, effective and real-time retroreflectivity measurement is required. However, current retroreflectivity assessments rely heavily on specialized instruments such as retroreflectometers. Although these devices offer high accuracy and stability, their high cost limits their widespread adoption in routine maintenance practices.
This study proposes a retroreflectivity prediction method that integrates image recognition and machine learning. Images of road marking were captured using a smartphone, and a YOLOv8 model was trained to detect each glass bead's position and exposed diameter. The model extracted every physical feature in images such as the number, size, and surface area of the beads. To address the challenge that the actual size of the beads cannot be directly observed in the image, a classification model was developed to estimate the original bead size based on exposed diameter. A multinomial logistic regression model was used to assign each bead to its corresponding size range, enabling the calculation of embedment depth. Furthermore, to analyze the relationship between bead characteristics and retroreflectivity (RL), retroreflection data were collected from both laboratory test specimens and actual road markings. A random forest regression model was employed to construct and validate the predictive framework. Experimental results show that for RL prediction, the test R² of laboratory specimens reached 0.779, while that of real-world road markings achieved 0.876. These results demonstrate that the proposed method effectively reflects the influence of glass beads on retroreflectivity across different scenarios and possesses strong predictive capability. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-21T16:39:22Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-08-21T16:39:22Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 摘要 i
ABSTRACT ii 圖目錄 vi 表目錄 viii 第一章、緒論 1 1.2研究內容與方法 2 1.3研究流程 3 第二章、文獻回顧 5 2.1標線反光性能指標 5 2.1.1反光性能指標 5 2.1.2玻璃珠對反光性能的影響 10 2.2影像辨識與反光性能相關研究 14 2.2.1影像辨識相關研究 15 2.2.2玻璃珠辨識相關研究 17 2.3文獻回顧小結 21 第三章、研究方法 23 3.1標線反光檢測方法 23 3.1.1反光儀介紹 23 3.1.2標線反光資料收集 25 3.2標線表面玻璃珠之影像辨識 26 3.2.1影像辨識方法 26 3.2.2標線影像辨識 31 3.3玻璃珠沉降率計算 32 3.4隨機森林模型 38 第四章、實驗結果與分析 42 4.1玻璃珠之辨識結果 42 4.2標線反光預測模型 49 4.3標線反光預測模型之實地應用 55 第五章、結論與建議 67 5.1結論 67 5.2討論與建議 68 參考文獻 70 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 回歸反射輝度係數RL | zh_TW |
| dc.subject | 熱處理聚酯 | zh_TW |
| dc.subject | 反光預測模型 | zh_TW |
| dc.subject | 隨機森林 | zh_TW |
| dc.subject | 影像辨識 | zh_TW |
| dc.subject | Image recognition | en |
| dc.subject | Random forest | en |
| dc.subject | Retroreflectivity estimation model | en |
| dc.subject | Coefficient of Retroreflected Luminance (RL) | en |
| dc.subject | Thermoplastic Road Marking | en |
| dc.title | 標線表面玻璃珠對反光性能之影響 | zh_TW |
| dc.title | Effects of Glass Beads on Road Marking Retroreflectivity Performance | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 王仲宇;陳怡先 | zh_TW |
| dc.contributor.oralexamcommittee | Zhong-Yu Wang;Yi-Xian Chen | en |
| dc.subject.keyword | 熱處理聚酯,回歸反射輝度係數RL,影像辨識,隨機森林,反光預測模型, | zh_TW |
| dc.subject.keyword | Thermoplastic Road Marking,Coefficient of Retroreflected Luminance (RL),Image recognition,Random forest,Retroreflectivity estimation model, | en |
| dc.relation.page | 73 | - |
| dc.identifier.doi | 10.6342/NTU202502407 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2025-08-06 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 土木工程學系 | - |
| dc.date.embargo-lift | 2030-07-29 | - |
| 顯示於系所單位: | 土木工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 此日期後於網路公開 2030-07-29 | 2.45 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
