請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99165完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 洪挺軒 | zh_TW |
| dc.contributor.advisor | Ting-Hsuan Hung | en |
| dc.contributor.author | 翁湘晴 | zh_TW |
| dc.contributor.author | Hsiang-Ching Weng | en |
| dc.date.accessioned | 2025-08-21T16:38:38Z | - |
| dc.date.available | 2025-08-22 | - |
| dc.date.copyright | 2025-08-21 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-08-04 | - |
| dc.identifier.citation | 丁文彥。1993。蘭陽地區青蔥栽培土壤酸化及連作障礙之改進方法。花蓮區農業專訊6:2-4。
王建元。2022。宜蘭三星蔥主要葉部病害生物防治菌之開發。國立臺灣大學植物病理與微生物學研究所碩士論文。 江姿漪、陳逸潔。2024。面對國際化肥價格飆漲 比較日、韓、臺因應對策。豐年雜誌74(7):102-107。 李協昌。2010。合理化施肥與節能減碳。農政與農情213:23。 杜麗華、陳子偉、劉天成、顏辰鳳、陳保良、李昆龍、洪裕堂、蔡馨儀。2024。化學農藥風險十年減半行動手冊 (第六版)。臺北:農業部動植物防疫檢疫署。 林庭緯、蕭嘉祐、林秋琍、黃振文。2019。羽毛液肥的研發與其在白菜生育上之應用。植物醫學61:1-10。 花蓮農改場。2017。青蔥快逃 防治軟腐病厲害三招數。上下游News&Market,新知。https://www.newsmarket.com.tw/blog/97909/ 邱凡晟。2010。不同施肥管理對青蔥生長、土壤化學性質、酵素活性及微生物族群結構之影響。國立臺灣大學農業化學研究所碩士論文。 哈拉瑞・尤瓦爾・諾瓦 (Halari, Y. N.)。2018。人類大歷史:從野獸到扮演上帝 (林俊宏譯)。天下文化。(原著出版於2011年) 翁震炘。2008。肥料價格調整及穩定供需因應方案。農政與農情192:16。 張武男、黃鵬。1998。台灣蔥科蔬菜品種改良之研究。蔬菜育種技術研習會專刊,特073號:312-313。 張義璋。2007。稻葉鞘腐敗病。植物保護圖鑑系列8-水稻保護。292-296。 張讚昌、段蓬福、林順發。2012。青蔥萃取物抑菌能力之研究。馬偕學報10:95-111。 許苑培。1996。蔥植體殘質對青蔥、萵苣與蘿蔔發芽抑制之生物檢定及連作對後作生育與產量之影響。國立中興大學園藝學研究所碩士論文。 許苑培。1999。青蔥栽培管理。桃園區農業專訊28:22-25。 陳任芳、巫宣毅、林立、蔡依真、賴信順。2012。青蔥健康管理病蟲害防治技術手冊。花蓮區農業改良場專刊。99。 陳任芳。2015。青蔥根螨與軟腐病之綜合管理策略。花蓮區農業專訊91:6-9。 陳郁蕙、李俊霖、陳雅惠、王瓊芯。2018。臺灣作物栽種施用農藥與化肥之空間分布探討。主計月刊746:26-33。 曾宥紘、郭雅紋。2020。家禽羽毛化為肥分長肥效的新型栽培介質。豐年雜誌70:98-103。 游昇俯。2021。「超載」農地長出暖化潛勢?臺灣土壤劣化與農地上過重的肥料。農傳媒。https://www.agriharvest.tw/archives/61765 游昇俯。2023。青蔥炭疽捲葉病襲來! 去年危害中部逾500公頃 農試所:防治首要使用健康種苗。農傳媒。https://www.agriharvest.tw/archives/104881 黃晉興、林玫珠、林宗俊、蔡佳欣、張淑貞、江明耀。2022。蔥破逆境-氣候變遷下青蔥的病蟲害管理策略。農業試驗所技術服務季刊131:11-15。 黃晉興、袁琴雅。2023。青蔥炭疽捲葉病之介紹。農業試驗所技術服務季刊134:1-4。 楊秀珠。2001。作物生產整合管理。農政與農情110:76。 詹朝清、丁文彥、呂文通。1991。腐植酸及有機質肥料對青蔥生長及連作之影響。花蓮區農業改良場彙報7:133-146。 詹朝清。1998。青蔥連作障礙及葉尖枯萎改進之研究。花蓮區農業改良場研究彙報15:47-60。 農業部統計處。2024。112年農業統計年報。臺北:農業部。 農業部農糧署。2023。產銷履歷農產品生產過程臺灣良好農業規範升級版 (TGAP PLUS) -蔬菜類。https://www.afa.gov.tw/cht/index.php?code=list&flag=detail&ids=3348&article_id=29611 劉興榮編。2009。農業經營專區技術叢書-青蔥栽培管理手冊。花蓮:行政院農業委員會花蓮區農業改良場。 蔡依真。2023。青蔥之作物有害生物綜合管理 (IPM) 操作指引。https://www.aphia.gov.tw/ws.php?id=22488 蔡濰安、邱品叡、施雨伸。2019。細菌性軟腐病菌之拮抗菌篩選及其病害防治效果評估。花蓮區農業改良場研究彙報38:105-121。 Abarenkov, K., Zirk, A., Piirmann, T., Pöhönen, R., Ivanov, F., Nilsson, R. H., Kõljalg, U. (2024). UNITE general FASTA release for eukaryotes. Version 04.04.2024. UNITE Community. Abd Elwahed, M. S. A., Mahdy, H. A., El-Saeid, H. M., & Abouziena, H. F. (2019). Effect of some bio-regulators on yield quantity and quality of garlic plants (Allium sativum L.). Middle East Journal of Applied Sciences, 9(1), 17-24. Abdelgadir, H. A., Johnson, S. D., & Van Staden, J. (2009). Promoting branching of a potential biofuel crop Jatropha curcas L. by foliar application of plant growth regulators. Plant Growth Regulation, 58(3), 287-295. Abouelsaad, I. A., Abd-Elkade, D. Y., & Breng, S. H. (2023). The combined effects of gibberellic acid and kinetin on growth, yield and quality in globe artichoke (Cynara scolymus L.). Fayoum Journal of Agricultural Research and Development, 37(1), 82-97. Adetunji, D. A., Obideyi, O. A., Evinemi, O. T., & Adetunji, O. A. (2020). Phytotoxicity assessment of compost-type biofertilizer using co-composting and post composting fortification methods. Asian Journal of Agriculture and Food Sciences, 8(3), 44-48. Amin, A. A., Rashad, E. S. M., & EL-Abagy, H. M. H. (2007). Physiological effect of indole-3-butyric acid and salicylic acid on growth, yield and chemical constituents of onion plants. Journal of Applied Sciences Research, 3(11), 1554-1563. Barrow, N. J. (2017). The effects of pH on phosphate uptake from the soil. Plant and Soil, 410, 401-410. Bhari, R., Kaur, M., & Sing, R. S. (2021). Chicken feather waste hydrolysate as a superior biofertilizer in agroindustry. Current Microbiology, 78, 2212-2230. Bian, X., Yang, X., Li, Q., & Sun, X. (2022). Effects of planting of two common crops, Allium fistulosum and Brassica napus, on soil properties and microbial communities of ginseng cultivation in northeast China. BMC Microbiology, 22, 182. Calin, M., Raut, I., Arsene, M. L., Capra, L., Gurban, A. M., Doni, M., & Jecu, L. (2019). Applications of fungal strains with keratin-degrading and plant growth promoting characteristics. Agronomy, 9, 543. Callahan, B. J., McMurdie, P. J., Rosen, M. J., Han, A. W., Johnson, A. J. A., & Holmes, S. P. (2016). DADA2: High-resolution sample inference from Illumina amplicon data. Nature Methods, 13(7), 581-583. Caporaso, J. G., Lauber, C. L., Walters, W. A., Berg-Lyons, D., Lozupone, C. A., Turnbaugh, P. J., Fierer, N., & Knight, R. (2011). Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proceedings of the National Academy of Sciences, 108(supplement 1), 4516-4522. Chase, M. W., Reveal, J. L., & Fay, M. F. (2009). A subfamilial classification for the expanded asparagalean families Amaryllidaceae, Asparagaceae and Xanthorrhoeaceae. Botanical Journal of the Linnean Society, 161(2), 132-136. Clagnan, E., Cucina, M., De Nisi, P., Dell’Orto, M., D’Imporzano, G., Kron-Morelli, R., Llenas-Argelaguet, L., & Adani, F. (2023). Effects of the application of microbiologically activated bio-based fertilizers derived from manures on tomato plants and their rhizospheric communities. Scientific Reports, 13, 22478. Damodaran, S., & Strader, L. C. (2019). Indole 3-butyric acid metabolism and transport in Arabidopsis thaliana. Frontiers in Plant Science, 10, 851. De Candolle, A. (1886). Origin of cultivated plants (2nd ed.). Kegan Paul Trench & Co. De Toni, C. H., Richter, M. F., Chagas, J. R., Henriques, J. A., & Termignoni, C. (2002). Purification and characterization of an alkaline serine endopeptidase from a feather-degrading Xanthomonas maltophilia strain. Canadian Journal of Microbiology, 48(4), 342-348. Denyer, R. (2000). Introduction: Integrated crop management (ICM). Pest Management Science 56, 945-946. Di Domenico Ziero, H., Ampese, L. C., Sganzerla, W. G., Torres-Mayanga, P. C., Timko, M. T., Mussatto, S. I., & Forster-Carneiro, T. (2022). Subcritical water hydrolysis of poultry feathers for amino acids production. The Journal of Supercritical Fluids, 181, 105492. Dissanayake, M. L. M. C., Kashima, R., Tanaka, S., & Ito, S. (2009). Pathogenic variation and molecular characterization of Fusarium species isolated from wilted Welsh onion in Japan. Journal of General Plant Pathology, 75, 37-45. Dong, Y., Cheng, Z., Meng, H., Liu, H., Wu, C., & Khan, A. R. (2013). The effect of cultivar, sowing date and transplant location in field on bolting of Welsh onion (Allium fistulosum L.). BMC Plant Biology, 13, 154. Du Jardin P. (2015). Plant biostimulants: definition, concept, main categories and regulation. Scientia Horticulturae, 196, 3-14. Du Jardin P., Xu L., Geelen D. (2020). Agricultural functions and action mechanisms of plant biostimulants ( PBs ). The Chemical Biology of Plant Biostimulants, 1-30. Ekta, T., & Rani, G. (2012). Rapid conversion of chicken feather to feather meal using dimeric keratinase from Bacillus licheniformis ER-15. Journal of Bioprocessing & Biotechniques, 2(4), 1000123. Epstein, E., & Ludwig‐Müller, J. (1993). Indole‐3‐butyric acid in plants: occurrence, synthesis, metabolism and transport. Physiologia Plantarum, 88(2), 382-389. Ertani, A., Cavani, L., Pizzeghello, D., Brandellero, E., Altissimo, A., Ciavatta, C., & Nardi, S. (2009). Biostimulant activity of two protein hydrolysates in the growth and nitrogen metabolism of maize seedlings. Journal of Plant Nutrition and Soil Science, 172(2), 237-244. Frick, E. M., & Strader, L. C. (2018). Roles for IBA-derived auxin in plant development. Journal of Experimental Botany, 69(2), 169-177. Gabri, C. G., Soto, V. C., Ibañez, A. A., & Galmarini, C. R. (2024). Foliar application of boron, calcium, and indole-3-butyric acid on onion plants to improve seed production. Italian Journal of Agronomy, 19(2), 100008. Galeano, P., González, P. H., Fraguas, L. F., & Galván, G. A. (2014). Age-related resistance to Fusarium oxysporum f. sp. cepae and associated enzymatic changes in seedlings of Allium cepa and A. fistulosum. Tropical Plant Pathology, 39(5), 374-383. Galván, G. A., Koning-Boucoiran, C. F. S., Koopman, W. J. M., Burger-Meijer, K., González, P. H., Waalwijk, C., Kik, C., & Scholten, O. E. (2008). Genetic variation among Fusarium isolates from onion, and resistance to Fusarium basal rot in related Allium species. European Journal of Plant Pathology, 121(4), 499-512. Genç, E., & Atici, Ö. (2019). Chicken feather protein hydrolysate as a biostimulant improves the growth of wheat seedlings by affecting biochemical and physiological parameters. Turkish Journal of Botany, 43, 67-79. Gianfagna, T. (1995). Natural and synthetic growth regulators and their use in horticultural and agronomic crops. In P. J. Davies (Ed.), Plant Hormones: Physiology, Biochemistry and Molecular Biology (pp. 751-773). Springer. Goda, D. A., El-Gamal, E. H., Rashad, M., & Abdel-Fattah, Y. R. (2025). The optimization of calcareous soil cation exchange capacity via the feather hydrolysate and N-P fertilizers integration. Scientific Reports, 15, 4676. Gonçalves, M. F. M., Vicente, T. F. L., Esteves, A. C., & Alves, A. (2020). Novel halotolerant species of Emericellopsis and Parasarocladium associated with macroalgae in an estuarine environment. Mycologia, 112(1), 154-171. Grazziotin, A., Pimentel, F. A., de Jong, E. V., & Brandelli, A. (2006). Nutritional improvement of feather protein by treatment with microbial keratinase. Animal Feed Science and Technology, 126, 135-144. Gupta, R., Elkabetz, D., Leibman-Markus, M., Jami, E., & Bar, M. (2022). Cytokinin-microbiome interactions regulate developmental functions. Environmental Microbiome, 17, 2. Gupta, S., Sharma, S., Aich, A., Verma, A. K., Bhuyar, P., Nadda, A. K., Mulla, S. I., & Kalia, S. (2023). Chicken feather waste hydrolysate as a potential biofertilizer for environmental sustainability in organic agriculture management. Waste and Biomass Valorization, 14(9), 2783-2799. Hadas, A., & Kautsky, L. (1994). Feather meal, a semi-slow-release nitrogen fertilizer for organic farming. Fertilizer Research, 38(2), 165-170. Herlemann, D. P. R., Labrenz, M., Jürgens, K., Bertilsson, S., Waniek, J. J., & Andersson, A. F. (2011). Transitions in bacterial communities along the 2000 km salinity gradient of the Baltic Sea. The ISME Journal, 5(10), 1571-1579. Heuer H., Krsek M., Baker P., Smalla K., Wellington E. M. (1997). Analysis of actinomycete communities by specific amplification of genes encoding 16S rRNA and gel-electrophoretic separation in denaturing gradients. Applied and Environmental Microbiology, 63(8), 3233-3241. Hittalmani, S., Mahesh, H. B., Mahadevaiah, C., & Prasannakumar, M. K. (2016). De novo genome assembly and annotation of rice sheath rot fungus Sarocladium oryzae reveals genes involved in Helvolic acid and Cerulenin biosynthesis pathways. BMC Genomics, 17, 271. Huang, P., De-Bashan, L., Crocker, T., Kloepper, J. W., & Bashan, Y. (2017). Evidence that fresh weight measurement is imprecise for reporting the effect of plant growth-promoting (rhizo) bacteria on growth promotion of crop plants. Biology and Fertility of Soils, 53(2), 199-208. Jagadeesan, Y., Meenakshisundaram, S., Raja, K., & Balaiah, A. (2023). Sustainable and efficient-recycling approach of chicken feather waste into liquid protein hydrolysate with biostimulant efficacy on plant, soil fertility and soil microbial consortium: A perspective to promote the circular economy. Process Safety and Environmental Protection, 170, 573-583. Jayasinghe, H., Chang, H.-X., Knobloch, S., Yang, S.-H., Hendalage, D. P. B., Ariyawansa, K. G. S. U., Liu, P.-Y., Stadler, M., & Ariyawansa, H. A. (2024). Metagenomic insight to apprehend the fungal communities associated with leaf blight of Welsh onion in Taiwan. Frontiers in Plant Science, 15, 1352997. Jeong, J. J., Lee, O.M., Jeon, Y.D., Kim, J.D., Lee, N. R., Lee, C. Y., & Son, H. J. (2010). Production of keratinolytic enzyme by a newly isolated feather-degrading Stenotrophomonas maltophilia that produces plant growth-promoting activity. Process Biochemistry, 45(10), 1738-1745. Jiang, Y., Yue, Y., Wang, Z., Lu, C., Yin, Z., Li, Y., & Ding, X. (2024). Plant biostimulant as an environmentally friendly alternative to modern agriculture. Journal of Agricultural and Food Chemistry,72 (10), 5107-5121. Joardar, J. C., & Rahman, M. M. (2018). Poultry feather waste management and effects on plant growth. International Journal of Recycling of Organic Waste in Agriculture, 7(3), 183-188. Kim, W. K., & Patterson, P. H. (2000). Nutritional value of enzyme- or sodium hydroxide-treated feathers from dead hens. Poultry Science, 79(4), 528-534. Korasick, D. A., Enders, T. A., & Strader, L. C. (2013). Auxin biosynthesis and storage forms. Journal of Experimental Botany, 64(9), 2541-2555. Kuroda, K., Kurashita, H., Arata, T., Miyata, A., Kawazoe, M., Nobu, M. K., Narihiro, T., Ohike, T., Hatamoto, M., Maki, S., & Yamaguchi, T. (2020). Influence of green tuff fertilizer application on soil microorganisms, plant growth, and soil chemical parameters in green onion (Allium fistulosum L.) cultivation. Agronomy, 10(7), 929. Lau, S.-E., Teo, W. F. A., Teoh, E. Y., & Tan, B. C. (2022). Microbiome engineering and plant biostimulants for sustainable crop improvement and mitigation of biotic and abiotic stresses. Discover Food, 2, 9. Le, V. N., Nguyen, Q. T., Nguyen, T. D., Nguyen, N. T., Janda, T., Szalai, G., & Le, T. G. (2020). The potential health risks and environmental pollution associated with the application of plant growth regulators in vegetable production in several suburban areas of Hanoi, Vietnam. Biologia Futura, 71(3), 323-331. Love, M. I., Huber, W., & Anders, S. (2014). Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology, 15, 550. Majkowska-Gadomska J., Arcichowska-Pisarska K., Dobrowolski A., Mikulewicz E. (2016). Effect of Polimag S on the yield and nutritional value of the Welsh onions (Allium fistolosum L.). Journal of Elementology, 21(3): 757-767. Marquez-Villavicencio, M., Groves, R. L., & Charkowski, A. O. (2011). Soft rot disease severity is affected by potato physiology and Pectobacterium taxa. Plant Disease, 95, 232-241. Meerman, F., Van De Ven, G. W. J., Van Keulen, H., & Breman, H. (1996). Integrated crop management: An approach to sustainable agricultural development. International Journal of Pest Management, 42(1), 13-24. Moh, A. A., Massart, S., Jijakli, M. H., & Lepoivre, P. (2012). Models to predict the combined effects of temperature and relative humidity on Pectobacterium atrosepticum and Pectobacterium carotovorum subsp. carotovorum population density and soft rot disease development at the surface of wounded potato tubers. Journal of Plant Pathology, 94(1), 181-191. Moubayidin, L., Di Mambro, R., & Sabatini, S. (2009). Cytokinin-auxin crosstalk. Trends in Plant Science, 14(10), 557-562. Możejko, M., & Bohacz, J. (2023). Effect of keratin hydrolysates obtained from feather decomposition by Trichophyton ajelloi on plant germination, growth and biological activity of selected arable soils under model conditions. Agronomy, 13, 187. Mugnai, S., Azzarello, E., Pandolfi, C., Salamagne, S., Briand, X., & Mancuso, S. (2008). Enhancement of ammonium and potassium root influxes by the application of marine bioactive substances positively affects Vitis vinifera plant growth. Journal of Applied Phycology, 20, 177-182. National Academy Press. (1989). Alternative agriculture. National Academy Press. Nurdiawati, A., Suherman, C., Maxiselly, Y., Akbar, M. A., Purwoko, B. A., Prawisudha, P., & Yoshikawa, K. (2019). Liquid feather protein hydrolysate as a potential fertilizer to increase growth and yield of patchouli (Pogostemon cablin Benth) and mung bean (Vigna radiata). International Journal of Recycling of Organic Waste in Agriculture, 8(3), 221-232. Oksanen, J., Simpson, G., Blanchet, F., Kindt, R., Legendre, P., Minchin, P., O'Hara, R., Solymos, P., Stevens, M., Szoecs, E., Wagner, H., Barbour, M., Bedward, M., Bolker, B., Borcard, D., Borman, T., Carvalho, G., Chirico, M., De Caceres, M., Durand, S., Evangelista, H., FitzJohn, R., Friendly, M., Furneaux, B., Hannigan, G., Hill, M., Lahti, L., McGlinn, D., Ouellette, M., Ribeiro, C. E., Smith, T., Stier, A., Ter Braak, C., Weedon, J. (2025). vegan: Community Ecology Package. R package version 2.7-0, https://vegandevs.github.io/vegan/. Oquist, K. A., Strock, J. S., & Mulla, D. J. (2007). Influence of alternative and conventional farming practices on subsurface drainage and water quality. Journal of Environmental Quality, 36(4), 1194-1204. Padula, G., Xia, X., & Hołubowicz, R. (2022). Welsh onion (Allium fistulosum L.) seed physiology, breeding, production and trade. Plants, 11(3), 343. Parry, D. A. D., & North, A. C. T. (1998). Hard alpha-keratin intermediate filament chains: Substructure of the N- and C-terminal domains and the predicted structure and function of the C-terminal domains of Type I and Type II chains. Journal of Structural Biology, 122, 67-75. Paul, T., Das, A., Mandal, A., Halder, S. K., DasMohapatra, P. K., Pati, B. R., & Mondal, K. C. (2013). Production and purification of keratinase using chicken feather bioconversion by a newly isolated Aspergillus fumigatus TKF1: detection of valuable metabolites. Biomass Conversion and Biorefinery, 4(2), 137-148. Qu, Q., Zhang, Z., Peijnenburg, W., Liu, W., Lu, T., Hu, B., Chen, J., Chen, J., Lin, Z., & Qian, H. (2020). Rhizosphere microbiome assembly and its impact on plant growth. Journal of Agricultural and Food Chemistry, 68(18), 5024-5038. R Core Team. (2024). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/. Raguraj, S., Kasim, S., Jaafar, N. M., & Nazli, M. H. (2022). Influence of chicken feather waste derived protein hydrolysate on the growth of tea plants under different application methods and fertilizer rates. Environmental Science and Pollution Research, 30(13), 37017-37028. Ramy, G. E., Atef, M. K. N., & Ahmed, A. A. E. (2019). The role of benzyl amino purine and kinetin in enhancing the growth and flowering of three Gaillardia varieties. Alexandria Journal of Agricultural Sciences, 64(5), 277-288. Richard, B., Qi, A., & Fitt, B. D. L. (2022). Control of crop diseases through Integrated Crop Management to deliver climate‐smart farming systems for low‐ and high‐input crop production. Plant Pathology, 71, 187-206. Rouphael, Y., Carillo, P., Cristofano, F., Cardarelli, M., & Colla, G. (2021). Effects of vegetal- versus animal-derived protein hydrolysate on sweet basil morpho-physiological and metabolic traits. Scientia Horticulturae, 284, 110123. Sakane, K., Ueno, T., Shigyo, M., Sasaki, K., & Ito, S. (2024). Pathogenicity differentiation of Fusarium spp. dausing Fusarium basal rot and wilt disease in Allium spp. Pathogens, 13(7), 591. Salih, S. M., & Abdulrraziq, A. A. (2023). Effect of combination foliar spraying of seaweed (Padina pavonica) with GA3 or/and IBA on the growth parameters of Allium cepa L. International Journal of Scientific Research in Biological Sciences, 10(5), 13-18. Schmidt, W. F. (1998). Innovative feather utilization strategies [Conference paper]. In Proceedings of the National Poultry Waste Management Symposium. Auburn University Printing Services. Sergiev, I. G., Alexieva, V. S., Ivanov, S. V., Moskova, I. I., & Karanov, E. N. (2006). The phenylurea cytokinin 4PU-30 protects maize plants against glyphosate action. Pesticide Biochemistry and Physiology, 85(3), 139-146. Sha, C., Wang, Z., Cao, J., Chen, J., Shen, C., Zhang, J., Wang, Q., & Wang, M. (2024). Management of Spartina alterniflora: assessing the efficacy of plant growth regulators on ecological and microbial dynamics. Sustainability, 16(17), 7848. Sinkiewicz, I., Śliwińska, A., Staroszczyk, H., & Kołodziejska, I. (2017). Alternative methods of preparation of soluble keratin from chicken feathers. Waste and Biomass Valorization, 8(4), 1043-1048. Sobucki, L., Ramos, R. F., Gubiani, E., Brunetto, G., Kaiser, D. R., & Daroit, D. J. (2019). Feather hydrolysate as a promising nitrogen‑rich fertilizer for greenhouse lettuce cultivation. International Journal of Recycling of Organic Waste in Agriculture, 8, 493-499. Solano, C., Artola, A., Barrena, R., Ballardo, C., & Sánchez, A. (2023). Effect of the exogenous application of different concentrations of indole-3-acetic acid as a growth regulator on onion (Allium cepa L.) cultivation. Agronomy, 13(9), 2204. Spaepen, S., & Vanderleyden, J. (2011). Auxin and plant-microbe interactions. Cold Spring Harbor Perspectives in Biology, 3(4), a001438. Štefančič, M., Štampar, F., & Osterc, G. (2005). Influence of IAA and IBA on root development and quality of Prunus ‘GiSelA 5’ leafy cuttings. HortScience, 40(7), 2052-2055. Tejada, M., Rodríguez-Morgado, B., Paneque, P., & Parrado, J. (2018). Effects of foliar fertilization of a biostimulant obtained from chicken feathers on maize yield. European Journal of Agronomy, 96, 54-59. Thuriès, L., Pansu, M., Feller, C., Herrmann, P., & Rémy, J.-C. (2001). Kinetics of added organic matter decomposition in a Mediterranean sandy soil. Soil Biology & Biochemistry, 33, 997-1010. Tounekti, T., Hernandez, I., Muller, M., Khemira, H., & Munne-Bosch, S. (2011). Kinetin applications alleviate salt stress and improve the antioxidant composition of leaf extracts in Salvia officinalis. Plant Physiology and Biochemistry, 49(10), 1165-1176. Wang, X., & Parsons, C. (1997). Effect of processing systems on protein quality of feather meals and hog hair meals. Poultry Science, 76, 491-496. Wang, X., Li, G. H., Zou, C. G., Ji, X. L., Liu, T., Zhao, P. J., Liang, L. M., Xu, J. P., An, Z. Q., Zheng, X., Qin, Y. K., Tian, M. Q., Xu, Y. Y., Ma, Y. C., Yu, Z. F., Huang, X. W., Liu, S. Q., Niu, X. M., Yang, J. K., Huang, Y., & Zhang, K. Q. (2014). Bacteria can mobilize nematode-trapping fungi to kill nematodes. Nature Communications, 5, 5776. White, T. J. (1990). PCR protocols: a guide to methods and applications. Academic press. Wickham, H. (2016). ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag. Williams, C. M., Richter, C. S., Mackenzie, J. M., & Shih, J. C. H. (1990). Isolation, identification, and characterization of a feather-degrading bacterium. Applied and Environmental Microbiology, 56(6), 1509-1515. Wu, P. H., Chang, H. X., & Shen, Y. M. (2023). Effects of synthetic and environmentally friendly fungicides on powdery mildew management and the phyllosphere microbiome of cucumber. PLoS One, 18(3), e0282809. Xing, J., Cao, X., Zhang, M., Wei, X., Zhang, J., & Wan, X. (2023). Plant nitrogen availability and crosstalk with phytohormones signallings and their biotechnology breeding application in crops. Plant Biotechnology Journal, 21(7), 1320-1342. Xu, Y., Wang, G., Gao, L., Wu, C., Chen, B., Li, T., & Nie, G. (2021). Review on uses, residues and effects of plant growth regulators in the cultivation of Ophiopogon japonicus. Chinese Journal of Pesticide Science, 23(6), 1073-1084. Yan L. (2023). ggvenn: Draw Venn Diagram by 'ggplot2'. R package version 0.1.10. https://github.com/yanlinlin82/ggvenn. Yu, Y. H., Cho, Y. T., Xu, Y. C., Wong, Z. J., Tsai, Y. C., & Ariyawansa, H. A. (2024). Identifying and controlling anthracnose caused by Colletotrichum taxa of Welsh onion in Sanxing, Taiwan. Phytopathology, 114(6), 1263-1275. Yusuf, I., Ahmad, S. A., Phang, L. Y., Syed, M. A., Shamaan, N. A., Abdul Khalil, K., Dahalan, F. A., & Shukor, M. Y. (2016). Keratinase production and biodegradation of polluted secondary chicken feather wastes by a newly isolated multi heavy metal tolerant bacterium-Alcaligenes sp. AQ05-001. Journal of Environmental Management, 183, 182-195. Zahid, G., Iftikhar, S., Shimira, F., Ahmad, H. M., & Aka Kaçar, Y. (2023). An overview and recent progress of plant growth regulators (PGRs) in the mitigation of abiotic stresses in fruits: A review. Scientia Horticulturae, 309, 111621. Zhang, X., & Schmidt, R. E. (2000). Hormone-containing products' impact on antioxidant status of tall fescue and creeping bentgrass subjected to drought. Crop Science, 40(5), 1344-1349. Zhang, Z.-Y., Chen, W.-H., Zou, X., Han, Y.-F., Huang, J.-Z., Liang, Z.-Q., & Deshmukh, S. K. (2019). Phylogeny and taxonomy of two new Plectosphaerella (Plectosphaerellaceae, Glomerellales) species from China. MycoKeys, 57, 47-60. Zhao, C., Ni, H., Zhao, L., Zhou, L., Borrás-Hidalgo, O., & Cui, R. (2020). High nitrogen concentration alter microbial community in Allium fistulosum rhizosphere. PLoS One, 15(11), e0241371. Zhao, C., Wang, Z., Cui, R., Su, L., Sun, X., Borras-Hidalgo, O., Li, K., Wei, J., Yue, Q., & Zhao, L. (2021). Effects of nitrogen application on phytochemical component levels and anticancer and antioxidant activities of Allium fistulosum. PeerJ, 9, e11706. Zheljazkov, V. D. (2005). Assessment of wool waste and hair waste as soil amendment and nutrient source. Journal of Environmental Quality, 34(6), 2310-2317. Zhou, Y., Liu, D., Li, F., Dong, Y., Jin, Z., Liao, Y., Li, X., Peng, S., Delgado-Baquerizo, M., & Li, X. (2024). Superiority of native soil core microbiomes in supporting plant growth. Nature Communications, 15, 6599. Zimmerman, P., & Wilcoxon, F. (1935). Several chemical growth substances which cause initiation of roots and other responses in plants. Contributions. Boyce Thompson Institute for Plant Research, 7, 209-229. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99165 | - |
| dc.description.abstract | 青蔥 (Allium fistulosum L.) 栽培已有多年歷史,是亞洲人餐桌上不可或缺的點綴。在臺灣,青蔥栽培導入作物整合管理的概念,從耕作技術、肥培管理到病蟲害防治已有成熟完善的規劃與管理建議,然目前仍以使用化學肥料為主,而化肥使用潛在許多隱憂,像是農田間生態失衡導致蟲害加劇或是環境汙染等等。本研究藉由盆栽試驗探討廢棄物再利用產品—羽毛蛋白水解液及植物生長調節劑複方型產品在青蔥栽培上是否能減少化肥使用量,並從田間土壤微生物相的觀點,評估此二資材對蔥田土壤的影響。在盆栽試驗上,使用稀釋150倍、稀釋300倍的羽毛蛋白水解液或稀釋500倍、稀釋1000倍的植物生長調節劑分別搭配不同施用量的化學肥料 (無施用、半量及全量化學肥料),觀察青蔥種植78天及43天後的生長表現,結果發現稀釋300倍的羽毛蛋白水解液及稀釋1000倍的植物生長調節劑搭配減至半量的化肥,與單純使用全量化肥有相近的生長表現,但羽毛蛋白水解液及植物生長調節劑單獨使用則無法產生促進生長的效果。另外,在使用150倍稀釋的羽毛蛋白水解液或500倍稀釋的植物生長調節劑栽培一個月的青蔥上,接種軟腐病及炭疽病,並沒有觀察到此二資材使青蔥罹病指標產生變化。在田間試驗上,比較慣行農法與額外施用羽毛蛋白水解液或植物生長調節劑對青蔥種植的生長效果,但在生長指標上並沒有發生明顯的改變,考量田間環境複雜,施用方式與劑量可能需進一步評估。為了瞭解羽毛蛋白水解液與植物生長調節劑的施用對微生物相的影響,利用次世代定序技術,比較慣行農法、額外施用羽毛蛋白水解液與額外施用植物生長調節劑的蔥田土壤微生物組成,透過amplicon sequence variants (ASVs) 的分布、α-diversity指標 (Richness、Shannon-index、Simpson-index)、非度量多維度分析、物種相對豐度及DESeq2分析得知土壤細菌組成種類非常豐富多樣,相對豐度小於1%的屬占比最多,真菌組成則相對簡單均勻,但羽毛蛋白水解液與植物生長調節劑的施用並不影響微生物的主要組成、生物多樣性及群落結構。整體而言,羽毛蛋白水解液與植物生長調節劑具有減少化肥施用量的潛力,可作為青蔥栽培的資材選擇之一。 | zh_TW |
| dc.description.abstract | Welsh onion (Allium fistulosum L.) cultivation has a long-standing history and remains an essential ingredient in Asian cuisine. In Taiwan, the concept of integrated crop management (ICM) has been applied to Welsh onion cultivation, resulting in well-established practices for cultivation techniques, fertilization, and pest control. However, chemical fertilizers remain the primary nutrient source, raising concerns over their potential negative impacts, such as ecological imbalances that exacerbate pest outbreaks and environmental pollution. This study uses a pot experiment to evaluate whether recycled products — feather-derived protein hydrolysate (FPH) and a compound plant growth regulator (PGR) — can reduce the reliance on chemical fertilizers in Welsh onion production. Additionally, the effects of these materials on soil microbial communities are assessed to understand their influence on the soil environment in onion fields. In the pot experiments, FPH (diluted 150× and 300×) and PGR (diluted 500× and 1000×) were applied with varying chemical fertilizer application (none, half, and full). After 78 and 43 days of cultivation, results showed that FPH (300×) and PGR (1000×) combined with half the standard chemical fertilizer usage achieved comparable growth performance to full chemical fertilizer application. However, neither FPH nor PGR alone promoted growth. Additionally, the occurrence of disease indices were not affected by using FPH and PGR or not. Field experiments comparing conventional farming with additional application of FPH or PGR revealed no significant differences in growth performance, likely due to the complexity of field conditions, suggesting that the application methods and dosages require further optimization. Furthermore, next-generation sequencing (NGS) was employed to assess soil microbial communities under conventional farming, conventional farming with additional application of FPH, and conventional farming with additional application of PGR. Results based on amplicon sequence variants (ASVs) distribution, α-diversity indices (Richness, Shannon-index, Simpson-index), non-metric multidimensional scaling (NMDS) analysis, relative abundance, and DESeq2 analysis revealed that the bacterial community was highly diverse, with the majority of genera exhibiting a relative abundance below 1%. In contrast, the fungal community was relatively simple and evenly distributed. However, the application of FPH and PGR did not alter the main microbial composition, biodiversity, and community structure. Overall, FPH and PGR demonstrate potential in reducing chemical fertilizer usage and can be considered alternative inputs for Welsh onion cultivation. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-21T16:38:38Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-08-21T16:38:38Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員審定書 i
謝辭 ii 中文摘要 iii ABSTRACT iv 目次 vi 表次 ix 圖次 xi 壹、 前言 1 一、 青蔥基本特性 1 二、 青蔥產業概況 2 三、 整合性栽培管理 2 1. 臺灣青蔥栽培模式 3 2. 臺灣青蔥病蟲害防治 4 3. 臺灣青蔥肥培管理 6 四、 研究動機與目的 6 貳、 前人研究 8 一、 羽毛蛋白水解液 (feather-derived protein hydrolysate, FPH) 8 1. FPH作為生物刺激素 (biostimulant) 8 2. FPH的製造方法 8 3. FPH在農業的應用與影響 9 二、 植物生長調節劑 (plant growth regulator, PGR) 10 1. PGR簡介 10 2. PGR在農業的應用與影響 11 三、 青蔥田間微生物相 12 1. 臺灣青蔥田間微生物相 12 2. FPH對土壤微生物相的影響 13 3. PGR對土壤微生物相的影響 14 參、 材料與方法 16 一、 供試資材種類及來源 16 二、 FPH、PGR及化肥施用量探討之盆栽試驗 16 1. 第一次FPH與化肥施用量探討之初步盆栽實驗 16 2. 第二次FPH與化肥施用量探討之初步盆栽實驗 17 3. PGR與化肥施用量探討之初步盆栽實驗 17 4. 兩種PGRs對青蔥定植初期根部生長效果之盆栽實驗 18 5. FPH、PGR及化肥施用量探討之大長方盆實驗 19 6. FPH、PGR及化肥施用量探討之盆栽實驗 20 三、 FPH、PGR與慣行農法搭配施用之田間試驗 21 四、 FPH、PGR對青蔥軟腐病及炭疽病防治之盆栽試驗 22 1. 供試菌株來源 22 2. 供試植物栽培處理 22 3. 軟腐病接種及罹病度、罹病嚴重度評估 23 4. 炭疽病接種及罹病度、罹病葉面積評估 23 五、 青蔥生長指標測量 24 六、 統計分析 25 七、 土壤微生物相分析 25 1. 土樣採集 25 2. 擴增子定序 (amplicon sequencing) 25 3. 次世代定序 (Next Generation Sequencing, NGS) 資料處理 26 肆、 結果 28 一、 羽毛蛋白水解液營養成分組成 28 二、 FPH、PGR及化肥施用量對青蔥生長表現之影響 28 1. 初步盆栽試驗之青蔥生長表現 28 1.1 FPH與化肥施用量探討之初步盆栽實驗 28 1.2 PGR與化肥施用量探討之初步盆栽實驗 28 1.3 兩種PGRs對青蔥定植初期根部生長的效果 29 2. FPH、PGR及化肥施用量盆栽實驗之青蔥生長情形 29 2.1 鮮重及乾重 30 2.2 葉綠素含量 (SPAD值) 33 2.3 株高 33 2.4 分蘗數、假莖粗、葉數及葉寬 33 3. FPH、PGR與慣行農法搭配施用田間試驗的青蔥生長情形 34 3.1 鮮重及乾重 34 3.2 葉綠素含量 (SPAD值) 34 3.3 株高 35 3.4 分蘗數、假莖粗、葉數及葉寬 35 三、 FPH、PGR對青蔥軟腐病及炭疽病防治效果評估 35 1. FPH、PGR對青蔥軟腐病防治效果 35 2. FPH、PGR對青蔥炭疽病防治效果 36 四、 青蔥田間土壤微生物相 36 1. 三種處理下土壤中的細菌組成 36 2. 三種處理下土壤中的真菌組成 39 伍、 討論 42 陸、 結語 48 柒、 表 50 捌、 圖 54 參考文獻 91 附錄表 107 附錄圖 125 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 青蔥 | zh_TW |
| dc.subject | 作物整合管理 | zh_TW |
| dc.subject | 土壤微生物相 | zh_TW |
| dc.subject | 次世代定序 | zh_TW |
| dc.subject | 化肥減量 | zh_TW |
| dc.subject | 植物生長調節劑 | zh_TW |
| dc.subject | 羽毛蛋白水解液 | zh_TW |
| dc.subject | Allium fistulosum | en |
| dc.subject | soil microbiome | en |
| dc.subject | chemical fertilizer reduction | en |
| dc.subject | plant growth regulator | en |
| dc.subject | feather-derived protein hydrolysate | en |
| dc.subject | next generation sequencing | en |
| dc.subject | integrated crop management | en |
| dc.title | 羽毛蛋白水解液及植物生長調節劑對青蔥栽培及土壤微生物相評估 | zh_TW |
| dc.title | Evaluation of Feather-derived Protein Hydrolysate and Plant Growth Regulator on Welsh Onion Cultivation and Soil Microbiome | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.coadvisor | 沈原民 | zh_TW |
| dc.contributor.coadvisor | Yuan-Min Shen | en |
| dc.contributor.oralexamcommittee | 林宜賢;鍾嘉綾;林乃君 | zh_TW |
| dc.contributor.oralexamcommittee | Yi-Hsien Lin;Chia-Lin Chung;Nai-Chun Lin | en |
| dc.subject.keyword | 作物整合管理,青蔥,羽毛蛋白水解液,植物生長調節劑,化肥減量,次世代定序,土壤微生物相, | zh_TW |
| dc.subject.keyword | integrated crop management,Allium fistulosum,feather-derived protein hydrolysate,plant growth regulator,chemical fertilizer reduction,next generation sequencing,soil microbiome, | en |
| dc.relation.page | 145 | - |
| dc.identifier.doi | 10.6342/NTU202503680 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2025-08-07 | - |
| dc.contributor.author-college | 生物資源暨農學院 | - |
| dc.contributor.author-dept | 植物醫學碩士學位學程 | - |
| dc.date.embargo-lift | 2025-08-22 | - |
| 顯示於系所單位: | 植物醫學碩士學位學程 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf | 16.21 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
