Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 土木工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99160
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor詹穎雯zh_TW
dc.contributor.advisorYin-Wen Chanen
dc.contributor.author林品宏zh_TW
dc.contributor.authorPing-Hung Linen
dc.date.accessioned2025-08-21T16:37:22Z-
dc.date.available2025-08-22-
dc.date.copyright2025-08-21-
dc.date.issued2025-
dc.date.submitted2025-08-04-
dc.identifier.citation1. ASTM, A., 615/A 615M (2008),“Standard Specification for Deformed and Plain Carbon-Steel Bars for Concrete Reinforcement”. ASTM International, 2020. 100: p. 19428-2959.
2. Concrete Mindess, S., Young, J.F., & Darwin, D. (2003)
3. Properties of Concrete Neville, A. M. (2011).
4. Tennis, P. D., & Jennings, H. M. (2000). A model for two types of calcium silicate hydrate in the microstructure of Portland cement pastes. Cement and Concrete Research, 30(6), 855–863.
5. Taylor, H. F. W. (1997). Cement Chemistry (2nd ed.). Thomas Telford
6. Scrivener, K. L., & Nonat, A. (2011).. Hydration of cementitious materials, present and future,Cement and Concrete Research, 41(7), 651–665
7. Thomas, J. J., Jennings, H. M., & Chen, J. J. (2009). Influence of nucleation seeding on the hydration kinetics of tricalcium silicate and cement pastes,Journal of the American Ceramic Society, 92(10), 2313–2323
8. Matschei, T., Lothenbach, B., & Glasser, F. P. (2007).The role of calcium sulfate in cement hydration,Cement and Concrete Research, 37(8), 1183–1194
9. Allen, A. J., Thomas, J. J., & Jennings, H. M. (2007). Composition and density of nanoscale calcium–silicate–hydrate in cement,Nature Materials, 6(4), 311–316
10. De Weerdt, K. et al. (2011). The effect of limestone on the hydration of Portland cement. Cement and Concrete Composites, 33(1), 30–38.
11. Hooton, R.D. (2010). Canadian use of ground limestone in Portland-limestone cement. Cement and Concrete Composites, 32(10), 819–826.
12. Mehta, P. K., & Monteiro, P. J. M. (2014). Concrete: Microstructure, Properties, and Materials (4th ed.)
13. Kranjc, A., Baltazar Hacquet (1739/40-1815), the Pioneer of Karst Geomorphologists. Acta Carsologica, 2006. 35(2-3).
14. Bentz, D.P., et al., Multi-scale investigation of the performance of limestone in concrete. Construction and Building Materials, 2015. 75: p. 1-10.
15. Tennis, P. D., Thomas, M. D. A., & Weiss, W. J. (2011). State-of-the-Art Report on Use of Limestone in Cements at Levels of up to 15%
16. Lothenbach, B., Le Saout, G., Gallucci, E., & Scrivener, K. (2008).Influence of limestone on the hydration of Portland cements,Cement and Concrete Research, 38(6), 848–860
17. Matschei, T., Lothenbach, B., & Glasser, F. P. (2007). The role of calcium carbonate in cement hydration. Cement and Concrete Research, 37(4), 551–558.
18. Schmidt, W., & Lothenbach, B. (2015). Influence of finely ground limestone on cement hydration. Cement and Concrete Research, 76, 105–117.
19. Antoni, M., Rossen, J., Martirena, F., & Scrivener, K. (2012). Cement substitution by a combination of metakaolin and limestone. Cement and Concrete Research, 42(12), 1579–1589.
20. Zajac, M., Skibsted, J., & Lothenbach, B. (2021). CO₂ uptake in cements blended with calcined clay and limestone. Cement and Concrete Research, 146, 106468.
21. De Weerdt, K., et al., Synergy between fly ash and limestone powder in ternary cements. Cement and Concrete Composites, 2011. 33(1): p. 30-38.
22. Bentz, D. P. (2006).Modeling the influence of limestone filler on cement hydration using CEMHYD3DCement and Concrete Composites, 28(2), 124–129
23. Hooton, R. D., & Thomas, M. D. A. (2002).Use of limestone in Portland cement: Effect on sulfate resistance
24. Senhadji, Y., et al. (2014). Influence of natural pozzolan, silica fume and limestone fine on strength, acid resistance and microstructure of mortar. Powder Technology, 254, 314–323.
25. Bederina, M., Makhloufi, Z., & Bouziani, T. (2011). Effect of Limestone Fillers on the Physic-Mechanical Properties of Limestone Concrete. Physics Procedia, 21, 28–34.
26. Marchetti, G., Rahhal, V. F., & Irassar, E. F. (2017). Influence of packing density and water film thickness on early-age properties of cement pastes with limestone filler and metakaolin. Materials and Structures, 50(2).
27. Chen, J. J., et al. (2016). Packing Density Improvement through Addition of Limestone Fines, Superfine Cement and Condensed Silica Fume. Journal of Materials Science and Chemical Engineering, 4, 29–36.
28. Valcuende, M., et al. (2012). Influence of limestone filler and viscosity-modifying admixture on the porous structure of self-compacting concrete. Construction and Building Materials, 28(1), 122–128.
29. Schöler, A., Lothenbach, B., Winnefeld, F., & Müller, C. J. (2017). Early hydration of Portland cement with different limestone additions. Materials and Structures, 50(2).
30. Ben Haha, M., Lothenbach, B., & Le Saout, G. (2011). Influence of limestone on cement hydration. Cement and Concrete Composites, 33(10), 1042–1049.
31. Antoni, M., Rossen, J., Martirena, F., & Scrivener, K. (2012). Cement substitution by a combination of metakaolin and limestone. Cement and Concrete Research, 42(12), 1579–1589.
32. Kurdowski, W. (2014). Cement and Concrete Chemistry. Springer.
33. Bazzoni, A. Study of early hydration mechanisms of cement by means of electron microscopy. 2014.
34. Vance, K., et al., Hydration and strength development in ternary portland cement blends containing limestone and fly ash or metakaolin. Cement and Concrete Composites, 2013. 39: p. 93-103.
35. Li, W., et al., Influence of Nanolimestone on the Hydration, Mechanical Strength, and Autogenous Shrinkage of Ultrahigh-Performance Concrete. Journal of Materials in Civil Engineering, 2016. 28(1): p. 04015068
36. Bonavetti, V., Donza, H., Menéndez, G., Cabrera, O., & Irassar, E. F. (2001). Limestone filler cement in low w/c concrete: A rational use of energy. Cement and ConcreteResearch,31(4),539–547.
37. Scrivener, K. L., Snellings, R., & Lothenbach, B. (2015). A Practical Guide to Microstructural Analysis of Cementitious Materials. Boca Raton, FL: CRC Press / EPFL Press.
38. Vance, K., Sant, G., Brown, K., Li, W., Neithalath, N., & Mobasher, B. (2013). The influence of limestone particle size on hydration kinetics and reaction degree of cement pastes. Cement and Concrete Composites, 39, 1–9.
39. Zajac, M., et al., Influence of limestone and anhydrite on the hydration of Portland cements. Cement and Concrete Composites, 2014. 46: p. 99-108.
40. Arora, A., G. Sant, and N. Neithalath, Ternary blends containing slag and interground/blended limestone: Hydration, strength, and pore structure. Construction and Building Materials, 2016. 102: p. 113-124.
41. De Weerdt, K., et al., Hydration mechanisms of ternary Portland cements containing limestone powder and fly ash. Cement and Concrete Research, 2011. 41(3): p. 279-291.
42. Berodier, E., & Scrivener, K. (2014). Understanding the filler effect on the nucleation and growth of C-S-H. Cement and Concrete Research, 56, 93–104.
43. Bentz, D. P., Ferraris, C. F., Galler, M., & Winpigler, J. (2009). Influence of limestone powder on hydration and strength development of blended cements. Cement and Concrete Composites, 31(10), 731–735.
44. Gartner, E., & Hirao, H. (2015). A review of alternative approaches to the reduction of CO₂ emissions associated with the manufacture of the binder phase in concrete. Cement and Concrete Research, 78, 126–142.
45. Matschei, T., Lothenbach, B., & Glasser, F. P. (2007). The role of calcium carbonate in cement hydration. Cement and Concrete Research, 37(4), 551–558.
46. Schöler, A., Lothenbach, B., Winnefeld, F., & Müller, C. J. (2017). The effect of supplementary cementitious materials on sulfate resistance of limestone cements. Cement and Concrete Composites, 83, 374–385.
47. Scrivener, K. L., John, V. M., & Gartner, E. M. (2015). Eco-efficient cements: Potential economically viable solutions for a low-CO₂ cement-based materials industry. Cement and Concrete Research, 114, 2–26.
48. Thongsanitgarn, P., et al. (2014). Heat of hydration of Portland high-calcium fly ash cement incorporating limestone powder: Effect of limestone particle size. Construction and Building Materials, 66, 410–417.
49. John, V. M., et al. (2018). Fillers in cementitious materials — Experience, recent advances and future potential. Cement and Concrete Research, 114, 65–78.
50. De Weerdt, K., et al. (2011). Synergy between fly ash and limestone powder in ternary cements. Cement and Concrete Composites, 33(1), 30–38.
51. Tikkanen, J., Cwirzen, A., & Penttala, V. (2014). Effects of mineral powders on hydration process and hydration products in normal strength concrete. Construction and Building Materials, 72, 7–14.
52. Bonavetti, V., & Irassar, E. F. (1994). The effect of stone dust content in sand on the properties of fresh and hardened concrete. Cement and Concrete Research, 24(3), 580–590.
53. Berodier, E., & Scrivener, K. (2014). Understanding the filler effect on the nucleation and growth of C–S–H. Cement and Concrete Research, 56, 93–104.
54. Bentz, D. P., Ferraris, C. F., & Galler, M. A. (2009). Influence of limestone particle size on early-age autogenous strains and stresses in cementitious materials. Cement and Concrete Composites, 31(4), 245–249.
55. Gartner, E., & Hirao, H. (2015). A review of alternative approaches to the reduction of CO₂ emissions associated with the manufacture of the binder phase in concrete. Cement and Concrete Research, 78, 126–142.
56. Thongsanitgarn, P., Chalee, W., & Jaturapitakkul, C. (2014). Heat of hydration of Portland high-calcium fly ash cement incorporating limestone powder: Effect of limestone particle size. Construction and Building Materials, 66, 410–417.
57. Matschei, T., Lothenbach, B., & Glasser, F. P. (2007). The role of calcium carbonate in cement hydration. Cement and Concrete Research, 37(4), 551–558.
58. Tikkanen, J., Cwirzen, A., & Penttala, V. (2014). Effects of mineral powders on hydration process and hydration products in normal strength concrete. Construction and Building Materials, 72, 7–14.
59. Scrivener, K., Snellings, R., & Lothenbach, B. (2015). A practical guide to microstructural analysis of cementitious materials. CRC Press.
60. Alonso, M. M., & Fernandez, L. (2004). Influence of slag cement on the pore structure and sorption properties of concrete. Cement and Concrete Composites, 26(8), 689–696.
61. Escalante-García, J. I., & Sharp, J. H. (2001). The microstructure and mechanical properties of blended cements hydrated at various temperatures. Cement and Concrete Research, 31(5), 695–702.
62. Juenger, M. C. G., Winnefeld, F., Provis, J. L., & Ideker, J. H. (2011). Advances in alternative cementitious binders. Cement and Concrete Research, 41(12), 1232–1243.
63. Bentz, D. P. (2007). Transient thermal behavior of portland cement mortars containing phase change materials. Cement and Concrete Composites, 29(7), 569–576.
64. Scrivener, K. L., John, V. M., & Gartner, E. M. (2015). Eco-efficient cements: Potential economically viable solutions for a low-CO₂ cement-based materials industry. Cement and Concrete Research, 114, 2–26.
65. Bouzoubaa, N., & Malhotra, V. M. (2001). Current status of supplementary cementing materials in Canada. ACI Materials Journal, 98(6), 516–526.
66. Mehta, P. K., & Monteiro, P. J. M. (2014). Concrete: Microstructure, Properties, and Materials (4th ed.). McGraw-Hill Education.
67. Berry, E. E., & Malhotra, V. M. (1980). Fly ash for use in concrete – A critical review. Journal of the American Concrete Institute, 77(8), 59–73.
68. Naik, T. R., & Ramme, B. W. (1990). High-strength concrete containing large quantities of fly ash. ACI Materials Journal, 87(2), 111–118.
69. Berodier, E., & Scrivener, K. L. (2014). Understanding the filler effect on the nucleation and growth of C–S–H. Cement and Concrete Research, 56, 93–104.
70. Matschei, T., Lothenbach, B., & Glasser, F. P. (2007). The role of calcium carbonate in cement hydration. Cement and Concrete Research, 37(4), 551–558.
71. Juenger, M. C. G., Winnefeld, F., Provis, J. L., & Ideker, J. H. (2011). Advances in alternative cementitious binders. Cement and Concrete Research, 41(12), 1232–1243.
72. Liu, J., Shi, C., & Shao, Y. (2018). Drying shrinkage of cementitious materials containing limestone powder. Cement and Concrete Composites, 89, 144–153.
73. Lothenbach, B., Scrivener, K., & Hooton, R. D. (2011). Supplementary cementitious materials. Cement and Concrete Research, 41(12), 1244–1256.
74. Kumar, M., Bishnoi, S., & Scrivener, K. L. (2010). Influence of fly ash on the drying shrinkage of cement pastes. Cement and Concrete Research, 40(5), 586–590.
75. Mehta, P. K., & Monteiro, P. J. M. (2014). Concrete: Microstructure, Properties, and Materials (4th ed.). McGraw-Hill Education.
76. Tang, L. (1996). Electrically accelerated methods for determining chloride diffusivity in concrete—current development. Magazine of Concrete Research, 48(176), 173–179.
77. NT Build 492. (1999). Concrete, mortar and cement-based repair materials: Chloride migration coefficient from non-steady-state migration experiments. Nordtest Method.
78. Andrade, C., & Alonso, C. (1996). Corrosion rate monitoring in the laboratory and on-site. Construction and Building Materials, 10(5), 315–328.
79. Thomas, M. D. A., & Bentz, E. C. (2001). Life-365 Service Life Prediction Model Manual. Life-365 Consortium.
80. Sisomphon, K., & Franke, L. (2007). Chloride penetration in concrete containing fly ash and ground granulated blast furnace slag. Journal of Materials in Civil Engineering, 19(6), 485–493.
81. Yang, Z., Makar, J. M., & Beaudoin, J. J. (2013). Microstructural evolution of cementitious materials under chloride attack. Cement and Concrete Composites, 35(1), 34–43.
82. Zhang, T., & Li, X. (2011). Effect of water-to-binder ratio on transport properties and durability of concrete. Construction and Building Materials, 25(10), 3845–3850.
83. Song, H. W., & Saraswathy, V. (2006). Studies on the corrosion resistance of reinforced steel in concrete with ground granulated blast-furnace slag—An overview. Journal of Materials Science, 41, 824–836.
84. Papadakis, V. G., Fardis, M. N., & Vayenas, C. G. (1996). Effect of composition, environmental factors and cement-lime mortar coating on concrete carbonation. Materials and Structures, 29, 25–33.
85. Thomas, M. D. A., & Bamforth, P. B. (1999). Modelling chloride diffusion in concrete: Effect of fly ash and slag. Cement and Concrete Research, 29(4), 487–495.
86. Lothenbach, B., Scrivener, K., & Hooton, R. D. (2011). Supplementary cementitious materials. Cement and Concrete Research, 41(12), 1244–1256. https://doi.org/10.1016/j.cemconres.2010.12.001
87. Luping, T., & Nilsson, L. O. (1993). Chloride binding capacity and binding isotherms of OPC pastes and mortars. Cement and Concrete Research, 23(2), 247–253.
88. Mesbah, H. A., et al. (2011). Influence of limestone filler on microstructure and chloride diffusivity of cement pastes. Cement Wapno Beton, 16(1), 25–36.
89. Matschei, T., Lothenbach, B., & Glasser, F. P. (2007). Thermodynamic properties of AFm phases. Cement and Concrete Research, 37(9), 118–130.
90. Sisomphon, K., & Franke, L. (2007). Chloride penetration in concrete containing fly ash and ground granulated blast furnace slag. Journal of Materials in Civil Engineering, 19(6), 485–493.
91. Neville, A. M. (2011). Properties of Concrete (5th ed.). Pearson Education Limited.
92. Skalny, J., Marchand, J., & Odler, I. (2002). Sulfate Attack on Concrete. Spon Press.
93. Santhanam, M., Cohen, M. D., & Olek, J. (2001). Mechanism of sulfate attack: A fresh look Part 2. Proposed mechanisms. Cement and Concrete Research, 31(3), 341–346.
94. Mehta, P. K., & Monteiro, P. J. M. (2014). Concrete: Microstructure, Properties, and Materials (4th ed.). McGraw-Hill Education.
95. Crammond, N. J. (2003). The thaumasite form of sulfate attack in the UK. Cement and Concrete Composites, 25(8), 829–837.
96. Pan, Z., et al. (2015).Graphene oxide–templated formation of C–S–H with ordered microstructure and enhanced mechanical performance of cementitious composites.Cement and Concrete Composites, 58, 140–147.
97. Sato, R., & Diallo, F. (2006).Chloride binding in cementitious materials exposed to NaCl and CaCl2.Cement and Concrete Research, 36, 91–103.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99160-
dc.description.abstract本研究旨在探討石灰石水泥系統中摻配爐石與飛灰等礦物摻料對混凝土力學性能與耐久性之影響,進一步評估其作為低碳建材於實務工程中之可行性與永續應用潛力。隨著全球面對氣候變遷與淨零碳排的壓力日益加劇,建築材料產業積極尋求低碳轉型。水泥工業長期為高碳排放源,其燒製過程中熟料階段約貢獻全球二氧化碳總排放量的 7% 至 8%。石灰石水泥因可降低熟料用量,減少能耗與碳排放,已成為具發展潛力之替代型水泥材料。然而,其耐久性表現仍具高度變異,尤其於暴露於氯離子滲透與硫酸鹽侵蝕等嚴苛環境下,其微觀反應行為與長期穩定性尚待驗證。
本研究採用石灰石水泥與卜特蘭I型水泥,搭配不同比例之爐石與飛灰,分別製備多組混凝土與水泥砂漿試體,並設計不同水膠比(0.4、0.5、0.6)及石灰石粉細度變化作為主要變因。系統性評估其新拌混凝土性質(工作度、泌水率、含氣量等)、力學性質(抗壓強度、劈裂抗張強度、彈性模數)及耐久性(RCM、RCPT、硫酸鹽浸泡、乾燥收縮等指標)。其中,核心比較對象為三元混合膠結材料系統(CS35F15M、LS35F15M),即以 35% 爐石與 15% 飛灰取代水泥,藉此探討其與石灰石水泥共同作用下之反應行為與性能表現。
試驗結果顯示,石灰石水泥因具填充效應與成核效應,能有效促進早期水化反應,儘管早期抗壓強度略低於I型水泥,但於28天後展現良好後期強度發展潛力。尤其搭配飛灰與爐石摻配後,能有效補足石灰石水泥稀釋效應所造成之反應性不足,顯現出材料間的協同效應。RCM與RCPT試驗顯示,三元系混凝土之氯離子傳輸係數可降至 10⁻⁸ cm²/s 以下,具優異之抗滲性與緻密結構。硫酸鹽侵蝕試驗亦顯示,複合摻料可顯著提升體積穩定性與抗劣化能力,減少裂縫與重量損失,且隨石灰石粉細度增加,其耐硫酸鹽性能亦同步提升,顯示細度控制對微觀反應結構具正面影響。
此外,乾燥收縮結果指出,石灰石與爐灰摻配可有效降低毛細水逸散與孔隙連通性,改善早期乾縮與開裂風險。整體而言,石灰石水泥與爐石、飛灰三者之複摻系統不僅具良好工作性、力學性與長期耐久性,更能有效降低水泥用量與碳排放,符合現今低碳建材發展趨勢。
本研究成果可作為石灰石水泥與複合礦物摻料應用於混凝土材料設計之實驗依據,亦有助於未來永續建築與基礎設施中之實務推廣與標準制定,為綠色工程與低碳社會發展貢獻一份助力。
zh_TW
dc.description.abstractThis study investigates the effects of incorporating slag and fly ash into limestone cement systems on the mechanical and durability performance of concrete, aiming to evaluate the feasibility and long-term sustainability of such blends as low-carbon construction materials. In response to the global push for carbon neutrality and sustainable development, the cement industry—responsible for approximately 7–8% of total global CO₂ emissions, primarily from clinker calcination—has become a key target for decarbonization. Limestone cement, which reduces clinker consumption and energy use, offers promising environmental benefits. However, concerns remain regarding its durability, especially under aggressive conditions such as chloride ingress and sulfate attack.
In this study, domestic Type I Portland cement and limestone cement were used in combination with various proportions of ground granulated blast-furnace slag (GGBS) and fly ash to produce multiple series of concrete and mortar specimens. Key variables included water-to-binder ratio (0.4, 0.5, 0.6), mineral admixture type and content, and limestone fineness. A comprehensive experimental program was conducted to evaluate fresh properties (slump, bleeding rate, air content), mechanical properties (compressive strength, splitting tensile strength, and modulus of elasticity), and durability indicators including rapid chloride migration (RCM), rapid chloride permeability (RCPT), sulfate immersion, and drying shrinkage. The core comparative focus was placed on ternary blended binders (CS35F15M and LS35F15M) containing 35% slag and 15% fly ash, to examine the synergistic effects within the limestone cement matrix.
Experimental results revealed that although limestone cement exhibited slightly lower early-age strength, its filler effect and nucleation ability effectively accelerated hydration. With the addition of slag and fly ash, the later-age strength improved significantly, indicating a strong synergistic interaction among the mineral components. RCM and RCPT tests demonstrated that ternary mixes achieved chloride migration coefficients below 10⁻⁸ cm²/s, highlighting excellent impermeability and pore structure densification. Sulfate immersion tests also showed improved dimensional stability and resistance to chemical degradation, particularly for mixes with finer limestone particles, which enhanced long-term durability.
Furthermore, drying shrinkage tests indicated that incorporating limestone powder and supplementary cementitious materials reduced capillary water loss and pore connectivity, helping to mitigate cracking risks at early age. Overall, the ternary system combining limestone cement with slag and fly ash provided a favorable balance between workability, strength development, and long-term durability, while also contributing to substantial clinker reduction and carbon savings.
The findings of this study provide experimental support for the design of green concrete mixtures using blended cements and supplementary cementitious materials. They also offer practical insights for the promotion of sustainable building practices and the development of standards for low-carbon infrastructure, contributing meaningfully to the advancement of environmentally friendly construction and carbon-neutral engineering.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-21T16:37:22Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-08-21T16:37:22Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents謝辭 I
摘要 III
ABSTRACT V
目次 VII
圖次 X
表次 XV
第一章、 緒論 1
1.1. 研究動機 1
1.2. 研究目的 2
1.3. 研究流程圖 2
第二章、 文獻回顧 4
2.1. 卜特蘭水泥 4
2.1.1. 水泥成分 4
2.1.2. 水化作用及產物 7
2.2. 石灰石水泥、 11
2.2.1. 組成 11
2.2.2. 填充效應 12
2.2.3. 成核效應 15
2.2.4. 化學效應 20
2.2.5. 稀釋效應 24
2.2.6. 石灰石對混凝土性質的影響 28
2.3. 卜作嵐摻料 29
2.3.1. 爐石 29
2.3.2. 飛灰 30
2.3.3. 卜作嵐反應機理 31
2.3.4. 卜作嵐摻料加石灰石協同效應 32
2.4. 乾燥收縮 33
2.5. 耐久性 34
2.5.1. 氯離子傳輸機制 34
2.5.2. 影響傳輸行為的因素 35
2.5.3. 不同材料對氯離子傳輸的影響 36
2.5.4. 硫酸鹽侵蝕機理 37
2.5.5. 不同材料對硫酸鹽侵蝕的抵抗能力 40
2.5.6. 硫酸鹽侵蝕因素 41
第三章、 實驗計畫 44
3.1. 試驗材料 45
3.2. 試驗儀器 51
3.2.1. 力學性質試驗 51
3.2.2. 耐久性試驗 52
3.3. 試體製作 54
3.3.1. 製作混凝土試體 54
3.3.2. 製作水泥砂漿試體步驟(依據 CNS 3655) 54
3.4. 配比設計 55
3.4.1. 石灰石水泥搭配固定爐灰比的混凝土配比 55
3.4.2. 石灰石水泥搭配不同爐灰比的混凝土配比 56
3.4.3. 添加不同細度石灰石粉的水泥砂漿配比 58
3.4.4. 石灰石水泥搭配不同爐灰比的水泥砂漿配比 59
3.5. 新拌混凝土性質試驗 59
3.5.1. 混凝土坍度試驗 60
3.5.2. 混凝土單位重試驗 60
3.5.3. 混凝土含氣量試驗 61
3.5.4. 混凝土泌水試驗 61
3.5.5. 混凝土凝結試驗 62
3.5.6. 混凝土氯離子含量試驗 63
3.5.7. 混凝土pH值 63
3.6. 力學性質試驗 64
3.6.1. 抗壓強度試驗 64
3.6.2. 劈裂抗張強度試驗 65
3.6.3. 彈性模數試驗 66
3.7. 耐久性試驗 67
3.7.1. 快速氯離子傳輸試驗(RCM) 67
3.7.2. 快速氯離子滲透試驗(RCPT) 69
3.7.3. 硫酸鹽浸泡試驗-長度變化 70
3.7.4. 硫酸鹽浸泡試驗-重量變化 71
3.7.5. 乾燥收縮 72
第四章、 分析結果與討論 73
4.1. 石灰石水泥添加固定爐灰比的混凝土 73
4.1.1. 新拌性質試驗結果 73
4.1.2. 力學性質試驗結果 75
4.1.3. 耐久性試驗結果 87
4.2. 石灰石水泥搭配不同爐灰比的混凝土 95
4.2.1. 抗壓強度結果 95
4.2.2. RCM試驗結果 103
4.3. 添加不同細度石灰石粉的水泥砂漿 115
4.4. 石灰石水泥搭配不同爐灰比的水泥砂漿 127
4.4.1. 方塊抗壓強度28天 127
4.4.2. 硫酸鹽浸泡試驗-重量變化 129
第五章、 結論與建議 148
5.1. 結論 148
5.2. 建議 149
第六章、 文獻回顧 151
-
dc.language.isozh_TW-
dc.subject石灰石水泥zh_TW
dc.subject爐石zh_TW
dc.subject飛灰zh_TW
dc.subject卜作嵐反應zh_TW
dc.subject混凝土耐久性zh_TW
dc.subject氯離子傳輸係數zh_TW
dc.subject硫酸鹽侵蝕zh_TW
dc.subjectGround Granulated Blast-Furnace Slag (GGBS)en
dc.subjectSulfate Attacken
dc.subjectChloride Ion Transporten
dc.subjectConcrete Durabilityen
dc.subjectPozzolanic Reactionen
dc.subjectFly Ashen
dc.subjectLimestone Cementen
dc.title添加爐石和飛灰對石灰石水泥混凝土之耐久性研究zh_TW
dc.titleStudy on the Durability of Limestone Cement Concrete with the Addition of Slag and Fly Ashen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee廖文正;胡瑋秀;楊仲家zh_TW
dc.contributor.oralexamcommitteeWen-Cheng Xiao;Wen-Hsiu Hu;Chung-Chia Yangen
dc.subject.keyword石灰石水泥,爐石,飛灰,卜作嵐反應,混凝土耐久性,氯離子傳輸係數,硫酸鹽侵蝕,zh_TW
dc.subject.keywordLimestone Cement,Ground Granulated Blast-Furnace Slag (GGBS),Fly Ash,Pozzolanic Reaction,Concrete Durability,Chloride Ion Transport,Sulfate Attack,en
dc.relation.page160-
dc.identifier.doi10.6342/NTU202503517-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2025-08-08-
dc.contributor.author-college工學院-
dc.contributor.author-dept土木工程學系-
dc.date.embargo-lift2025-08-22-
顯示於系所單位:土木工程學系

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf5.12 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved