請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99147完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 王家琪 | zh_TW |
| dc.contributor.advisor | Chia-Chi Wang | en |
| dc.contributor.author | 郭瑞芳 | zh_TW |
| dc.contributor.author | Jui-Fang Kuo | en |
| dc.date.accessioned | 2025-08-21T16:34:29Z | - |
| dc.date.available | 2025-08-22 | - |
| dc.date.copyright | 2025-08-21 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-08-01 | - |
| dc.identifier.citation | 1. A review of Animal Safety Studies for Fipronil in the dog and cat [WWW Document], n.d. URL https://www.apvma.gov.au/sites/default/files/publication/15186-fipronil-prf-vol2-animalsafety-studies.pdf (accessed 4.22.25).
2. Aboul-Enein, F., Rauschka, H., Kornek, B., Stadelmann, C., Stefferl, A., Brück, W., Lucchinetti, C., Schmidbauer, M., Jellinger, K., Lassmann, H., 2003. Preferential Loss of Myelin-Associated Glycoprotein Reflects Hypoxia-Like White Matter Damage in Stroke and Inflammatory Brain Diseases. J Neuropathol Exp Neurol 62, 25–33. https://doi.org/10.1093/jnen/62.1.25 3. Akashi, K., Kondo, M., von Freeden-Jeffry, U., Murray, R., Weissman, I.L., 1997. Bcl-2 Rescues T Lymphopoiesis in Interleukin-7 Receptor–Deficient Mice. Cell 89, 1033–1041. https://doi.org/10.1016/S0092-8674(00)80291-3 4. Alam, S., Laughton, D.L., Walding, A., Wolstenholme, A.J., 2006. Human peripheral blood mononuclear cells express GABAA receptor subunits. Molecular Immunology 43, 1432–1442. https://doi.org/10.1016/j.molimm.2005.07.025 5. Aldayel, T.S., Abdel-Rahman, H.G., Gad EL-Hak, H.N., Abdelrazek, H.M.A., Mohamed, R.M., El-Sayed, R.M., 2021. Assessment of modulatory activity of Uncaria tomentosa extract against fipronil immunotoxicity in male rats. Ecotoxicology and Environmental Safety 224, 112674. https://doi.org/10.1016/j.ecoenv.2021.112674 6. Amorosi, S., D’Armiento, M., Calcagno, G., Russo, I., Adriani, M., Christiano, A., Weiner, L., Brissette, J., Pignata, C., 2008. FOXN1 homozygous mutation associated with anencephaly and severe neural tube defect in human athymic Nude/SCID fetus. Clinical Genetics 73, 380–384. https://doi.org/10.1111/j.1399-0004.2008.00977.x 7. Ansar Ahmed, S., 2000. The immune system as a potential target for environmental estrogens (endocrine disrupters): a new emerging field. Toxicology 150, 191–206. https://doi.org/10.1016/S0300-483X(00)00259-6 8. Ashwell, J.D., Lu, F.W.M., Vacchio, M.S., 2000. Glucocorticoids in T Cell Development and Function. Annual Review of Immunology 18, 309–345. https://doi.org/10.1146/annurev.immunol.18.1.309 9. Authority (EFSA), E.F.S., 2006. Conclusion regarding the peer review of the pesticide risk assessment of the active substance fipronil. EFSA Journal 4, 65r. https://doi.org/10.2903/j.efsa.2006.65r 10. Awad, M.A., Ahmed, Z.S.O., AbuBakr, H.O., Elbargeesy, G.A.E.-F.H., Moussa, M.H.G., 2022. Oxidative stress, apoptosis and histopathological alterations in brain stem and diencephalon induced by subacute exposure to fipronil in albino rats. Environ Sci Pollut Res 29, 936–948. https://doi.org/10.1007/s11356-021-15537-3 11. Awad, M.A., Ahmed, Z.S.O., AbuBakr, H.O., Elbargeesy, G.A.E.-F.H., Moussa, M.H.G., 2021. Fipronil induced oxidative stress in neural tissue of albino rat with subsequent apoptosis and tissue reactivity. Acta Histochemica 123, 151764. https://doi.org/10.1016/j.acthis.2021.151764 12. Aydin, B., 2011. Effects of thiacloprid, deltamethrin and their combination on oxidative stress in lymphoid organs, polymorphonuclear leukocytes and plasma of rats. Pesticide Biochemistry and Physiology 100, 165–171. https://doi.org/10.1016/j.pestbp.2011.03.006 13. Badgujar, P.C., Chandratre, G.A., Pawar, N.N., Telang, A.G., Kurade, N.P., 2016. Fipronil induced oxidative stress involves alterations in SOD1 and catalase gene expression in male mice liver: Protection by vitamins E and C. Environmental Toxicology 31, 1147–1158. https://doi.org/10.1002/tox.22125 14. Badgujar, P.C., Pawar, N.N., Chandratre, G.A., Telang, A.G., Sharma, A.K., 2015. Fipronil nduced oxidative stress in kidney and brain of mice: Protective effect of vitamin E and vitamin C. Pesticide Biochemistry and Physiology 118, 10–18. https://doi.org/10.1016/j.pestbp.2014.10.013 15. Bae, J.-W., Kwon, W.-S., 2024. Proteomic analysis of fipronil-induced molecular defects in spermatozoa. Sci Rep 14, 7668. https://doi.org/10.1038/s41598-024-57876-4 16. Bae, J.-W., Kwon, W.-S., 2020. Investigating the effects of fipronil on male fertility: Insight into the mechanism of capacitation. Reproductive Toxicology 94, 1–7. https://doi.org/10.1016/j.reprotox.2020.04.002 17. Bano, F., Mohanty, B., 2020a. Thyroid disrupting pesticides mancozeb and fipronil in mixture caused oxidative damage and genotoxicity in lymphoid organs of mice. Environmental Toxicology and Pharmacology 79, 103408. https://doi.org/10.1016/j.etap.2020.103408 18. Bano, F., Mohanty, B., 2020b. Thyroxine modulation of immune toxicity induced by mixture pesticides mancozeb and fipronil in mice. Life Sciences 240, 117078. https://doi.org/10.1016/j.lfs.2019.117078 19. Barnett, M.H., Prineas, J.W., 2004. Relapsing and remitting multiple sclerosis: Pathology of the newly forming lesion. Annals of Neurology 55, 458–468. https://doi.org/10.1002/ana.20016 20. Barragan, A., Weidner, J.M., Jin, Z., Korpi, E.R., Birnir, B., 2015. GABAergic signalling in the immune system. Acta Physiologica 213, 819–827. https://doi.org/10.1111/apha.12467 21. Bergeret, M., Khrestchatisky, M., Tremblay, E., Bernard, A., Gregoire, A., Chany, C., 1998. GABA modulates cytotoxicity of immunocompetent cells expressing GABAA receptor subunits. Biomedicine & Pharmacotherapy 52, 214–219. https://doi.org/10.1016/S07533322(98)80019-X 22. Bhandage, A.K., Barragan, A., 2021. GABAergic signaling by cells of the immune system: more the rule than the exception. Cell. Mol. Life Sci. 78, 5667–5679. https://doi.org/10.1007/s00018-021-03881-z 23. Bhandage, A.K., Hellgren, C., Jin, Z., Olafsson, E.B., Sundström-Poromaa, I., Birnir, B., 2015. Expression of GABA receptors subunits in peripheral blood mononuclear cells is gender dependent, altered in pregnancy and modified by mental health. Acta Physiologica 213, 575–585. https://doi.org/10.1111/apha.12440 24. Bhat, R., Axtell, R., Mitra, A., Miranda, M., Lock, C., Tsien, R.W., Steinman, L., 2010. Inhibitory role for GABA in autoimmune inflammation. Proceedings of the National Academy of Sciences 107, 2580–2585. https://doi.org/10.1073/pnas.0915139107 25. Bhatia, S.K., Tygrett, L.T., Grabstein, J.H., Waldschmidt, T.J., 1995. The effect of in vivo IL-7 deprivation on T cell maturation. J Exp Med 181, 1399–1409. 26. Bhatt, P., Gangola, S., Ramola, S., Bilal, M., Bhatt, K., Huang, Y., Zhou, Z., Chen, S., 2023. Insights into the toxicity and biodegradation of fipronil in contaminated environment. Microbiological Research 266, 127247. https://doi.org/10.1016/j.micres.2022.127247 27. Bhosale, G., Sharpe, J.A., Sundier, S.Y., Duchen, M.R., 2015. Calcium signaling as a mediator of cell energy demand and a trigger to cell death. Ann N Y Acad Sci 1350, 107–116. https://doi.org/10.1111/nyas.12885 28. Bjurstöm, H., Wang, J., Ericsson, I., Bengtsson, M., Liu, Y., Kumar-Mendu, S., IssazadehNavikas, S., Birnir, B., 2008. GABA, a natural immunomodulator of T lymphocytes. Journal of Neuroimmunology 205, 44–50. https://doi.org/10.1016/j.jneuroim.2008.08.017 29. Blackburn, C.C., Augustine, C.L., Li, R., Harvey, R.P., Malin, M.A., Boyd, R.L., Miller, J.F., Morahan, G., 1996. The nu gene acts cell-autonomously and is required for differentiation of thymic epithelial progenitors. Proceedings of the National Academy of Sciences 93, 57425746. https://doi.org/10.1073/pnas.93.12.5742 30. Bloomquist, J.R., 2001. GABA and Glutamate Receptors as Biochemical Sites for Insecticide Action, in: Ishaaya, I. (Ed.), Biochemical Sites of Insecticide Action and Resistance. Springer, Berlin, Heidelberg, pp. 17–41. https://doi.org/10.1007/978-3-642-59549-3_2 31. Bonneau, S., Reymond, N., Gupta, S., Navarro, C., 2015. Efficacy of a fixed combination of permethrin 54.5% and fipronil 6.1% (Effitix®) in dogs experimentally infested with Ixodes ricinus. Parasites & Vectors 8, 204. https://doi.org/10.1186/s13071-015-0805-6 32. Boyes, W.K., 2012. Neurotoxicology and Behavior, in: Patty’s Toxicology. American Cancer Society, pp. 35–74. https://doi.org/10.1002/0471435139.tox025.pub2 33. Brigelius-Flohé, R., Traber, M.G., 1999. Vitamin E: function and metabolism. The FASEB Journal 13, 1145–1155. https://doi.org/10.1096/fasebj.13.10.1145 34. Bugelski, P.J., Kim, C., 2007. T-Dependent Antigen Response (TDAR) Tests: Meta-Analysis of Results Generated Across Multiple Laboratories. Journal of Immunotoxicology 4, 159–164. https://doi.org/10.1080/15476910701337126 35. Bullenkamp, J., Mengoni, V., Kaur, S., Chhetri, I., Dimou, P., Astroulakis, Z.M.J., Kaski, J.C., Dumitriu, I.E., 2021. Interleukin-7 and interleukin-15 drive CD4+CD28null T lymphocyte expansion and function in patients with acute coronary syndrome. Cardiovascular Research 117, 1935–1948. https://doi.org/10.1093/cvr/cvaa202 36. Bupp, M.G., Edwards, B., Guo, C., Wei, D., Chen, G., Wong, B., Masteller, E., Peng, S.L., 2009. T cells require Foxo1 to populate the peripheral lymphoid organs. Eur J Immunol 39, 2991–2999. https://doi.org/10.1002/eji.200939427 37. Caballero, M.V., Ares, I., Martínez, M., Martínez-Larrañaga, M.R., Anadón, A., Martínez, M.A., 2015. Fipronil induces CYP isoforms in rats. Food and Chemical Toxicology 83, 215–221. https://doi.org/10.1016/j.fct.2015.06.019 38. Cam, M., Durieu, E., Bodin, M., Manousopoulou, A., Koslowski, S., Vasylieva, N., Barnych, B., Hammock, B.D., Bohl, B., Koch, P., Omori, C., Yamamoto, K., Hata, S., Suzuki, T., Karg, F., Gizzi, P., Erakovic Haber, V., Bencetic Mihaljevic, V., Tavcar, B., Portelius, E., Pannee, J., Blennow, K., Zetterberg, H., Garbis, S.D., Auvray, P., Gerber, H., Fraering, J., Fraering, P.C., Meijer, L., 2018. Induction of Amyloid-β42 Production by Fipronil and Other Pyrazole Insecticides. J Alzheimers Dis 62, 1663–1681. https://doi.org/10.3233/JAD-170875 39. Carpenter, A.C., Bosselut, R., 2010. Decision checkpoints in the thymus. Nat Immunol 11, 666–673. https://doi.org/10.1038/ni.1887 40. Carty, S.A., Koretzky, G.A., Jordan, M.S., 2014. Interleukin-4 Regulates Eomesodermin in CD8+ T Cell Development and Differentiation. PLoS One 9, e106659. https://doi.org/10.1371/journal.pone.0106659 41. Cenini, G., Lloret, A., Cascella, R., 2019. Oxidative Stress in Neurodegenerative Diseases: From a Mitochondrial Point of View. Oxidative Medicine and Cellular Longevity 2019, 2105607. https://doi.org/10.1155/2019/2105607 42. Chen, D., Li, J., Zhao, Y., Wu, Y., 2022. Human Exposure of Fipronil Insecticide and the Associated Health Risk. J. Agric. Food Chem. 70, 63–71. https://doi.org/10.1021/acs.jafc.1c05694 43. Chtourou, Y., Aouey, B., Kebieche, M., Fetoui, H., 2015. Protective role of naringin against cisplatin induced oxidative stress, inflammatory response and apoptosis in rat striatum via suppressing ROS-mediated NF-κB and P53 signaling pathways. Chemico-Biological Interactions 239, 76–86. https://doi.org/10.1016/j.cbi.2015.06.036 44. Chung, B., Min, D., Joo, L.W., Krampf, M.R., Huang, J., Yang, Y., Shashidhar, S., Brown, J., Dudl, E.P., Weinberg, K.I., 2011. Combined Effects of Interleukin-7 and Stem Cell Factor Administration on Lymphopoiesis after Murine Bone Marrow Transplantation. Biology of Blood and Marrow Transplantation 17, 48–60. https://doi.org/10.1016/j.bbmt.2010.07.027 45. Clasen, B., Loro, V.L., Cattaneo, R., Moraes, B., Lópes, T., de Avila, L.A., Zanella, R., Reimche, G.B., Baldisserotto, B., 2012. Effects of the commercial formulation containing fipronil on the non-target organism Cyprinus carpio: Implications for rice−fish cultivation. Ecotoxicology and Environmental Safety 77, 45–51. https://doi.org/10.1016/j.ecoenv.2011.10.001 46. Cochran, R.C., Yu ,Liu, Krieger ,R. I., and Ross, J.H., 2015. Postapplication Fipronil Exposure Following Use on Pets. Journal of Toxicology and Environmental Health, Part A 78, 12171226. https://doi.org/10.1080/15287394.2015.1076363 47. Connor, J.R., Menzies, S.L., 1995. Cellular management of iron in the brain. Journal of the Neurological Sciences 134, 33–44. https://doi.org/10.1016/0022-510X(95)00206-H 48. Corcoran, A.E., Riddell, A., Krooshoop, D., Venkitaraman, A.R., 1998. Impaired immunoglobulin gene rearrangement in mice lacking the IL-7 receptor. Nature 391, 904–907. https://doi.org/10.1038/36122 49. Cordeiro, F., Bratinova, S., Karasek, L., Buttinger, G., Stroka, J., Emteborg, H., Seghers, J., Robouch, P., Emons, H., 2019. Can official control laboratories quantify reliably fipronil in eggs? Evidence from a proficiency testing round. Food Additives & Contaminants: Part A 36, 1–7. https://doi.org/10.1080/19440049.2019.1602885 50. Cravedi, J.P., Delous, G., Zalko, D., Viguié, C., Debrauwer, L., 2013. Disposition of fipronil in rats. Chemosphere 93, 2276–2283. https://doi.org/10.1016/j.chemosphere.2013.07.083 51. Cui, Z., Zhao, F., Chen, X., Li, J., Jin, X., Han, Y., Wang, L., Zhou, Y., Lu, L., 2022. NPAT Supports CD8+ Immature Single-Positive Thymocyte Proliferation and Thymic Development. The Journal of Immunology 209, 916–925. https://doi.org/10.4049/jimmunol.2200214 52. Cunningham-Rundles, C., Ponda, P.P., 2005. Molecular defects in T- and B-cell primary immunodeficiency diseases. Nat Rev Immunol 5, 880–892. https://doi.org/10.1038/nri1713 53. D., kson, C. B., C., B., L., K., B., D., S., 2009. Fipronil General Fact Sheet [WWW Document]. URL https://secure.livechatinc.com/customer/action/open_chat?license_id=18981025&group=0&e mbedded=1&widget_version=3&unique_groups=0&organizationId=ae087525-9322-4fdaac7c-7f902f4380dc&use_parent_storage=1&x-region=us-south1 (accessed 7.8.25). 54. da Silva, R.C., Teixeira, M.P., de Paiva, L.S., Miranda-Alves, L., 2023. Environmental Health and Toxicology: Immunomodulation Promoted by Endocrine-Disrupting Chemical Tributyltin. Toxics 11, 696. https://doi.org/10.3390/toxics11080696 55. Dardalhon, V., Korn, T., Kuchroo, V.K., Anderson, A.C., 2008. Role of Th1 and Th17 cells in organ-specific autoimmunity. J Autoimmun 31, 252–256. https://doi.org/10.1016/j.jaut.2008.04.017 56. Das, P.C., Cao, Y., Cherrington, N., Hodgson, E., Rose, R.L., 2006. Fipronil induces CYP isoforms and cytotoxicity in human hepatocytes. Chemico-Biological Interactions 164, 200–214. https://doi.org/10.1016/j.cbi.2006.09.013 57. de Groote, L., Linthorst, A.C.E., 2007. Exposure to novelty and forced swimming evoke stressor-dependent changes in extracellular GABA in the rat hippocampus. Neuroscience 148, 794–805. https://doi.org/10.1016/j.neuroscience.2007.06.030 58. De la Fuente, M., Hernanz, A., Viniegra, S., Miquel, J., 2011. Sulfur-containing antioxidants increase in vitro several functions of lymphocytes from mice. International Immunopharmacology 11, 661–669. https://doi.org/10.1016/j.intimp.2011.01.008 59. De Oliveira, P.R., Bechara, G.H., Denardi, S.E., Oliveira, R.J., Mathias, M.I.C., 2012. Cytotoxicity of fipronil on mice liver cells. Microscopy Research and Technique 75, 28–35. https://doi.org/10.1002/jemt.21018 60. Deobagkar-Lele, M., Chacko, S.K., Victor, E.S., Kadthur, J.C., Nandi, D., 2013. Interferon-γand glucocorticoid-mediated pathways synergize to enhance death of CD4+ CD8+ thymocytes during Salmonella enterica serovar Typhimurium infection. Immunology 138, 307–321. https://doi.org/10.1111/imm.12047 61. DiCiero Miranda, M., de Bruin, V.M.S., Vale, M.R., Viana, G.S.B., 2000. Lipid Peroxidation and Nitrite plus Nitrate Levels in Brain Tissue from Patients with Alzheimer’s Disease. Gerontology 46, 179–184. https://doi.org/10.1159/000022156 62. Dionisio, L., De Rosa, M.J., Bouzat, C., Esandi, M. del C., 2011. An intrinsic GABAergic system in human lymphocytes. Neuropharmacology 60, 513–519. https://doi.org/10.1016/j.neuropharm.2010.11.007 63. Drela, N., 2006. Xenobiotic-induced alterations in thymocyte development. APMIS 114, 399–419. https://doi.org/10.1111/j.1600-0463.2006.apm_343.x 64. Dumont, P., Liebenberg, J., Beugnet, F., Fankhauser, B., 2015. Repellency and acaricidal efficacy of a new combination of fipronil and permethrin against Ixodes ricinus and Rhipicephalus sanguineus ticks on dogs. Parasites & Vectors 8, 531. https://doi.org/10.1186/s13071-015-1150-5 65. Durum, S.K., Candèias, S., Nakajima, H., Leonard, W.J., Baird, A.M., Berg, L.J., Muegge, K., 1998. Interleukin 7 Receptor Control of T Cell Receptor γ Gene Rearrangement: Role of Receptor-associated Chains and Locus Accessibility. J Exp Med 188, 2233–2241. 66. Environmental Protection Agency, 2007. Fipronil; Pesticide Tolerances [WWW Document]. Federal Register. URL https://www.federalregister.gov/documents/2007/08/22/E716621/fipronil-pesticide-tolerances (accessed 7.9.25). 67. European Medicines Agency, 2010. Guideline on Repeated Dose Toxicity Corr. 68. Ezeriņa, D., Takano, Y., Hanaoka, K., Urano, Y., Dick, T.P., 2018. N-Acetyl Cysteine Functions as a Fast-Acting Antioxidant by Triggering Intracellular H2S and Sulfane Sulfur Production. Cell Chemical Biology 25, 447-459.e4. https://doi.org/10.1016/j.chembiol.2018.01.011 69. Fenninger, F., Han, J., Stanwood, S.R., Nohara, L.L., Arora, H., Choi, K.B., Munro, L., Pfeifer, C.G., Shanina, I., Horwitz, M.S., Jefferies, W.A., 2019. Mutation of an L-Type Calcium Channel Gene Leads to T Lymphocyte Dysfunction. Front. Immunol. 10. https://doi.org/10.3389/fimmu.2019.02473 70. Fipronil Risk Characterization Document [WWW Document], n.d. URL https://www.cdpr.ca.gov/wp-content/uploads/2024/10/fipronil_rcd.pdf (accessed 5.20.25). 71. Fischer, S.F., Bouillet, P., O’Donnell, K., Light, A., Tarlinton, D.M., Strasser, A., 2007. Proapoptotic BH3-only protein Bim is essential for developmentally programmed death of germinal center-derived memory B cells and antibody-forming cells. Blood 110, 3978–3984. https://doi.org/10.1182/blood-2007-05-091306 72. Frank, J., Pignata, C., Panteleyev, A.A., Prowse, D.M., Baden, H., Weiner, L., Gaetaniello, L., Ahmad, W., Pozzi, N., Cserhalmi-Friedman, P.B., Aita, V.M., Uyttendaele, H., Gordon, D., Ott, J., Brissette, J.L., Christiano, A.M., 1999. Exposing the human nude phenotype. Nature 398, 473–474. https://doi.org/10.1038/18997 73. Freeden-Jeffery, U. con, Vieira, P., Lucian, L.A., McNeil, T., Burdach, S.E.G., Murray, R., 1995. Lymphopenia in interleukin (IL)-7 gene-deleted mice identifies IL-7 as a nonredundant cytokine. J Exp Med 181, 1519–1526. 74. French, H.M., Reid, M., Mamontov, P., Simmons, R.A., Grinspan, J.B., 2009. Oxidative Stress Disrupts Oligodendrocyte Maturation. J Neurosci Res 87, 3076–3087. https://doi.org/10.1002/jnr.22139 75. Frumento, G., Zuo, J., Verma, K., Croft, W., Ramagiri, P., Chen, F.E., Moss, P., 2019. CD117 (c-Kit) Is Expressed During CD8+ T Cell Priming and Stratifies Sensitivity to Apoptosis According to Strength of TCR Engagement. Front. Immunol. 10. https://doi.org/10.3389/fimmu.2019.00468 76. FSS_Fipronil_QA [WWW Document], 2017. URL https://www.foodstandards.gov.scot/downloads/FSS_Fipronil_QA_-_17_August_2017.pdf (accessed 5.25.25). 77. Fu, Z., Tindall, D.J., 2008. FOXOs, cancer and regulation of apoptosis. Oncogene 27, 23122319. https://doi.org/10.1038/onc.2008.24 78. Fuks, J.M., Arrighi, R.B.G., Weidner, J.M., Mendu, S.K., Jin, Z., Wallin, R.P.A., Rethi, B., Birnir, B., Barragan, A., 2012. GABAergic Signaling Is Linked to a Hypermigratory Phenotype in Dendritic Cells Infected by Toxoplasma gondii. PLOS Pathogens 8, e1003051. https://doi.org/10.1371/journal.ppat.1003051 79. Gallo-Payet, N., Battista, M.-C., 2014. Steroidogenesis—Adrenal Cell Signal Transduction, in: Comprehensive Physiology. John Wiley & Sons, Ltd, pp. 889–964. https://doi.org/10.1002/cphy.c130050 80. Germain, R.N., 2002. T-cell development and the CD4–CD8 lineage decision. Nat Rev Immunol 2, 309–322. https://doi.org/10.1038/nri798 81. Gibbons, D., Morrissey, C., Mineau, P., 2015. A review of the direct and indirect effects of neonicotinoids and fipronil on vertebrate wildlife. Environ Sci Pollut Res Int 22, 103–118. https://doi.org/10.1007/s11356-014-3180-5 82. Gill, K.K., Dumka, V.K., 2016. Antioxidant status in oral subchronic toxicity of fipronil and fluoride co-exposure in buffalo calves. Toxicol Ind Health 32, 251–259. https://doi.org/10.1177/0748233713500376 83. Godfrey, D.I., Kennedy, J., Suda, T., Zlotnik, A., 1993. A developmental pathway involving four phenotypically and functionally distinct subsets of CD3-CD4-CD8- triple-negative adult mouse thymocytes defined by CD44 and CD25 expression. J Immunol 150, 4244–4252. 84. Gondhalekar, A.D., Scharf, M.E., 2012. Mechanisms Underlying Fipronil Resistance in a Multiresistant Field Strain of the German Cockroach (Blattodea: Blattellidae). Journal of Medical Entomology 49, 122–131. https://doi.org/10.1603/ME11106 85. Grabstei, K.H., Waldschmidt, T.J., Finkelman, F.D., Hess, B.W., Alpert, A.R., Boiani, N.E., Namen, A.E., Morrissey, P.J., 1993. Inhibition of murine B and T lymphopoiesis in vivo by an anti- interleukin 7 monoclonal antibody. J Exp Med 178, 257–264. 86. Grandjean, P., Landrigan, P.J., 2014. Neurobehavioural effects of developmental toxicity. The Lancet Neurology 13, 330–338. https://doi.org/10.1016/S1474-4422(13)70278-3 87. Gruver, A.L., Sempowski, G.D., 2008. Cytokines, leptin, and stress-induced thymic atrophy. J Leukoc Biol 84, 915–923. https://doi.org/10.1189/jlb.0108025 88. Guelfi, M., Maioli, M.A., Tavares, M.A., Mingatto, F.E., 2015. Citotoxicity of Fipronil on Hepatocytes Isolated from Rat and Effects of Its Biotransformation. Braz. arch. biol. technol. 58, 843–853. https://doi.org/10.1590/S1516-89132015060298 89. Gülow, K., Tümen, D., Heumann, P., Schmid, S., Kandulski, A., Müller, M., Kunst, C., 2024. Unraveling the Role of Reactive Oxygen Species in T Lymphocyte Signaling. Int J Mol Sci 25, 6114. https://doi.org/10.3390/ijms25116114 90. Guo, Q., Zhao, S., Zhang, J., Qi, K., Du, Z., Shao, B., 2018. Determination of fipronil and its metabolites in chicken egg, muscle and cake by a modified QuEChERS method coupled with LC-MS/MS. Food Additives & Contaminants: Part A 35. https://doi.org/10.1080/19440049.2018.1472395 91. Gupta, R.C., Doss, R.B., 2024. Phenylpyrazole (Fipronil) Toxicosis in Animals - Toxicology [WWW Document]. MSD Veterinary Manual. URL https://www.msdvetmanual.com/toxicology/insecticide-and-acaricide-organictoxicity/phenylpyrazole-fipronil-toxicosis-in-animals (accessed 7.7.25). 92. Gustafsson, Å.B., 2011. Bnip3 as a Dual Regulator of Mitochondrial Turnover and Cell Death in the Myocardium. Pediatr Cardiol 32, 267–274. https://doi.org/10.1007/s00246-010-9876-5 93. Hainzl, D., Casida, J.E., 1996. Fipronil insecticide: Novel photochemical desulfinylation with retention of neurotoxicity. Proceedings of the National Academy of Sciences 93, 1276412767. https://doi.org/10.1073/pnas.93.23.12764 94. Hainzl, D., Cole, L.M., Casida, J.E., 1998. Mechanisms for Selective Toxicity of Fipronil Insecticide and Its Sulfone Metabolite and Desulfinyl Photoproduct. Chem. Res. Toxicol. 11, 1529–1535. https://doi.org/10.1021/tx980157t 95. Herin, F., Boutet-Robinet, E., Levant, A., Dulaurent, S., Manika, M., Galatry-Bouju, F., Caron, P., Soulat, J.-M., 2011. Thyroid Function Tests in Persons with Occupational Exposure to Fipronil. Thyroid® 21, 701–706. https://doi.org/10.1089/thy.2010.0449 96. Ibrahim, S.A., Henderson, G., Fei, H., 2003. Toxicity, Repellency, and Horizontal Transmission of Fipronil in the Formosan Subterranean Termite (Isoptera: Rhinotermitidae). Journal of Economic Entomology 96, 461–467. https://doi.org/10.1093/jee/96.2.461 97. Im, E., Kim, H., Kim, J., Lee, H., Yang, H., 2015. Tributyltin acetate-induced immunotoxicity is related to inhibition of T cell development in the mouse thymus. Molecular & Cellular Toxicology 11, 231–239. https://doi.org/10.1007/s13273-015-0022-6 98. Jackson, D., Cornell, C.B., Luukinen, B., Buhl, K., Stone, D., 2009. Fipronil Technical Fact Sheet [WWW Document]. URL http://npic.orst.edu/factsheets/archive/fiptech.html (accessed 6.17.24). 99. Jennings, K., Canerdy, T., Keller, R., Atieh, B., Doss, R., Gupta, R., 2002. Human exposure to fipronil from dogs treated with Frontline. Veterinary and human toxicology 44, 301–3. 100. Jha, M.K., Badou, A., Meissner, M., McRory, J.E., Freichel, M., Flockerzi, V., Flavell, R.A., 2009. Defective survival of naive CD8+ T lymphocytes in the absence of the β3 regulatory subunit of voltage-gated calcium channels. Nat Immunol 10, 1275–1282. https://doi.org/10.1038/ni.1793 101. Jiang, W., Soeprono, A., Rust, M.K., Gan, J., 2014. Ant control efficacy of pyrethroids and fipronil on outdoor concrete surfaces. Pest Management Science 70, 271–277. https://doi.org/10.1002/ps.3555 102. Jin, Z., Mendu, S.K., Birnir, B., 2013. GABA is an effective immunomodulatory molecule. Amino Acids 45, 87–94. https://doi.org/10.1007/s00726-011-1193-7 103. Juurlink, B.H.J., Thorburne, S.K., Hertz, L., 1998. Peroxide-scavenging deficit underlies oligodendrocyte susceptibility to oxidative stress. Glia 22, 371–378. https://doi.org/10.1002/(SICI)1098-1136(199804)22:4<371::AID-GLIA6>3.0.CO;2-6 104. Kartheek, R.M., David, M., 2018. Assessment of fipronil toxicity on wistar rats: A hepatotoxic perspective. Toxicology Reports 5, 448–456. https://doi.org/10.1016/j.toxrep.2018.02.019 105. Kerdiles, Y.M., Beisner, D.R., Tinoco, R., Dejean, A.S., Castrillon, D.H., DePinho, R.A., Hedrick, S.M., 2009. Foxo1 links homing and survival of naive T cells by regulating Lselectin, CCR7 and interleukin 7 receptor. Nat Immunol 10, 176–184. https://doi.org/10.1038/ni.1689 106. Kerdiles, Y.M., Stone, E.L., Beisner, D.L., McGargill, M.A., Ch’en, I.L., Stockmann, C., Katayama, C.D., Hedrick, S.M., 2010. Foxo transcription factors control regulatory T cell development and function. Immunity 33, 890–904. https://doi.org/10.1016/j.immuni.2010.12.002 107. Khalaf, A.A., Galal, M.K., Ibrahim, M.A., Allah, A.A.A., Afify, M.M., Refaat, R., 2019. The Terminalia laxiflora modulates the neurotoxicity induced by fipronil in male albino rats. Biosci Rep 39. https://doi.org/10.1042/BSR20181363 108. Khan, S., Jan, M.H., Kumar, D., Telang, A.G., 2015. Firpronil induced spermotoxicity is associated with oxidative stress, DNA damage and apoptosis in male rats. Pesticide Biochemistry and Physiology 124, 8–14. https://doi.org/10.1016/j.pestbp.2015.03.010 109. Ki, Y.-W., Lee, J.E., Park, J.H., Shin, I.C., Koh, H.C., 2012. Reactive oxygen species and mitogen-activated protein kinase induce apoptotic death of SH-SY5Y cells in response to fipronil. Toxicology Letters 211, 18–28. https://doi.org/10.1016/j.toxlet.2012.02.022 110. Kim, J.K., Kim, Y.S., Lee, H.-M., Jin, H.S., Neupane, C., Kim, S., Lee, S.-H., Min, J.-J., Sasai, M., Jeong, J.-H., Choe, S.-K., Kim, J.-M., Yamamoto, M., Choy, H.E., Park, J.B., Jo, E.-K., 2018. GABAergic signaling linked to autophagy enhances host protection against intracellular bacterial infections. Nat Commun 9, 4184. https://doi.org/10.1038/s41467-018-06487-5 111. Kim, Y.A., Yoon, Y.S., Kim, H.S., Jeon, S.J., Cole, E., Lee, J., Kho, Y., Cho, Y.H., 2019. Distribution of fipronil in humans, and adverse health outcomes of in utero fipronil sulfone exposure in newborns. International Journal of Hygiene and Environmental Health 222, 524–532. https://doi.org/10.1016/j.ijheh.2019.01.009 112. Köchl, R., Thelen, F., Vanes, L., Brazão, T.F., Fountain, K., Xie, J., Huang, C.-L., Lyck, R., Stein, J.V., Tybulewicz, V.L.J., 2016. WNK1 kinase balances T cell adhesion versus migration in vivo. Nat Immunol 17, 1075–1083. https://doi.org/10.1038/ni.3495 113. Koslowski, S., Latapy, C., Auvray, P., Blondel, M., Meijer, L., 2020. Long-Term Fipronil Treatment Induces Hyperactivity in Female Mice. International Journal of Environmental Research and Public Health 17, 1579. https://doi.org/10.3390/ijerph17051579 114. Kuo, J.-F., Cheng, Y.-H., Tung, C.-W., Wang, C.-C., 2024a. Fipronil disturbs the antigenspecific immune responses and GABAergic gene expression in the ovalbumin-immunized BALB/c mice. BMC Veterinary Research 20, 30. https://doi.org/10.1186/s12917-024-03878-3 115. Kuo, J.-F., Hsiao, Y.-P., Wang, Y.-D., Weng, H.-P., Wang, C.-C., 2025. Fipronil Triggers Immunotoxicity Through Reactive Oxygen Species-Driven Mitochondrial Apoptosis in Thymocytes. Toxics 13, 204. https://doi.org/10.3390/toxics13030204 116. Kuo, J.-F., Wu, H.-Y., Tung, C.-W., Huang, W.-H., Lin, C.-S., Wang, C.-C., 2024b. Induction of Thymus Atrophy and Disruption of Thymocyte Development by Fipronil through Dysregulation of IL-7-Associated Genes. Chem. Res. Toxicol. 37, 1488–1500. https://doi.org/10.1021/acs.chemrestox.4c00060 117. Kuo, T.C., Schlissel, M.S., 2009. Mechanisms controlling expression of the RAG locus during lymphocyte development. Curr Opin Immunol 21, 173–178. https://doi.org/10.1016/j.coi.2009.03.008 118. Kwak, S., Cho, Y.S., Na, H.G., Bae, C.H., Song, S.-Y., Kim, Y.-D., 2022. Fipronil upregulates inflammatory cytokines and MUC5AC expression in human nasal epithelial cells. Rhinology 58, 66–73. https://doi.org/10.4193/Rhin19.172 119. Ladi, E., Yin, X., Chtanova, T., Robey, E.A., 2006. Thymic microenvironments for T cell differentiation and selection. Nat Immunol 7, 338–343. https://doi.org/10.1038/ni1323 120. Lassiter, T.L., MacKillop, E.A., Ryde, I.T., Seidler, F.J., Slotkin, T.A., 2009. Is fipronil safer than chlorpyrifos? Comparative developmental neurotoxicity modeled in PC12 cells. Brain Research Bulletin 78, 313–322. https://doi.org/10.1016/j.brainresbull.2008.09.020 121. Lee, J.E., Kang, J.S., Ki, Y.-W., Lee, S.-H., Lee, S.-J., Lee, K.S., Koh, H.C., 2011. Akt/GSK3β signaling is involved in fipronil-induced apoptotic cell death of human neuroblastoma SH-SY5Y cells. Toxicology Letters 202, 133–141. https://doi.org/10.1016/j.toxlet.2011.01.030 122. Lee, M., Schwab, C., Mcgeer, P.L., 2011. Astrocytes are GABAergic cells that modulate microglial activity. Glia 59, 152–165. https://doi.org/10.1002/glia.21087 123. Lee, S.-J., Kim ,Hong-Pyo, Jin ,Yang, Choi ,Augustine M.K., and Ryter, S.W., 2011. Beclin 1 deficiency is associated with increased hypoxia-induced angiogenesis. Autophagy 7, 829–839. https://doi.org/10.4161/auto.7.8.15598 124. Lee, S.-J., Mulay, P., Diebolt-Brown, B., Lackovic, M.J., Mehler, L.N., Beckman, J., Waltz, J., Prado, J.B., Mitchell, Y.A., Higgins, S.A., Schwartz, A., Calvert, G.M., 2010. Acute illnesses associated with exposure to fipronil—surveillance data from 11 states in the United States, 2001–2007. Clinical Toxicology 48, 737–744. https://doi.org/10.3109/15563650.2010.507548 125. Leghait, J., Gayrard, V., Picard-Hagen, N., Camp, M., Perdu, E., Toutain, P.-L., Viguié, C., 2009. Fipronil-induced disruption of thyroid function in rats is mediated by increased total and free thyroxine clearances concomitantly to increased activity of hepatic enzymes. Toxicology 255, 38–44. https://doi.org/10.1016/j.tox.2008.09.026 126. Li, B.-J., Wang, K.-K., Chen, D.-P., Yan, Y., Cai, X.-L., Chen, H.-M., Dong, K., Lin, F., Xu, H.-H., 2021. Distinct roles of two RDL GABA receptors in fipronil action in the diamondback moth (Plutella xylostella). Insect Science 28, 1721–1733. https://doi.org/10.1111/17447917.12892 127. Liang, Z., Dong, X., Zhang, Z., Zhang, Q., Zhao, Y., 2022. Age-related thymic involution: Mechanisms and functional impact. Aging Cell 21, e13671. https://doi.org/10.1111/acel.13671 128. Lin, L., Hron, J.D., Peng, S.L., 2004. Regulation of NF-κB, Th Activation, and Autoinflammation by the Forkhead Transcription Factor Foxo3a. Immunity 21, 203–213. https://doi.org/10.1016/j.immuni.2004.06.016 129. Lu, M., Du, J., Zhou, P., Chen, H., Lu, C., Zhang, Q., 2015. Endocrine disrupting potential of fipronil and its metabolite in reporter gene assays. Chemosphere 120, 246–251. https://doi.org/10.1016/j.chemosphere.2014.07.015 130. Luo, C.T., Osmanbeyoglu, H.U., Do, M.H., Bivona, M.R., Toure, A., Kang, D., Xie, Y., Leslie, C.S., Li, M.O., 2017. Ets transcription factor GABP controls T cell homeostasis and immunity. Nat Commun 8, 1062. https://doi.org/10.1038/s41467-017-01020-6 131. Ly, J.D., Grubb, D.R., Lawen, A., 2003. The mitochondrial membrane potential (Δψm) in apoptosis; an update. Apoptosis 8, 115–128. https://doi.org/10.1023/A:1022945107762 132. Lynch, J.W., 2004. Molecular Structure and Function of the Glycine Receptor Chloride Channel. Physiological Reviews 84, 1051–1095. https://doi.org/10.1152/physrev.00042.2003 133. Mackall, C.L., Gress, R.E., 1997. Thymic aging and T-cell regeneration. Immunological Reviews 160, 91–102. https://doi.org/10.1111/j.1600-065X.1997.tb01030.x 134. Maddison, J.E., Page, S.W., Church, D.B. (Eds.), 2008. Chapter 10 - Antiparasitic drugs, in: Small Animal Clinical Pharmacology (Second Edition). W.B. Saunders, Edinburgh, pp. 198–260. https://doi.org/10.1016/B978-070202858-8.50012-9 135. Mahmoud, Y.K., Ali, A.A., Abdelrazek, H.M.A., Aldayel, T.S., Abdel-Daim, M.M., ElMenyawy, M.A.I., 2021. Neurotoxic Effect of Fipronil in Male Wistar Rats: Ameliorative Effect of L-Arginine and L-Carnitine. Biology (Basel) 10, 682. https://doi.org/10.3390/biology10070682 136. Maki, K., Sunaga, S., Ikuta, K., 1996. The V–J Recombination of T Cell Receptor-γ Genes Is Blocked in Interleukin-7 Receptor–deficient Mice. J Exp Med 184, 2423–2428. 137. Maraskovsky, E., O’Reilly, L.A., Teepe, M., Corcoran, L.M., Peschon, J.J., Strasser, A., 1997. Bcl-2 Can Rescue T Lymphocyte Development in Interleukin-7 Receptor–Deficient Mice but Not in Mutant rag-1−/− Mice. Cell 89, 1011–1019. https://doi.org/10.1016/S00928674(00)80289-5 138. Marshall, F.H., Jones, K.A., Kaupmann, K., Bettler, B., 1999. GABAB receptors – the first 7TM heterodimers. Trends in Pharmacological Sciences 20, 396–399. https://doi.org/10.1016/S0165-6147(99)01383-8 139. Massa, S., Balciunaite, G., Ceredig, R., Rolink, A.G., 2006. Critical role for c-kit (CD117) in T cell lineage commitment and early thymocyte development in vitro. European Journal of Immunology 36, 526–532. https://doi.org/10.1002/eji.200535760 140. Matsuzaki, Y., Nakayama, Kei-ichi, Nakayama, Keiko, Tomita, T., Isoda, M., Loh, D.Y., Nakauchi, H., 1997. Role of bcl-2 in the Development of Lymphoid Cells From the Hematopoietic Stem Cell. Blood 89, 853–862. https://doi.org/10.1182/blood.V89.3.853 141. McMahen, R.L., Strynar, M.J., Dagnino, S., Herr, D.W., Moser, V.C., Garantziotis, S., Andersen, E.M., Freeborn, D.L., McMillan, L., Lindstrom, A.B., 2015. Identification of fipronil metabolites by time-of-flight mass spectrometry for application in a human exposure study. Environ Int 78, 16–23. https://doi.org/10.1016/j.envint.2015.01.016 142. Mendu, S.K., Åkesson, L., Jin, Z., Edlund, A., Cilio, C., Lernmark, Å., Birnir, B., 2011. Increased GABAA channel subunits expression in CD8+ but not in CD4+ T cells in BB rats developing diabetes compared to their congenic littermates. Molecular Immunology 48, 399–407. https://doi.org/10.1016/j.molimm.2010.08.005 143. Mérino, D., Giam, M., Hughes, P.D., Siggs, O.M., Heger, K., O’Reilly, L.A., Adams, J.M., Strasser, A., Lee, E.F., Fairlie, W.D., Bouillet, P., 2009. The role of BH3-only protein Bim extends beyond inhibiting Bcl-2–like prosurvival proteins. The Journal of Cell Biology 186, 355. https://doi.org/10.1083/jcb.200905153 144. Michalek, R.D., Rathmell, J.C., 2010. The metabolic life and times of a T-cell. Immunological Reviews 236, 190–202. https://doi.org/10.1111/j.1600-065X.2010.00911.x 145. Mohamed, F., Senarathna, L., Percy, A., Abeyewardene, M., Eaglesham, G., Cheng, R., Azher, S., Hittarage, A., Dissanayake, W., Sheriff, M.R., Davies, W., Buckley, N., Eddleston, M., 2004. Acute Human Self-Poisoning with the N-Phenylpyrazole Insecticide Fipronil –A GABAA-Gated Chloride Channel Blocker. J Toxicol Clin Toxicol 42, 955–963. 146. Morokata, T., Ishikawa, J., Yamada, T., 2000. Antigen dose defines T helper 1 and T helper 2 responses in the lungs of C57BL/6 and BALB/c mice independently of splenic responses. Immunology Letters 72, 119–126. https://doi.org/10.1016/S0165-2478(00)00188-7 147. Mosmann, T., 1983. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. Journal of Immunological Methods 65, 55–63. https://doi.org/10.1016/0022-1759(83)90303-4 148. Mossa, A.-T.H., Swelam, E.S., Mohafrash, S.M.M., 2015. Sub-chronic exposure to fipronil induced oxidative stress, biochemical and histopathological changes in the liver and kidney of male albino rats. Toxicology Reports 2, 775–784. https://doi.org/10.1016/j.toxrep.2015.02.009 149. Muegge, K., Vila, M.P., Durum, S.K., 1993. Interleukin-7: a Cofactor For V(D)J Rearrangement of the T Cell Receptor β Gene. Science 261, 93–95. https://doi.org/10.1126/science.7686307 150. Müller, S.M., Ege, M., Pottharst, A., Schulz, A.S., Schwarz, K., Friedrich, W., 2001. Transplacentally acquired maternal T lymphocytes in severe combined immunodeficiency: a study of 121 patients. Blood 98, 1847–1851. https://doi.org/10.1182/blood.V98.6.1847 151. Multiple Sclerosis Information Page: National Institute of Neurological Disorders and Stroke (NINDS) [WWW Document], n.d. URL https://web.archive.org/web/20160213025406/http://www.ninds.nih.gov/disorders/multiple_scl erosis/multiple_sclerosis.htm (accessed 4.6.20). 152. Munoz-Pineiro, M.A., Robouch, P., 2018. Fipronil in eggs: Factsheet – December 2017 [WWW Document]. JRC Publications Repository. URL https://publicationstest.jrc.cec.eu.int/repository/handle/JRC110632 (accessed 2.21.23). 153. Nakayama, K., Nakayama, K., Negishi, I., Kuida, K., Sawa, H., Loh, D.Y., 1994. Targeted disruption of Bcl-2 alpha beta in mice: occurrence of gray hair, polycystic kidney disease, and lymphocytopenia. Proc Natl Acad Sci U S A 91, 3700–3704. 154. Narahashi, T., Zhao, X., Ikeda, T., Nagata, K., Yeh, J., 2007. Differential actions of insecticides on target sites: basis for selective toxicity. Hum Exp Toxicol 26, 361–366. https://doi.org/10.1177/0960327106078408 155. Narahashi, T., Zhao, X., Ikeda, T., Salgado, V.L., Yeh, J.Z., 2010. Glutamate-activated chloride channels: Unique fipronil targets present in insects but not in mammals. Pestic Biochem Physiol 97, 149–152. https://doi.org/10.1016/j.pestbp.2009.07.008 156. Nehls, M., Kyewski, B., Messerle, M., Waldschütz, R., Schüddekopf, K., Smith, A.J.H., Boehm, T., 1996. Two Genetically Separable Steps in the Differentiation of Thymic Epithelium. Science 272, 886–889. https://doi.org/10.1126/science.272.5263.886 157. Niizuma, K., Endo, H., Chan, P.H., 2009. Oxidative stress and mitochondrial dysfunction as determinants of ischemic neuronal death and survival. J Neurochem 109, 133–138. https://doi.org/10.1111/j.1471-4159.2009.05897.x 158. Nohara, K., Ao, K., Miyamoto, Y., Suzuki, T., Imaizumi, S., Tateishi, Y., Omura, S., Tohyama, C., Kobayashi, T., 2008. Arsenite-Induced Thymus Atrophy is Mediated by Cell Cycle Arrest: A Characteristic Downregulation of E2F-Related Genes Revealed by a Microarray Approach. Toxicological Sciences 101, 226–238. https://doi.org/10.1093/toxsci/kfm268 159. Nohara, K., Fujimaki, H., Tsukumo, S., Inouye, K., Sone, H., Tohyama, C., 2002. Effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) on T cell-derived cytokine production in ovalbumin (OVA)-immunized C57Bl/6 mice. Toxicology 172, 49–58. https://doi.org/10.1016/S0300-483X(01)00582-0 160. Ohi, M., Dalsenter, P.R., Andrade, A.J.M., Nascimento, A.J., 2004. Reproductive adverse effects of fipronil in Wistar rats. Toxicology Letters 146, 121–127. https://doi.org/10.1016/j.toxlet.2003.08.008 161. Okazaki, H., Kohro-Ikeda, E., Takeda, S., Ishii, H., Furuta, E., Matsuo, S., Matsumoto, M., Takiguchi, M., Aramaki, H., 2016. Fipronil, an insecticide, acts as an anti-estrogen via the concomitant down-regulation of ERα and PES1. Fundam. Toxicol. Sci. 3, 33–37. https://doi.org/10.2131/fts.3.33 162. Olsen, R.W., Sieghart, W., 2008. International Union of Pharmacology. LXX. Subtypes of γAminobutyric AcidA Receptors: Classification on the Basis of Subunit Composition, Pharmacology, and Function. Update. Pharmacol Rev 60, 243–260. https://doi.org/10.1124/pr.108.00505 163. Omilusik, K., Priatel, J.J., Chen, X., Wang, Y.T., Xu, H., Choi, K.B., Gopaul, R., McIntyreSmith, A., Teh, H.-S., Tan, R., Bech-Hansen, N.T., Waterfield, D., Fedida, D., Hunt, S.V., Jefferies, W.A., 2011. The CaV1.4 Calcium Channel Is a Critical Regulator of T Cell Receptor Signaling and Naive T Cell Homeostasis. Immunity 35, 349–360. https://doi.org/10.1016/j.immuni.2011.07.011 164. Opferman, J.T., Letai, A., Beard, C., Sorcinelli, M.D., Ong, C.C., Korsmeyer, S.J., 2003. Development and maintenance of B and T lymphocytes requires antiapoptotic MCL-1. Nature 426, 671–676. https://doi.org/10.1038/nature02067 165. Ouyang, W., Liao, W., Luo, C.T., Yin, N., Huse, M., Kim, M.V., Peng, M., Chan, P., Ma, Q., Mo, Y., Meijer, D., Zhao, K., Rudensky, A.Y., Atwal, G., Zhang, M.Q., Li, M.O., 2012. Novel Foxo1-dependent transcriptional programs control Treg cell function. Nature 491, 554–559. https://doi.org/10.1038/nature11581 166. Paal, J.V. der, Neyts, E.C., Verlackt, C.C.W., Bogaerts, A., 2015. Effect of lipid peroxidation on membrane permeability of cancer and normal cells subjected to oxidative stress. Chem. Sci. 7, 489–498. https://doi.org/10.1039/C5SC02311D 167. Packer, L., Witt, E.H., Tritschler, H.J., 1995. Alpha-lipoic acid as a biological antioxidant. Free Radical Biology and Medicine 19, 227–250. https://doi.org/10.1016/08915849(95)00017-R 168. Padayatty, S.J., Katz, A., Wang, Y., Eck, P., Kwon, O., Lee, J.-H., Chen, S., Corpe, C., Dutta, A., Dutta, S.K., Levine, M., 2003. Vitamin C as an Antioxidant: Evaluation of Its Role in Disease Prevention. Journal of the American College of Nutrition 22, 18–35. https://doi.org/10.1080/07315724.2003.10719272 169. Park, J.H., Lee, J.E., Lee, S.-J., Park, S.J., Park, K.H., Jeong, M., Koh, H.C., 2013. Potential autophagy enhancers protect against fipronil-induced apoptosis in SH-SY5Y cells. Toxicology Letters 223, 25–34. https://doi.org/10.1016/j.toxlet.2013.08.015 170. Park, J.H., Park, Y.S., Lee, J.-B., Park, K.-H., Paik, M., Jeong, M., Koh, H.C., 2016. Meloxicam inhibits fipronil-induced apoptosis via modulation of the oxidative stress and inflammatory response in SH-SY5Y cells. Journal of Applied Toxicology 36, 10–23. https://doi.org/10.1002/jat.3136 171. Pathak, T., Trebak, M., 2018. Mitochondrial Ca2+ signaling. Pharmacology & Therapeutics 192, 112–123. https://doi.org/10.1016/j.pharmthera.2018.07.001 172. Pearce, E.L., Pearce, E.J., 2013. Metabolic Pathways in Immune Cell Activation and Quiescence. Immunity 38, 633–643. https://doi.org/10.1016/j.immuni.2013.04.005 173. Pedre, B., Barayeu, U., Ezeriņa, D., Dick, T.P., 2021. The mechanism of action of Nacetylcysteine (NAC): The emerging role of H2S and sulfane sulfur species. Pharmacology & Therapeutics 228, 107916. https://doi.org/10.1016/j.pharmthera.2021.107916 174. Peng, H.-Y., Lucavs, J., Ballard, D., Das, J.K., Kumar, A., Wang, L., Ren, Y., Xiong, X., Song, J., n.d. Frontiers | Metabolic Reprogramming and Reactive Oxygen Species in T Cell Immunity. https://doi.org/10.3389/fimmu.2021.652687 175. Perales, M.-A., Goldberg, J.D., Yuan, J., Koehne, G., Lechner, L., Papadopoulos, E.B., Young, J.W., Jakubowski, A.A., Zaidi, B., Gallardo, H., Liu, C., Rasalan, T., Wolchok, J.D., Croughs, T., Morre, M., Devlin, S.M., van den Brink, M.R.M., 2012. Recombinant human interleukin-7 (CYT107) promotes T-cell recovery after allogeneic stem cell transplantation. Blood 120, 4882–4891. https://doi.org/10.1182/blood-2012-06-437236 176. Peschon, J.J., Morrissey, P.J., Grabstein, K.H., Ramsdell, F.J., Maraskovsky, E., Gliniak, B.C., Park, L.S., Ziegler, S.F., Willams, D.E., Ware, C.B., Meyer, J.D., Davison, B.L., 1994. Early lymphocyte expansion is severely impaired in interleukin 7 receptor-deficient mice. J Exp Med 180, 1955–1960. 177. Pesticides, A., Authority, V.M., 2011. Safety of Fipronil in Dogs and Cats: a review of literature. 178. Pesticides, A., Authority, V.M., n.d. A review of Animal Safety Studies for Fipronil in the dog and cat. 179. Petty, F., Sherman, A.D., 1984. Plasma GABA levels in psychiatric illness. Journal of Affective Disorders 6, 131–138. https://doi.org/10.1016/0165-0327(84)90018-1 180. Pisa, L.W., Amaral-Rogers, V., Belzunces, L.P., Bonmatin, J.M., Downs, C.A., Goulson, D., Kreutzweiser, D.P., Krupke, C., Liess, M., McField, M., Morrissey, C.A., Noome, D.A., Settele, J., Simon-Delso, N., Stark, J.D., Van der Sluijs, J.P., Van Dyck, H., Wiemers, M., 2015. Effects of neonicotinoids and fipronil on non-target invertebrates. Environ Sci Pollut Res 22, 68–102. https://doi.org/10.1007/s11356-014-3471-x 181. Plumb, A.W., Sheikh, A., Carlow, D.A., Patton, D.T., Ziltener, H.J., Abraham, N., 2017. Interleukin-7 in the transition of bone marrow progenitors to the thymus. Immunology & Cell Biology 95, 916–924. https://doi.org/10.1038/icb.2017.68 182. Politikos, I., Kim, H.T., Nikiforow, S., Li, L., Brown, J., Antin, J.H., Cutler, C., Ballen, K., Ritz, J., Boussiotis, V.A., 2015. IL-7 and SCF Levels Inversely Correlate with T Cell Reconstitution and Clinical Outcomes after Cord Blood Transplantation in Adults. PLoS One 10, e0132564. https://doi.org/10.1371/journal.pone.0132564 183. Prevatto, J.P., Torres, R.C., Diaz, B.L., Silva, P.M.R. e, Martins, M.A., Carvalho, V.F., 2017. Antioxidant Treatment Induces Hyperactivation of the HPA Axis by Upregulating ACTH Receptor in the Adrenal and Downregulating Glucocorticoid Receptors in the Pituitary. Oxidative Medicine and Cellular Longevity 2017, 4156361. https://doi.org/10.1155/2017/4156361 184. PubChem, n.d. Fipronil [WWW Document]. URL https://pubchem.ncbi.nlm.nih.gov/compound/3352 (accessed 5.24.25). 185. Puel, A., Ziegler, S.F., Buckley, R.H., Leonard., W.J., 1998. Defective IL7R expression in TB+NK+ severe combined immunodeficiency. Nat Genet 20, 394–397. https://doi.org/10.1038/3877 186. Puerto, M., Guayerbas, N., Vıctor, V.M., De la Fuente, M., 2002. Effects of N-acetylcysteine on macrophage and lymphocyte functions in a mouse model of premature ageing. Pharmacology Biochemistry and Behavior 73, 797–804. https://doi.org/10.1016/S00913057(02)00902-4 187. Rathmell, J.C., Farkash, E.A., Gao, W., Thompson, C.B., 2001. IL-7 Enhances the Survival and Maintains the Size of Naive T Cells1. The Journal of Immunology 167, 6869–6876. https://doi.org/10.4049/jimmunol.167.12.6869 188. Ratra, G.S., Casida, J.E., 2001. GABA receptor subunit composition relative to insecticide potency and selectivity. Toxicology Letters 122, 215–222. https://doi.org/10.1016/S03784274(01)00366-6 189. Ren, W., Liu, G., Yin, J., Tan, B., Wu, G., Bazer, F.W., Peng, Y., Yin, Y., 2017. Amino-acid transporters in T-cell activation and differentiation. Cell Death Dis 8, e2655–e2655. https://doi.org/10.1038/cddis.2016.222 190. Reyes-García, M.G., Hernández-Hernández, F., Hernández-Téllez, B., García-Tamayo, F., 2007. GABA (A) receptor subunits RNA expression in mice peritoneal macrophages modulate their IL-6/IL-12 production. Journal of Neuroimmunology 188, 64–68. https://doi.org/10.1016/j.jneuroim.2007.05.013 191. Ribeiro, D., Melão, A., van Boxtel, R., Santos, C.I., Silva, A., Silva, M.C., Cardoso, B.A., Coffer, P.J., Barata, J.T., 2018. STAT5 is essential for IL-7–mediated viability, growth, and proliferation of T-cell acute lymphoblastic leukemia cells. Blood Adv 2, 2199–2213. https://doi.org/10.1182/bloodadvances.2018021063 192. Richardson, J.A., Little, S.E., 2012. Chapter 31 - Toxicology, in: Little, S.E. (Ed.), The Cat. W.B. Saunders, Saint Louis, pp. 914–933. https://doi.org/10.1016/B978-1-4377-0660-4.000314 193. Rikka, S., Quinsay, M.N., Thomas, R.L., Kubli, D.A., Zhang, X., Murphy, A.N., Gustafsson, Å.B., 2011. Bnip3 impairs mitochondrial bioenergetics and stimulates mitochondrial turnover. Cell Death Differ 18, 721–731. https://doi.org/10.1038/cdd.2010.146 194. Roberts, E., Frankel, S., 1950. γ-AMINOBUTYRIC ACID IN BRAIN: ITS FORMATION FROM GLUTAMIC ACID. Journal of Biological Chemistry 187, 55–63. https://doi.org/10.1016/S0021-9258(19)50929-2 195. Roberts, M.S., Cross, S.E., Pellett, M.A., 2002. Skin transport, in: Dermatological and Transdermal Formulations. CRC Press, pp. 107–214. 196. Rochman, Y., Spolski, R., Leonard, W.J., 2009. New insights into the regulation of T cells by γc family cytokines. Nat Rev Immunol 9, 480–490. https://doi.org/10.1038/nri2580 197. Rodewald, H.-R., Waskow, C., Haller, C., 2001. Essential Requirement for C-KIT and Common γ Chain in Thymocyte Development Cannot Be Overruled by Enforced Expression of Bcl-2. J Exp Med 193, 1431–1438. https://doi.org/10.1084/jem.193.12.1431 198. Roggero, E., Pérez, A.R., Tamae-Kakazu, M., Piazzon, I., Nepomnaschy, I., Besedovsky, H.O., Bottasso, O.A., Rey, A. del, 2006. Endogenous glucocorticoids cause thymus atrophy but are protective during acute Trypanosoma cruzi infection. https://doi.org/10.1677/joe.1.06642 199. Romano, R., Palamaro, L., Fusco, A., Giardino, G., Gallo, V., Del Vecchio, L., Pignata, C., 2013. FOXN1: A Master Regulator Gene of Thymic Epithelial Development Program. Frontiers in Immunology 4. 200. Romero, A., Ramos, E., Ares, I., Castellano, V., Martínez, M., Martínez-Larrañaga, M.R., Anadón, A., Martínez, M.A., 2016. Fipronil sulfone induced higher cytotoxicity than fipronil in SH-SY5Y cells: Protection by antioxidants. Toxicology Letters 252, 42–49. https://doi.org/10.1016/j.toxlet.2016.04.005 201. Ruangjaroon, T., Chokchaichamnankit, D., Srisomsap, C., Svasti, J., Paricharttanakul, N.M., 2017. Involvement of vimentin in neurite outgrowth damage induced by fipronil in SH-SY5Y cells. Biochemical and Biophysical Research Communications 486, 652–658. https://doi.org/10.1016/j.bbrc.2017.03.081 202. Sadlack, B., Merz, H., Schorle, H., Schimpl, A., Feller, A.C., Horak, I., 1993. Ulcerative colitis-like disease in mice with a disrupted interleukin-2 gene. Cell 75, 253–261. https://doi.org/10.1016/0092-8674(93)80067-O 203. Sakr, S., Hamed, A., Atef, M., 2022. Betanin ameliorates fipronil-induced nephrotoxicity via activation of Nrf2-HO-1/NQO-1 pathway in albino rat model. Toxicol Res (Camb) 11, 975– 986. https://doi.org/10.1093/toxres/tfac076 204. Saleh, H., Nassar, A.M.K., Noreldin, A.E., Samak, D., Elshony, N., Wasef, L., Elewa, Y.H.A., Hassan, S.M.A., Saati, A.A., Hetta, H.F., Batiha, G.E.-S., Umezawa, M., Shaheen, H.M., El-Sayed, Y.S., 2020. Chemo-Protective Potential of Cerium Oxide Nanoparticles against Fipronil-Induced Oxidative Stress, Apoptosis, Inflammation and Reproductive Dysfunction in Male White Albino Rats. Molecules 25, 3479. https://doi.org/10.3390/molecules25153479 205. Salehzadeh, M., Soma, K.K., 2021. Glucocorticoid production in the thymus and brain: Immunosteroids and neurosteroids. Brain, Behavior, & Immunity - Health 18, 100352. https://doi.org/10.1016/j.bbih.2021.100352 206. Saulsbury, M.D., Heyliger, S.O., Wang, K., Johnson, D.J., 2009. Chlorpyrifos induces oxidative stress in oligodendrocyte progenitor cells. Toxicology 259, 1–9. https://doi.org/10.1016/j.tox.2008.12.026 207. Semyanov, A., Walker, M.C., Kullmann, D.M., 2003. GABA uptake regulates cortical excitability via cell type–specific tonic inhibition. Nat Neurosci 6, 484–490. https://doi.org/10.1038/nn1043 208. Sena, L.A., Li, S., Jairaman, A., Prakriya, M., Ezponda, T., Hildeman, D.A., Wang, C.-R., Schumacker, P.T., Licht, J.D., Perlman, H., Bryce, P.J., Chandel, N.S., 2013. Mitochondria Are Required for Antigen-Specific T Cell Activation through Reactive Oxygen Species Signaling. Immunity 38, 225–236. https://doi.org/10.1016/j.immuni.2012.10.020 209. Shaki, F., Hosseini, M.-J., Ghazi-Khansari, M., Pourahmad, J., 2012. Toxicity of depleted uranium on isolated rat kidney mitochondria. Biochimica et Biophysica Acta (BBA) - General Subjects 1820, 1940–1950. https://doi.org/10.1016/j.bbagen.2012.08.015 210. Shan, Y., Zhao, J., Zheng, Y., Guo, S., Schrodi, S.J., He, D., 2023. Understanding the function of the GABAergic system and its potential role in rheumatoid arthritis. Front. Immunol. 14. https://doi.org/10.3389/fimmu.2023.1114350 211. Shanker, A., 2004. Is thymus redundant after adulthood? Immunology Letters 91, 79–86. https://doi.org/10.1016/j.imlet.2003.12.012 212. Shanley, D.P., Aw, D., Manley, N.R., Palmer, D.B., 2009. An evolutionary perspective on the mechanisms of immunosenescence. Trends in Immunology 30, 374–381. https://doi.org/10.1016/j.it.2009.05.001 213. Sheikh, V., Porter, B.O., DerSimonian, R., Kovacs, S.B., Thompson, W.L., Perez-Diez, A., Freeman, A.F., Roby, G., Mican, J., Pau, A., Rupert, A., Adelsberger, J., Higgins, J., Bourgeois, J.S., Jr, Jensen, S.M.R., Morcock, D.R., Burbelo, P.D., Osnos, L., Maric, I., Natarajan, V., Croughs, T., Yao, M.D., Estes, J.D., Sereti, I., 2016. Administration of interleukin-7 increases CD4 T cells in idiopathic CD4 lymphocytopenia. Blood 127, 977–988. https://doi.org/10.1182/blood-2015-05-645077 214. Shi, L., Wan, Y., Liu, J., He, Z., Xu, S., Xia, W., 2021. Insecticide fipronil and its transformation products in human blood and urine: Assessment of human exposure in general population of China. Science of The Total Environment 786, 147342. https://doi.org/10.1016/j.scitotenv.2021.147342 215. Shichkin, V.P., Antica, M., 2022. Key Factors for Thymic Function and Development. Front. Immunol. 13. https://doi.org/10.3389/fimmu.2022.926516 216. Sicinska, E., Aifantis, I., Le Cam, L., Swat, W., Borowski, C., Yu, Q., Ferrando, A.A., Levin, S.D., Geng, Y., von Boehmer, H., Sicinski, P., 2003. Requirement for cyclin D3 in lymphocyte development and T cell leukemias. Cancer Cell 4, 451–461. https://doi.org/10.1016/S15356108(03)00301-5 217. Sidiropoulou, E., Sachana, M., Hargrreaves, A.J., Woldehiwet, Z., 2010. Immunotoxic properties of pesticides: effects of diazinon-oxon and fipronil on lymphocytic Jurkat cells. Front. Pharmacol. 1. https://doi.org/10.3389/conf.fphar.2010.60.00196 218. Sieghart, W., Sperk, G., 2002. Subunit Composition, Distribution and Function of GABA-A Receptor Subtypes. Current topics in medicinal chemistry 2, 795–816. https://doi.org/10.2174/1568026023393507 219. Simon-Delso, N., Amaral-Rogers, V., Belzunces, L.P., Bonmatin, J.M., Chagnon, M., Downs, C., Furlan, L., Gibbons, D.W., Giorio, C., Girolami, V., Goulson, D., Kreutzweiser, D.P., Krupke, C.H., Liess, M., Long, E., McField, M., Mineau, P., Mitchell, E.A.D., Morrissey, C.A., Noome, D.A., Pisa, L., Settele, J., Stark, J.D., Tapparo, A., Van Dyck, H., Van Praagh, J., Van der Sluijs, J.P., Whitehorn, P.R., Wiemers, M., 2015. Systemic insecticides (neonicotinoids and fipronil): trends, uses, mode of action and metabolites. Environ Sci Pollut Res 22, 5–34. https://doi.org/10.1007/s11356-014-3470-y 220. Singh, J., Phogat, A., Malik, V., 2025. N-acetylcysteine: a potential therapeutic agent against toxicity of pesticides. Mol Biol Rep 52, 539. https://doi.org/10.1007/s11033-025-10635-8 221. Slotkin, T.A., Seidler, F.J., 2010. Oxidative stress from diverse developmental neurotoxicants: Antioxidants protect against lipid peroxidation without preventing cell loss. Neurotoxicology and Teratology 32, 124–131. https://doi.org/10.1016/j.ntt.2009.12.001 222. Smiley, S.T., Grusby, M.J., 1998. Interleukin 4, in: Delves, P.J. (Ed.), Encyclopedia of Immunology (Second Edition). Elsevier, Oxford, pp. 1451–1453. https://doi.org/10.1006/rwei.1999.0368 223. Soltani, N., Qiu, H., Aleksic, M., Glinka, Y., Zhao, F., Liu, R., Li, Y., Zhang, N., Chakrabarti, R., Ng, T., Jin, T., Zhang, H., Lu, W.-Y., Feng, Z.-P., Prud’homme, G.J., Wang, Q., 2011. GABA exerts protective and regenerative effects on islet beta cells and reverses diabetes. Proceedings of the National Academy of Sciences 108, 11692–11697. https://doi.org/10.1073/pnas.1102715108 224. Song, X., Wang, X., Liao, G., Pan, Y., Qian, Y., Qiu, J., 2021. Toxic effects of fipronil and its metabolites on PC12 cell metabolism. Ecotoxicology and Environmental Safety 224, 112677. https://doi.org/10.1016/j.ecoenv.2021.112677 225. Sparrow, E.L., James, S., Hussain, K., Beers, S.A., Cragg, M.S., Bogdanov, Y.D., 2021. Activation of GABA(A) receptors inhibits T cell proliferation. PLOS ONE 16, e0251632. https://doi.org/10.1371/journal.pone.0251632 226. Spidale, N.A., Sylvia, K., Narayan, K., Miu, B., Frascoli, M., Melichar, H.J., Zhihao, W., Kisielow, J., Palin, A., Serwold, T., Love, P., Kobayashi, M., Yoshimoto, M., Jain, N., Kang, J., 2018. Interleukin-17 producing γδ T cells originate from SOX13+ progenitors that are independent of γδTCR signaling. Immunity 49, 857-872.e5. https://doi.org/10.1016/j.immuni.2018.09.010 227. Sprent, J., Surh, C.D., 2011. Normal T cell homeostasis: the conversion of naive cells into memory-phenotype cells. Nat Immunol 12, 478–484. https://doi.org/10.1038/ni.2018 228. Stafford, E.G., Tell, L.A., Lin, Z., Davis, J.L., Vickroy, T.W., Riviere, J.E., Baynes, R.E., 2018. Consequences of fipronil exposure in egg-laying hens. https://doi.org/10.2460/javma.253.1.57 229. Stehr, C.M., Linbo, T.L., Incardona, J.P., Scholz, N.L., 2006. The Developmental Neurotoxicity of Fipronil: Notochord Degeneration and Locomotor Defects in Zebrafish Embryos and Larvae. Toxicological Sciences 92, 270–278. https://doi.org/10.1093/toxsci/kfj185 230. Steward, F.C., 1949. γ-Aminobutyric acid: a constituent of potato tubers? Science 110, 439–440. 231. Sudo, T., Nishikawa, S., Ohno, N., Akiyama, N., Tamakoshi, M., Yoshida, H., Nishikawa, S., 1993. Expression and function of the interleukin 7 receptor in murine lymphocytes. Proc Natl Acad Sci U S A 90, 9125–9129. 232. Sutherland, J.S., Goldberg, G.L., Hammett, M.V., Uldrich, A.P., Berzins, S.P., Heng, T.S., Blazar, B.R., Millar, J.L., Malin, M.A., Chidgey, A.P., Boyd, R.L., 2005. Activation of Thymic Regeneration in Mice and Humans following Androgen Blockade. The Journal of Immunology 175, 2741–2753. https://doi.org/10.4049/jimmunol.175.4.2741 233. Suzuki, T., Hirai, A., Khidkhan, K., Nimako, C., Ichise, T., Takeda, K., Mizukawa, H., Nakayama, S.M.M., Nomiyama, K., Hoshi, N., Maeda, M., Hirano, T., Sasaoka, K., Sasaki, N., Takiguchi, M., Ishizuka, M., Ikenaka, Y., 2021. The effects of fipronil on emotional and cognitive behaviors in mammals. Pesticide Biochemistry and Physiology 175, 104847. https://doi.org/10.1016/j.pestbp.2021.104847 234. Szegedi, V., Bárdos, G., Détári, L., Tóth, A., Banczerowski-Pelyhe, I., Világi, I., 2005. Transient alterations in neuronal and behavioral activity following bensultap and fipronil treatment in rats. Toxicology 214, 67–76. https://doi.org/10.1016/j.tox.2005.05.023 235. Tentori, L., Longo, D.L., ZUNIGA-PFLUCKER, J.C., Wing, C., Kruisbeek, A.M., 1988. Essential role of the interleukin 2-interleukin 2 receptor pathway in thymocyte maturation in vivo. J Exp Med 168, 1741–1747. 236. Terçariol, P.R.G., Godinho, A.F., 2011. Behavioral effects of acute exposure to the insecticide fipronil. Pesticide Biochemistry and Physiology 99, 221–225. https://doi.org/10.1016/j.pestbp.2010.12.007 237. THAPA, P., FARBER, D.L., 2019. THE ROLE OF THE THYMUS IN THE IMMUNE RESPONSE. Thorac Surg Clin 29, 123–131. https://doi.org/10.1016/j.thorsurg.2018.12.001 238. The Comparative Toxicogenomics Database | CTD [WWW Document], n.d. URL https://ctdbase.org/ (accessed 6.1.25). 239. Tian, J., Chau, C., Hales, T.G., Kaufman, D.L., 1999. GABAA receptors mediate inhibition of T cell responses. Journal of Neuroimmunology 96, 21–28. https://doi.org/10.1016/S01655728(98)00264-1 240. Tian, J., Lu, Y., Zhang, H., Chau, C.H., Dang, H.N., Kaufman, D.L., 2004. γ-Aminobutyric Acid Inhibits T Cell Autoimmunity and the Development of Inflammatory Responses in a Mouse Type 1 Diabetes Model1. The Journal of Immunology 173, 5298–5304. https://doi.org/10.4049/jimmunol.173.8.5298 241. Tingle, C.C.D., Rother, J.A., Dewhurst, C.F., Lauer, S., King, W.J., 2003. Fipronil: Environmental Fate, Ecotoxicology, and Human Health Concerns, in: Ware, G.W. (Ed.), Reviews of Environmental Contamination and Toxicology: Continuation of Residue Reviews, Reviews of Environmental Contamination and Toxicology. Springer, New York, NY, pp. 1–66. https://doi.org/10.1007/978-1-4899-7283-5_1 242. Trédan, O., Ménétrier-Caux, C., Ray-Coquard, I., Garin, G., Cropet, C., Verronèse, E., Bachelot, T., Rebattu, P., Heudel, P.E., Cassier, P., Chabaud, S., Croughs, T., Dupont, P., Cadore, A.C., Clapisson, G., Delgado, A., Bardin-dit-Courageot, C., Rigal, C., N’Kodia, A., Gilles-Afchain, L., Morre, M., Pérol, D., Blay, J.Y., Caux, C., 2015. ELYPSE-7: a randomized placebo-controlled phase IIa trial with CYT107 exploring the restoration of CD4+ lymphocyte count in lymphopenic metastatic breast cancer patients. Annals of Oncology 26, 1353–1362. https://doi.org/10.1093/annonc/mdv173 243. Tsai, T.-L., Zhou, T.-A., Hsieh, Y.-T., Wang, J.-C., Cheng, H.-K., Huang, C.-H., Tsai, P.-Y., Fan, H.-H., Feng, H.-K., Huang, Y.-C., Lin, C.-C., Lin, C.-H., Lin, C.-Y., Dzhagalov, I.L., Hsu, C.-L., 2022. Multiomics reveal the central role of pentose phosphate pathway in resident thymic macrophages to cope with efferocytosis-associated stress. Cell Reports 40. https://doi.org/10.1016/j.celrep.2022.111065 244. Vaittinen, S.-L., Komulainen, H., Kosma, V.-M., Julkunen, A., Mäki-Paakkanen, J., Jansson, K., Vartiainen, T., Tuomisto, J., 1995. Subchronic toxicity of 3-chloro-4-(dichloromethyl)-5hydroxy-2(5H)-furanone (MX) in Wistar rats. Food and Chemical Toxicology 33, 1027–1037. https://doi.org/10.1016/0278-6915(95)00079-8 245. Valvassori, S.S., Resende, W.R., Lopes-Borges, J., Mariot, E., Dal-Pont, G.C., Vitto, M.F., Luz, G., de Souza, C.T., Quevedo, J., 2015. Effects of mood stabilizers on oxidative stressinduced cell death signaling pathways in the brains of rats subjected to the ouabain-induced animal model of mania: Mood stabilizers exert protective effects against ouabain-induced activation of the cell death pathway. Journal of Psychiatric Research 65, 63–70. https://doi.org/10.1016/j.jpsychires.2015.04.009 246. Veis, D.J., Sorenson, C.M., Shutter, J.R., Korsmeyer, S.J., 1993. Bcl-2-deficient mice demonstrate fulminant lymphoid apoptosis, polycystic kidneys, and hypopigmented hair. Cell 75, 229–240. https://doi.org/10.1016/0092-8674(93)80065-M 247. Velardi, E., Tsai, J.J., van den Brink, M.R.M., 2021. T cell regeneration after immunological injury. Nat Rev Immunol 21, 277–291. https://doi.org/10.1038/s41577-020-00457-z 248. Veterinary Toxicology, 2018. 249. Vicente, R., Swainson, L., Marty-Grez, S., de Barros, S., Kinet, S., Zimmermann, V.S., Taylor, N., 2010. Molecular and Cellular Basis of T cell Lineage Commitment. Semin Immunol 22, 270–275. https://doi.org/10.1016/j.smim.2010.04.016 250. Vidau, C., González-Polo, R.A., Niso-Santano, M., Gómez-Sánchez, R., Bravo-San Pedro, J.M., Pizarro-Estrella, E., Blasco, R., Brunet, J.-L., Belzunces, L.P., Fuentes, J.M., 2011. Fipronil is a powerful uncoupler of oxidative phosphorylation that triggers apoptosis in human neuronal cell line SHSY5Y. NeuroToxicology 32, 935–943. https://doi.org/10.1016/j.neuro.2011.04.006 251. Wan, J., Martinvalet, D., Ji, X., Lois, C., Kaech, S.M., Von Andrian, U.H., Lieberman, J., Ahmed, R., Manjunath, N., 2003. The Bcl-2 family pro-apoptotic molecule, BNIP3 regulates activation-induced cell death of effector cytotoxic T lymphocytes. Immunology 110, 10–17. https://doi.org/10.1046/j.1365-2567.2003.01710.x 252. Wan, Y.Y., Flavell, R.A., 2009. How Diverse—CD4 Effector T Cells and their Functions. J Mol Cell Biol 1, 20–36. https://doi.org/10.1093/jmcb/mjp001 253. Wang, C., Youle, R.J., 2009. The Role of Mitochondria in Apoptosis. Annu Rev Genet 43, 95-118. https://doi.org/10.1146/annurev-genet-102108-134850 254. Wang, J., He, N., Zhang, N., Quan, D., Zhang, S., Zhang, C., Yu, R.T., Atkins, A.R., Zhu, R., Yang, C., Cui, Y., Liddle, C., Downes, M., Xiao, H., Zheng, Y., Auwerx, J., Evans, R.M., Leng, Q., 2017. NCoR1 restrains thymic negative selection by repressing Bim expression to spare thymocytes undergoing positive selection. Nat Commun 8, 959. https://doi.org/10.1038/s41467-017-00931-8 255. Wang, R., Green, D.R., 2012. Metabolic checkpoints in activated T cells. Nat Immunol 13, 907–915. https://doi.org/10.1038/ni.2386 256. Wang, X., Martínez, M.A., Wu, Q., Ares, I., Martínez-Larrañaga, M.R., Anadón, A., Yuan, Z., 2016. Fipronil insecticide toxicology: oxidative stress and metabolism. Critical Reviews in Toxicology 46, 876–899. https://doi.org/10.1080/10408444.2016.1223014 257. Wang, Xin-quan, Li, Y., Zhong, S., Zhang, H., Wang, Xiang-yun, Qi, P., Xu, H., 2013. Oxidative injury is involved in fipronil-induced G2/M phase arrest and apoptosis in Spodoptera frugiperda (Sf9) cell line. Pesticide Biochemistry and Physiology 105, 122–130. https://doi.org/10.1016/j.pestbp.2012.12.008 258. Wang, X.-J., Cao, Q., Zhang, Y., Su, X.-D., 2015. Activation and regulation of caspase-6 and its role in neurodegenerative diseases. Annu Rev Pharmacol Toxicol 55, 553–572. https://doi.org/10.1146/annurev-pharmtox-010814-124414 259. Wang, Y., Luo, Q., Xu, Y., Feng, D., Fei, J., Cheng, Q., Xu, L., 2009. γ-Aminobutyric Acid Transporter 1 Negatively Regulates T Cell Activation and Survival through Protein Kinase CDependent Signaling Pathways1. The Journal of Immunology 183, 3488–3495. https://doi.org/10.4049/jimmunol.0900767 260. Webster, M., 1999. Product warning: FRONTLINE. Aust Vet J 77, 202. 261. Wei, Y., Hu, Z., Gu, W., Liu, G., Shi, B., Liu, E., Liu, T., 2017. CD117+CD44+ Stem T Cells Develop in the Thymus and Potently Suppress T-cell Proliferation by Modulating the CTLA-4 Pathway. Stem Cell Research & Therapy 8, 56. https://doi.org/10.1186/s13287-017-0495-4 262. Weidinger, A., Kozlov, A.V., 2015. Biological Activities of Reactive Oxygen and Nitrogen Species: Oxidative Stress versus Signal Transduction. Biomolecules 5, 472–484. https://doi.org/10.3390/biom5020472 263. Wheeler, D.W., Thompson, A.J., Corletto, F., Reckless, J., Loke, J.C.T., Lapaque, N., Grant, A.J., Mastroeni, P., Grainger, D.J., Padgett, C.L., O’Brien, J.A., Miller, N.G.A., Trowsdale, J., Lummis, S.C.R., Menon, D.K., Beech, J.S., 2011. Anaesthetic Impairment of Immune Function Is Mediated via GABAA Receptors. PLOS ONE 6, e17152. https://doi.org/10.1371/journal.pone.0017152 264. Winer, H., Rodrigues, G.O.L., Hixon, J.A., Aiello, F.B., Hsu, T.C., Wachter, B.T., Li, W., Durum, S.K., 2022. IL-7: Comprehensive review. Cytokine 160, 156049. https://doi.org/10.1016/j.cyto.2022.156049 265. Wofford, J.A., Wieman, H.L., Jacobs, S.R., Zhao, Y., Rathmell, J.C., 2008. IL-7 promotes Glut1 trafficking and glucose uptake via STAT5-mediated activation of Akt to support T-cell survival. Blood 111, 2101–2111. https://doi.org/10.1182/blood-2007-06-096297 266. World Health Organization, 2022. Pesticide residues in food: 2021: toxicological evaluations: Joint Meeting of the FAO Panel of Experts on Pesticide Residues in Food and the Environment and the WHO Core Assessment Group on Pesticide Residues, virtual meeting, 6–17 September, 4 and 7 October 2021. 267. Wu, L., Antica, M., Johnson, G.R., Scollay, R., Shortman, K., 1991. Developmental potential of the earliest precursor cells from the adult mouse thymus. Journal of Experimental Medicine 174, 1617–1627. https://doi.org/10.1084/jem.174.6.1617 268. Xia, Y., He, F., Wu, X., Tan, B., Chen, Siyuan, Liao, Y., Qi, M., Chen, Shuai, Peng, Y., Yin, Y., Ren, W., 2021. GABA transporter sustains IL-1β production in macrophages. Science Advances 7, eabe9274. https://doi.org/10.1126/sciadv.abe9274 269. Xue, H.-H., Bollenbacher, J., Rovella, V., Tripuraneni, R., Du, Y.-B., Liu, C.-Y., Williams, A., McCoy, J.P., Leonard, W.J., 2004. GA binding protein regulates interleukin 7 receptor α-chain gene expression in T cells. Nat Immunol 5, 1036–1044. https://doi.org/10.1038/ni1117 270. Xue, H.-H., Bollenbacher-Reilley, J., Wu, Z., Spolski, R., Jing, X., Zhang, Y.-C., McCoy, J.P., Leonard, W.J., 2007. The Transcription Factor GABP Is a Critical Regulator of B Lymphocyte Development. Immunity 26, 421–431. https://doi.org/10.1016/j.immuni.2007.03.010 271. Yadav, A., Mishra, P.C., 2012. Modeling the activity of glutathione as a hydroxyl radical scavenger considering its neutral non-zwitterionic form. Journal of Molecular Modeling 19, 767–777. https://doi.org/10.1007/s00894-012-1601-2 272. Yan, F., Mo, X., Liu, J., Ye, S., Zeng, X., Chen, D., n.d. Thymic function in the regulation of T cells, and molecular mechanisms underlying the modulation of cytokines and stress signaling (Review). 273. Yang, H., Zhou, M., Li, H., Wei, T., Tang, C., Zhou, Y., Long, X., 2020. Effects of Low-level Lipid Peroxidation on the Permeability of Nitroaromatic Molecules across a Membrane: A Computational Study. ACS Omega 5, 4798–4806. https://doi.org/10.1021/acsomega.9b03462 274. Yang, Q., Bell, J.J., Bhandoola, A., 2010. T-Cell Lineage Determination. Immunol Rev 238, 12–22. https://doi.org/10.1111/j.1600-065X.2010.00956.x 275. Young, H.A., Klinman, D.M., Reynolds, D.A., Grzegorzewski, K.J., Nii, A., Ward, J.M., Winkler-Pickett, R.T., Ortaldo, J.R., Kenny, J.J., Komschlies, K.L., 1997. Bone Marrow and Thymus Expression of Interferon-γ Results in Severe B-Cell Lineage Reduction, T-Cell Lineage Alterations, and Hematopoietic Progenitor Deficiencies. Blood 89, 583–595. https://doi.org/10.1182/blood.V89.2.583 276. Youssef, L.A., Rebbaa, A., Pampou, S., Weisberg, S.P., Stockwell, B.R., Hod, E.A., Spitalnik, S.L., 2018. Increased erythrophagocytosis induces ferroptosis in red pulp macrophages in a mouse model of transfusion. Blood 131, 2581–2593. https://doi.org/10.1182/blood-2017-12822619 277. Yu, Q., Erman, B., Park, J.-H., Feigenbaum, L., Singer, A., 2004. IL-7 Receptor Signals Inhibit Expression of Transcription Factors TCF-1, LEF-1, and RORγt. J Exp Med 200, 797–803. https://doi.org/10.1084/jem.20032183 278. Yu, S., Zhao, D.-M., Jothi, R., Xue, H.-H., 2010. Critical Requirement of GABPα for Normal T Cell Development. J Biol Chem 285, 10179–10188. https://doi.org/10.1074/jbc.M109.088740 279. Zafar, S., Jabeen, I., 2018. Structure, Function, and Modulation of γ-Aminobutyric Acid Transporter 1 (GAT1) in Neurological Disorders: A Pharmacoinformatic Prospective. Frontiers in Chemistry 6. 280. Zafarullah, M., Li, W.Q., Sylvester, J., Ahmad, M., 2003. Molecular mechanisms of Nacetylcysteine actions. CMLS, Cell. Mol. Life Sci. 60, 6–20. https://doi.org/10.1007/s000180300001 281. Zhang, B., Vogelzang, A., Miyajima, M., Sugiura, Y., Wu, Y., Chamoto, K., Nakano, R., Hatae, R., Menzies, R.J., Sonomura, K., Hojo, N., Ogawa, T., Kobayashi, W., Tsutsui, Y., Yamamoto, S., Maruya, M., Narushima, S., Suzuki, K., Sugiya, H., Murakami, K., Hashimoto, M., Ueno, H., Kobayashi, T., Ito, K., Hirano, T., Shiroguchi, K., Matsuda, F., Suematsu, M., Honjo, T., Fagarasan, S., 2021. B cell-derived GABA elicits IL-10+ macrophages to limit antitumour immunity. Nature 599, 471–476. https://doi.org/10.1038/s41586-021-04082-1 282. Zhang, B., Xu, Z., Zhang, Y., Shao, X., Xu, X., Cheng, J., Li, Z., 2015. Fipronil induces apoptosis through caspase-dependent mitochondrial pathways in Drosophila S2 cells. Pesticide Biochemistry and Physiology 119, 81–89. https://doi.org/10.1016/j.pestbp.2015.01.019 283. Zhang, N., Hartig, H., Dzhagalov, I., Draper, D., He, Y.W., 2005. The role of apoptosis in the development and function of T lymphocytes. Cell Research 15, 749–769. https://doi.org/10.1038/sj.cr.7290345 284. Zhao, X., Salgado, V.L., Yeh, J.Z., Narahashi, T., 2003. Differential Actions of Fipronil and Dieldrin Insecticides on GABA-Gated Chloride Channels in Cockroach Neurons. The Journal of Pharmacology and Experimental Therapeutics 306, 914–924. https://doi.org/10.1124/jpet.103.051839 285. Zhao, X., Yeh, J.Z., Salgado, V.L., Narahashi, T., 2005. Sulfone Metabolite of Fipronil Blocks γ-Aminobutyric Acid- and Glutamate-Activated Chloride Channels in Mammalian and Insect Neurons. The Journal of Pharmacology and Experimental Therapeutics 314, 363–373. https://doi.org/10.1124/jpet.104.077891 286. Zhao, X., Yeh, J.Z., Salgado, V.L., Narahashi, T., 2004. Fipronil Is a Potent Open Channel Blocker of Glutamate-Activated Chloride Channels in Cockroach Neurons. The Journal of Pharmacology and Experimental Therapeutics 310, 192–201. https://doi.org/10.1124/jpet.104.065516 287. Zheng, Y., Sun, J., Luo, Z., Li, Y., Huang, Y., 2024. Emerging mechanisms of lipid peroxidation in regulated cell death and its physiological implications. Cell Death Dis 15, 1–19. https://doi.org/10.1038/s41419-024-07244-x 288. Zhitkovich, A., 2019. N-Acetylcysteine: Antioxidant, Aldehyde Scavenger, and More. Chem. Res. Toxicol. 32, 1318–1319. https://doi.org/10.1021/acs.chemrestox.9b00152 289. Zhu, Y., Zhang, R., Zhang, B., Zhao, T., Wang, P., Liang, G., Cheng, G., 2017. Blood meal acquisition enhances arbovirus replication in mosquitoes through activation of the GABAergic system. Nat Commun 8, 1262. https://doi.org/10.1038/s41467-017-01244-6 290. Zhuang, J., Jiang, Z., Chen, D., Li, J., Crabbe, M.J.C., Qiu, M., Zheng, Y., Qu, W., 2023. Thyroid-Disrupting Effects of Exposure to Fipronil and Its Metabolites from Drinking Water Based on Human Thyroid Follicular Epithelial Nthy-ori 3-1 Cell Lines. Environ. Sci. Technol. 57, 6072–6084. https://doi.org/10.1021/acs.est.2c08627 291. Zohren, F., Souroullas, G.P., Luo, M., Gerdemann, U., Imperato, M.R., Wilson, N.K., Gottgens, B., Lukov, G.L., Goodell, M.A., 2012a. Lyl1 regulates lymphoid specification and maintenance of early T lineage progenitors. Nat Immunol 13, 761–769. https://doi.org/10.1038/ni.2365 292. Zohren, F., Souroullas, G.P., Luo, M., Gerdemann, U., Imperato, M.R., Wilson, N.K., Göttgens, B., Lukov, G.L., Goodell, M.A., 2012b. The transcription factor Lyl-1 regulates lymphoid specification and the maintenance of early T lineage progenitors. Nat Immunol 13, 761–769. https://doi.org/10.1038/ni.2365 293. Zoller, A.L., Kersh, G.J., 2006. Estrogen Induces Thymic Atrophy by Eliminating Early Thymic Progenitors and Inhibiting Proliferation of β-Selected Thymocytes1. The Journal of Immunology 176, 7371–7378. https://doi.org/10.4049/jimmunol.176.12.7371 294. Zubkova, I., Mostowski, H., Zaitseva, M., 2005. Up-Regulation of IL-7, Stromal-Derived Factor-1α, Thymus-Expressed Chemokine, and Secondary Lymphoid Tissue Chemokine Gene Expression in the Stromal Cells in Response to Thymocyte Depletion: Implication for Thymus Reconstitution1. The Journal of Immunology 175, 2321–2330. https://doi.org/10.4049/jimmunol.175.4.2321 295. Žuklys, S., Handel, A., Zhanybekova, S., Govani, F., Keller, M., Maio, S., Mayer, C.E., Teh, H.Y., Hafen, K., Gallone, G., Barthlott, T., Ponting, C.P., Holländer, G.A., 2016. Foxn1 regulates key target genes essential for T cell development in postnatal thymic epithelial cells. Nat Immunol 17, 1206–1215. https://doi.org/10.1038/ni.3537 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99147 | - |
| dc.description.abstract | 芬普尼是一種苯基吡唑類殺蟲劑,廣泛應用於農業、家庭害蟲防治與獸醫治療領域, 傳統上被認為對脊椎動物毒性較低。然而,越來越多研究指出,芬普尼暴露可能對肝臟、生 殖系統與神經系統造成預期之外的不良影響。儘管如此,其對免疫功能,特別是 T 淋巴細 胞反應的影響仍未被充分探討。本研究使用體內與體外兩種模型,系統性評估芬普尼對成熟 與發育中 T 淋巴細胞的免疫毒性。結果顯示,在免疫卵白蛋白小鼠中口服投予芬普尼後, 對卵白蛋白的抗原特異性免疫反應顯著增強,包括促進脾臟細胞代謝活性上升、增加細胞激 素 IL-2、IL-4 與 IFN-γ 分泌量,以及同時增加抗原專一性 OVA-IgG 1 與 OVA-IgG 2a 血清抗體 濃度。基因表現的分析顯示,GABA 調控相關的基因受到影響,其中 Gad67 的基因表現下 降,以及 GABA 受體次單元(β2 和 δ)的基因表現則上升。這些結果顯示,芬普尼可能 藉由干擾 GABA 路徑基因調控 T 淋巴細胞的免疫抑制作用,從而增強抗原特異性免疫反應 不正常的活化。
由於胸腺細胞的生成與 T 細胞的成熟分化是後天免疫系統發育的重要作用,我們進一 步評估芬普尼對胸腺發育的影響。結果發現,芬普尼會引起胸腺明顯萎縮、雙陽性胸腺細胞 比例與數量下降,T 細胞成熟受到抑制與 IL-7 與其受體表現下降密切相關。IL-7 是胸腺早期 發育中不可或缺的細胞激素,支持雙陰性階段後 T 淋巴細胞的的存活、增殖和分化。研究亦 發現芬普尼抑制 IL-7 軸相關基因和蛋白(包括 FOXN1、LYL1、SCF 和 c-KIT)的表現,進 一步破壞了細胞增生所需的胸腺微環境。除胸腺發育訊號受到抑制外,芬普尼也誘發胸腺細 胞的氧化壓力,包括細胞內活性氧含量上升、粒線體膜電位去極化、脂質過氧化、鈣離子與 穀胱甘肽濃度下降等現象。同時,BCL-2 家族基因表現失衡,抗凋亡基因抑制、促凋亡基因 如 Bim 與 Bnip3 表現異常,顯示芬普尼誘發粒線體凋亡機制,最終導致胸腺細胞死亡。綜合我們的研究結果所示,芬普尼具有兩種機制,其一是干擾 GABA 相關基因包含合成與傳 遞 GABA 的機制失調,進而誘發 Th1/Th2 細胞激素同時過度分泌,造成 T 細胞的過度活化; 另外是抑制 IL-7 訊號及維持胸腺微環境所需之轉錄因子和誘發氧化性傷害以破壞胸腺 T 淋 巴細胞發育,最終造成免疫細胞調控的失調。我們的研究成果突顯出暴露芬普尼對 T 細胞 功能與發育的潛在毒性作用,全面地重新評估芬普尼對於青春期脊椎動物的安全性為重要的 課題。 | zh_TW |
| dc.description.abstract | Fipronil (FPN) is a phenylpyrazole pesticide widely used in agriculture, household pest control, and veterinary medicine. It is traditionally considered to have low toxicity in vertebrates. However, growing evidence suggests that FPN exposure may lead to unexpected adverse effects on the liver, reproductive system, and nervous system. Despite these findings, its influence on immune function, particularly on T cell responses, remains poorly understood. In this study, I systematically investigated the immunotoxic effects of FPN on both mature and developing T cells using in vivo and ex vivo models. Oral administration of FPN in ovalbumin-sensitized mice enhanced antigen-specific immune responses, as indicated by increased splenocyte metabolic activity, elevated production of IL-2, IL-4, and IFN-γ, and higher serum levels of OVA-IgG 1 and OVA-IgG2a . Gene expression analysis revealed that GABAergic signaling was altered, with a significant decrease in Gad67 and an increase in GABA receptor subunits (β2 and δ). These findings suggest that FPN may interfere with the inhibitory role of GABAergic pathways in T cell regulation, thereby enhancing antigen-specific immune activation.
Because T cell lineage commitment and thymopoiesis are fundamental to functional adaptive immunity, I further examined the impact of FPN on thymic development. FPN exposure induced marked thymic atrophy, reduced the proportion of double-positive thymocytes, and impaired T cell maturation. These effects were closely linked to the suppression of IL-7 and IL-7 receptor expression. As a key cytokine in early thymocyte development, IL-7 supports survival, proliferation, and differentiation beyond the double-negative stage. Downregulation of IL-7 axis-related genes and proteins, including FOXN1, LYL1, SCF, and c-KIT, further disrupted the thymic microenvironment required for progenitor cell expansion. In addition to impairing developmental signaling, FPN exposure triggered oxidative stress in thymocytes. Elevated reactive oxygen species, mitochondrial membrane depolarization, lipid peroxidation, calcium depletion, and glutathione reduction were observed. Moreover, an imbalance in BCL-2 family gene expression was detected, with downregulation of anti-apoptotic genes and dysregulation of pro-apoptotic regulators such as Bim and Bnip3. These alterations activated mitochondrial apoptosis and led to thymocyte death. Taken together, our results demonstrate that FPN compromises immune system integrity through a dual mechanism involving enhanced peripheral T cell activity and disrupted thymic development via GABAergic imbalance, IL-7 signaling suppression, transcriptional factors for supporting thymic microenvironment, and oxidative damage. Our findings highlight the potential risk to immune system integrity from contaminant exposure to FPN and the need for a more comprehensive reassessment of the safety of fipronil in pubertal vertebrates. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-21T16:34:29Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-08-21T16:34:29Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 國立臺灣大學博士學位論文口試委員會審定書 ......................................................... i
聲明 ......................................................................................... ii 致謝 ........................................................................................ iii 中文摘要 ...................................................................................... v Abstract ................................................................................... vii Contents .................................................................................... ix Figures .................................................................................... xii Tables ..................................................................................... xiv List of Abbreviations ....................................................................... xv Chapter 1. Background and literature review .................................................. 1 1.1 Introduction and applications of fipronil .................................................1 1.1.1 Fipronil: chemical properties and broad applications ....................................1 1.1.2 Fipronil metabolism and pharmacokinetics ................................................2 1.1.3 Sustained bioaccumulation of fipronil metabolites under intermittent exposure regimens ..3 1.1.4 Regulatory toxicological endpoints and human risk assessment of fipronil ................5 1.1.5 Veterinary clinical applications of fipronil ............................................7 1.1.6 Global usage and potential exposure pathways of fipronil ................................9 1.2 Toxicological mechanisms of fipronil .....................................................12 1.2.1 Insecticide modes of action: selective antagonism of insect GABA-gated chloride channels 12 1.2.2 Acute toxicity of FPN in mammals .......................................................13 1.2.2 Non-target toxicity of fipronil in vertebrates .........................................15 1.2.3 Fipronil-induced oxidative damage in mammals ...........................................20 1.2.4 N-acetylcysteine (NAC): biochemical properties and rationale for use ...................22 1.3 Immunotoxicity of fipronil and T cell development ........................................24 1.4 The role of GABAergic signaling in immune regulation .....................................26 1.4.1 GABAergic components and their mediated effects in T-cells .............................27 1.5 T cell development and lineage commitment in the thymus...................................31 1.5.1 IL-7 and IL-7R expression in the thymus ................................................32 1.5.2 Downstream signaling pathways of IL-7 and IL-7R interaction ............................32 1.5.3 Functional roles of IL-7 signaling in T cell development ...............................33 1.5.4 Disruption of IL-7 signaling ...........................................................34 1.5.5 Transcription factors regulating T cell lineage commitment .............................35 1.5.6 The regulatory roles of ROS and apoptosis in thymocyte development .....................37 Chapter 2. Rationale ........................................................................ 40 Chapter 3. Materials and Methods ............................................................ 43 3.1 Reagents .................................................................................43 3.2 Experimental animals .....................................................................43 3.3 Protocol of fipronil administration and murine model .....................................43 3.3.1 Ovalbumin (OVA)-specific immune model ..................................................43 3.3.2 Thymus developing murine model .........................................................46 3.4 Measurement of spleen enlargement ........................................................48 3.5 Measurement of thymus enlargement ........................................................48 3.6 Histological Examination .................................................................48 3.7 Immunohistochemical (IHC) Analysis .......................................................48 3.8 Splenocyte and thymocyte isolation and culture ...........................................49 3.9 Flow cytometric analysis for cellularity of splenocytes ..................................49 3.10 Flow cytometric analysis for cellularity of thymocytes ..................................50 3.11 Metabolic activity by MTT assay .........................................................50 3.12 Enzyme-linked immunosorbent assay (ELISA) ...............................................51 3.12.1 Measurement of OVA-specific antibodies ................................................51 3.12.2 Measurement of cytokines ..............................................................52 3.13 RNA isolation and cDNA synthesis ........................................................52 3.14 Quantitative polymerase chain reaction (qPCR) assay .....................................53 3.15 Preparation of thymus protein extracts ..................................................57 3.16 BCA TM protein assay ....................................................................57 3.17 Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) ....................57 3.18 Western blotting ........................................................................58 3.19 In vitro model ..........................................................................59 3.19.1 Assessment of apoptotic/necrotic indicators ...........................................59 3.19.2 Measurement of mitochondrial depolarization ...........................................60 3.19.3 Measurement of intracellular calcium concentration (Ca2+) .............................61 3.19.4 Detection of glutathione (GSH) activity ...............................................61 3.19.5 Quantification of intracellular ROS levels ............................................62 3.19.6 Evaluation of lipid peroxidation (LPO) ................................................63 3.20 Statistical analysis ....................................................................63 3.21 Bioinformatic analysis ..................................................................64 Chapter 4. Experimental Results ............................................................. 65 4.1 Fipronil perturbs antigen-specific immune responses and alters GABAergic gene expression in ovalbumin-immunized BALB/c mice. .......................................................................65 4.1.1 Effects of FPN exposure on body weight, spleen index, and spleen cellularity in vivo ...65 4.1.2 Modulation of antigen-specific antibody production by FPN administration ...............68 4.1.3 FPN enhanced the cell viability and disturbed IL-2, IL-4, and IFN-γ production ex vivo. 70 4.1.4 FPN slightly down-regulated Il-2, Il-4, and Gata3 expression by OVA-stimulated splenocytes 72 4.1.5 FPN altered GABAergic signaling gene expression by primary splenocytes .................74 4.2 Investigating the potential immunotoxicity of FPN disrupting IL-7 signaling in a young mouse model of thymic development. ..........................................................................76 4.2.1 FPN affected body weight, thymus index, and population of thymocytes in vivo. ..........76 4.2.2 FPN leads to a dose-dependent reduction in thymocyte numbers in mice. ..................80 4.2.3 Effects of the cortex, medulla ratio, and thymus atrophy ...............................80 4.2.4 Impact of FPN exposure on IL-7 protein expression ......................................84 4.2.5 FPN significantly decreases mRNA expression of transcription factors of T-cell lineage and IL-7 signaling in the thymus. .....................................................................86 4.2.6 Reduction of T-Cell lineage transcription factors and IL-7 signaling-associated proteins in the thymus by FPN ................................................................................88 4.2.7 FPN significantly decreased mRNA expression of Il7r, Scf, Gabpα, Lyl1, and Sox13 in ConA- stimulated thymocytes. .......................................................................91 4.2.8 Differential effects of FPN on the production of IL-2, IL-4, and IFN-γ ex vivo. ........93 4.3 The potential mechanism of FPN-induced thymic immunotoxicity through reactive oxygen species-driven mitochondrial apoptosis. .....................................................................96 4.3.1 FPN significantly attenuated the mRNA expression of key Bcl-2 family members in vivo. ..96 4.3.2 FPN significantly attenuated Bcl-2 family mRNA expression in ConA-stimulated thymocytes ex vivo. ..............................................................................................99 4.3.3 Acute in vitro exposure to FPN significantly attenuated anti-apoptotic mRNA expression in primary thymocytes. .................................................................................101 4.3.4 Cytotoxic and immunosuppressive effects of FPN on primary thymocytes ..................103 4.3.5 Effects of FPN treatment on apoptosis in the primary thymocytes in vitro. .............105 4.3.7 Fipronil induces depletion of intracellular calcium in primary thymocytes. ............109 4.3.8 Fipronil reduces intracellular glutathione levels in primary thymocytes. ..............111 4.3.9 Fipronil induces intracellular reactive oxygen species accumulation in primary thymocytes. 113 4.3.10 Fipronil exposure elevates lipid peroxidation in primary thymocytes. .................115 4.4 Bioinformatic analysis of the gene-network and inferring diseases by FPN-altered genes ..117 Chapter 5. Discussion ...................................................................... 128 5.1 Off-target toxicity of FPN ..............................................................128 5.2 Fipronil induced both Th1 and Th2 responses by dysregulation of GABAergic signaling .....129 5.2.1 Immunostimulatory effects of FPN on adaptive immune responses and the complexities of Th1/Th2 balance......................................................................................129 5.2.2 The pivotal role of GABAergic signaling in immune regulation ..........................130 5.2.3 FPN's potential influence on GABA synthesis and transport pathways ....................130 5.2.4 Impact of FPN on GABA A receptor expression and potential compensatory mechanisms .....131 5.3 Impact of FPN on thymic development and its influence on IL-7 signaling and critical transcription factors .....................................................................................134 5.3.1 FPN-induced thymic atrophy and developmental blocks ...................................134 5.3.2 Dysregulation of IL-7 signaling .......................................................136 5.3.3 Alteration of transcription factors associated with thymus development by FPN .........137 5.3.4 FPN alters cytokine secretion in thymocytes ...........................................138 5.3.5 Potential involvement of glucocorticoid pathways in FPN-induced thymic atrophy ........138 5.4 Oxidative stress as a central mechanism in FPN-induced immunotoxicity and apoptosis .....140 5.4.1 Apoptotic dysregulation in the thymus .................................................140 5.4.2 Mitochondrial dysfunction and oxidative stress ........................................142 5.4.3 Antioxidant intervention with N-acetylcysteine ........................................143 5.5 Potential off-target toxicities and disease risks associated with FPN-induced gene dysregulation ............................................................................................ 145 Chapter 6. Summary and Conclusion .......................................................... 147 Chapter 7. Future perspectives ............................................................. 150 Reference .................................................................................. 153 Appendix ................................................................................... 173 | - |
| dc.language.iso | en | - |
| dc.subject | 介白素-7 | zh_TW |
| dc.subject | 細胞凋亡 | zh_TW |
| dc.subject | Bcl-2 家族 | zh_TW |
| dc.subject | 氧化壓力 | zh_TW |
| dc.subject | 粒線體膜電位 | zh_TW |
| dc.subject | 穀胱甘肽 | zh_TW |
| dc.subject | 芬普尼 | zh_TW |
| dc.subject | 脂質過氧化 | zh_TW |
| dc.subject | 胸腺萎縮 | zh_TW |
| dc.subject | 胸腺細胞發育 | zh_TW |
| dc.subject | GABAergic 基因 | zh_TW |
| dc.subject | 抗原特異性免疫反應 | zh_TW |
| dc.subject | 免疫毒性 | zh_TW |
| dc.subject | glutathione | en |
| dc.subject | fipronil | en |
| dc.subject | immunotoxicity | en |
| dc.subject | antigen-specific immune responses | en |
| dc.subject | GABAergic signaling | en |
| dc.subject | thymocyte development | en |
| dc.subject | thymus atrophy | en |
| dc.subject | interleukin-7 | en |
| dc.subject | apoptosis | en |
| dc.subject | Bcl-2 family | en |
| dc.subject | oxidative stress | en |
| dc.subject | mitochondrial membrane potential | en |
| dc.subject | lipid peroxidation | en |
| dc.title | 芬普尼透過誘導粒線體凋亡、介白素-7 基因調控的失調及干擾 GABA 基因介導之免疫調節作用以擾亂免疫功能的恆定 | zh_TW |
| dc.title | Fipronil Disrupts Immune Homeostasis Through Mitochondrial Apoptosis, Dysregulated IL-7 Signaling, and GABAergic Signaling Alterations | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 博士 | - |
| dc.contributor.oralexamcommittee | 詹東榮;張芳嘉;梁有志;張猷忠;林英琦;曾湘文 | zh_TW |
| dc.contributor.oralexamcommittee | Tong-Rong Jan;Fang-Chia Chang;Yu-Chih Liang;Yu-Chung Chang;Ying-Chi Lin;Hsiang-Wen Tseng | en |
| dc.subject.keyword | 芬普尼,免疫毒性,抗原特異性免疫反應,GABAergic 基因,胸腺細胞發育,胸腺萎縮,介白素-7,細胞凋亡,Bcl-2 家族,氧化壓力,粒線體膜電位,穀胱甘肽,脂質過氧化, | zh_TW |
| dc.subject.keyword | fipronil,immunotoxicity,antigen-specific immune responses,GABAergic signaling,thymocyte development,thymus atrophy,interleukin-7,apoptosis,Bcl-2 family,oxidative stress,mitochondrial membrane potential,glutathione,lipid peroxidation, | en |
| dc.relation.page | 226 | - |
| dc.identifier.doi | 10.6342/NTU202501708 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2025-08-05 | - |
| dc.contributor.author-college | 生物資源暨農學院 | - |
| dc.contributor.author-dept | 獸醫學系 | - |
| dc.date.embargo-lift | 2025-08-22 | - |
| 顯示於系所單位: | 獸醫學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf | 33.9 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
