Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 環境工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99143
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林逸彬zh_TW
dc.contributor.advisorYi-Pin Linen
dc.contributor.author林兆佑zh_TW
dc.contributor.authorJhao-You Linen
dc.date.accessioned2025-08-21T16:33:31Z-
dc.date.available2025-08-22-
dc.date.copyright2025-08-21-
dc.date.issued2025-
dc.date.submitted2025-07-31-
dc.identifier.citationAl-Azzawi, M. S. M., Kefer, S., Weißer, J., Reichel, J., Schwaller, C., Glas, K., Knoop, O., & Drewes, J. E. (2020). Validation of sample preparation methods for microplastic analysis in wastewater matrices—reproducibility and standardization. Water, 12(9).
Andrady, A. L. (2011). Microplastics in the marine environment. Marine Pollution Bulletin, 62(8), 1596-1605.
Anger, P. M., von der Esch, E., Baumann, T., Elsner, M., Niessner, R., & Ivleva, N. P. (2018). Raman microspectroscopy as a tool for microplastic particle analysis. TrAC Trends in Analytical Chemistry, 109, 214-226.
Arthur, C., Baker, J. E., & Bamford, H. A. (2009). Proceedings of the international research workshop on the occurrence, effects, and fate of microplastic marine debris, september 9-11, 2008, University of Washington Tacoma, Tacoma, WA, USA [Technical Memorandum].
Bhagwat, G., Tran, T. K. A., Lamb, D., Senathirajah, K., Grainge, I., O'Connor, W., Juhasz, A., & Palanisami, T. (2021). Biofilms enhance the adsorption of toxic contaminants on plastic microfibers under environmentally relevant conditions. Environmental Science & Technology, 55(13), 8877-8887.
Blasing, M., & Amelung, W. (2018). Plastics in soil: Analytical methods and possible sources. Science of The Total Environment, 612, 422-435.
Boots, B., Russell, W. C., & Green, S. D. (2019). Effects of microplastics in soil ecosystems: Above and below ground. Environmental Science & Technology, 53(19), 11496-11506.
Bottone, A., Boily, J. F., Shchukarev, A., Andersson, P., & Klaminder, J. (2022). Sodium hypochlorite as an oxidizing agent for removal of soil organic matter before microplastics analyses. Journal of Environmental Quality, 51(1), 112- 122.
Bouyoucos, G. J. (1962). Hydrometer method improved for making particle size analyses of soils. Agronomy Journal, 54(5), 464-465.
Brady, N. C., & Weil, R. R. (1999). The nature and properties of soils (12th ed.). Prentice Hall Publishers.
Browne, M. A., Galloway, T., & Thompson, R. (2007). Microplastic--an emerging contaminant of potential concern? Integrated Environmental Assessment and Management, 3(4), 559-561.
Bule Možar, K., Miloloža, M., Martinjak, V., Radovanović-Perić, F., Bafti, A., Ujević Bošnjak, M., Markić, M., Bolanča, T., Cvetnić, M., Kučić Grgić, D., & Ukić, Š. (2024). Evaluation of fenton, photo-fenton and fenton-like processes in degradation of PE, PP, and PVC microplastics. Water, 16(5).
Capolungo, C., Genovese, D., Montalti, M., Rampazzo, E., Zaccheroni, N., & Prodi, L. (2021). Photoluminescence-based techniques for the detection of micro- and nanoplastics. Chemistry, 27(70), 17529-17541.
Chandrakanthan, K., Fraser, P. M., & Herckes, P. (2024). Microplastics are ubiquitous and increasing in soil of a sprawling urban area, Phoenix (Arizona). Science of The Total Environment, 906, 167617.
Chen, Y., Wen, D., Pei, J., Fei, Y., Ouyang, D., Zhang, H., & Luo, Y. (2020). Identification and quantification of microplastics using Fourier-transform infrared spectroscopy: Current status and future prospects. Current Opinion in Environmental Science & Health, 18, 14-19.
Choi, Y. R., Kim, Y.-N., Yoon, J.-H., Dickinson, N., & Kim, K.-H. (2020). Plastic contamination of forest, urban, and agricultural soils: a case study of Yeoju City in the Republic of Korea. Journal of Soils and Sediments, 21(5), 1962-1973.
Dris, R., Gasperi, J., Mirande, C., Mandin, C., Guerrouache, M., Langlois, V., & Tassin, B. (2017). A first overview of textile fibers, including microplastics, in indoor and outdoor environments. Environmental Pollution, 221, 453-458.
Erni-Cassola, G., Gibson, M. I., Thompson, R. C., & Christie-Oleza, J. A. (2017). Lost, but found with Nile Red: A novel method for detecting and quantifying small microplastics (1 mm to 20 mum) in environmental samples. Environmental Science & Technology, 51(23), 13641-13648.
Forsythe, K., Egermeier, M., Garcia, M., Liu, R., Campen, M., Minghetti, M., Jilling, A., & Gonzalez-Estrella, J. (2024). Viability of elutriation for the extraction of microplastics from environmental soil samples. Environmental Science Advances, 3(7), 1039-1047.
Fries, E., Dekiff, J. H., Willmeyer, J., Nuelle, M. T., Ebert, M., & Remy, D. (2013). Identification of polymer types and additives in marine microplastic particles using pyrolysis-GC/MS and scanning electron microscopy. Environmental Science Processes & Impacts, 15(10), 1949-1956.
Grause, G., Kuniyasu, Y., Chien, M. F., & Inoue, C. (2022). Separation of microplastic from soil by centrifugation and its application to agricultural soil. Chemosphere, 288(Pt 3), 132654.
Greenspan, P., & Fowler, D. S. (1985). Spectrofluorometric studies of the lipid probe, nile red. Journal of Lipid Research, 26(7), 781-789.
Gupta, E., Mishra, V. K., Patel, A., & Srivastava, P. K. (2024). A modified methodology for extraction and quantification of microplastics in soil. NanoImpact, 35, 100525.
Han, X., Lu, X., & Vogt, R. D. (2019). An optimized density-based approach for extracting microplastics from soil and sediment samples. Environmental Pollution, 254(Pt A), 113009.
Ho, D., Liu, S., Wei, H., & Karthikeyan, K. G. (2024). The glowing potential of Nile red for microplastics Identification: Science and mechanism of fluorescence staining. Microchemical Journal, 197.
Hu, H., Qiang, L., Xu, J., Li, G., Cheng, J., Zhong, X., & Zhang, R. (2024). Enhanced microplastic retrieval efficiency from cultivated soil samples through optimized pre-treatment in density-based extraction. Soil and Tillage Research, 242.
Hurley, R. R., Lusher, A. L., Olsen, M., & Nizzetto, L. (2018). Validation of a method for extracting microplastics from complex, organic-rich, environmental matrices. Environmental Science & Technology, 52(13), 7409-7417.
Jia, Z., Wei, W., Wang, Y., Chang, Y., Lei, R., & Che, Y. (2024). Occurrence characteristics and risk assessment of microplastics in agricultural soils in the loess hilly gully area of Yan' an, China. Science of The Total Environment, 912, 169627.
Kappler, A., Fischer, D., Oberbeckmann, S., Schernewski, G., Labrenz, M., Eichhorn, K. J., & Voit, B. (2016). Analysis of environmental microplastics by vibrational microspectroscopy: FTIR, Raman or both? Analytical and Bioanalytical Chemistry, 408(29), 8377-8391.
Konde, S., Ornik, J., Prume, J. A., Taiber, J., & Koch, M. (2020). Exploring the potential of photoluminescence spectroscopy in combination with Nile Red staining for microplastic detection. Marine Pollution Bulletin, 159, 111475.
Kulkarni, H., Mladenov, N., & Datta, S. (2019). Effects of acidification on the optical properties of dissolved organic matter from high and low arsenic groundwater and surface water. Science of The Total Environment, 653, 1326-1332.
Kumar, M., Xiong, X., He, M., Tsang, D. C. W., Gupta, J., Khan, E., Harrad, S., Hou, D., Ok, Y. S., & Bolan, N. S. (2020). Microplastics as pollutants in agricultural soils. Environmental Pollution, 265(Pt A), 114980.
Laskar, N., & Kumar, U. (2019). Plastics and microplastics: A threat to environment. Environmental Technology & Innovation, 14.
Le, Q. N. P., Halsall, C., Peneva, S., Wrigley, O., Braun, M., Amelung, W., Ashton, L., Surridge, B. W. J., & Quinton, J. (2025). Towards quality-assured measurements of microplastics in soil using fluorescence microscopy. Analytical and Bioanalytical Chemistry.
Lenz, R., Enders, K., Stedmon, C. A., Mackenzie, D. M. A., & Nielsen, T. G. (2015). A critical assessment of visual identification of marine microplastic using Raman spectroscopy for analysis improvement. Marine Pollution Bulletin, 100(1), 82- 91.
Li, Q., Wu, J., Zhao, X., Gu, X., & Ji, R. (2019). Separation and identification of microplastics from soil and sewage sludge. Environmental Pollution, 254(Pt B), 113076.
Li, S., Peng, W., Guo, Y., Li, S., & Wang, Q. (2024). Current status of microplastic pollution and the latest treatment technologies. Science of The Total Environment, 957, 177467.
Li, Y., Tao, L., Wang, Q., Wang, F., Li, G., & Song, M. (2023). Potential health impact of microplastics: A review of environmental distribution, human exposure, and toxic effects. Environmental Health, 1(4), 249-257.
Li, Y., Zhang, H., & Tang, C. (2020). A review of possible pathways of marine microplastics transport in the ocean. Anthropocene Coasts, 3(1), 6-13.
Lian, Y., Liu, W., Shi, R., Zeb, A., Wang, Q., Li, J., Zheng, Z., & Tang, J. (2022). Effects of polyethylene and polylactic acid microplastics on plant growth and bacterial community in the soil. Journal of Hazardous Materials, 435, 129057.
Liu, M., Song, Y., Lu, S., Qiu, R., Hu, J., Li, X., Bigalke, M., Shi, H., & He, D. (2019). A method for extracting soil microplastics through circulation of sodium bromide solutions. Science of The Total Environment, 691, 341-347.
Liu, S., Shang, E., Liu, J., Wang, Y., Bolan, N., Kirkham, M. B., & Li, Y. (2021). What have we known so far for fluorescence staining and quantification of microplastics: A tutorial review. Frontiers of Environmental Science & Engineering, 16(1).
Lwanga, H. E., Gertsen, H., Gooren, H., Peters, P., Salánki, T., Ploeg, D. V. M., Besseling, E., Koelmans, A. A., & Geissen, V. (2016). Microplastics in the terrestrial ecosystem: Implications for Lumbricus terrestris (Oligochaeta, Lumbricidae). Environmental Science & Technology, 50(5), 2685-2691.
Maes, T., Jessop, R., Wellner, N., Haupt, K., & Mayes, G. A. (2017). A rapid-screening approach to detect and quantify microplastics based on fluorescent tagging with Nile Red. Scientific Reports, 7(1), 44501.
Maw, M. M., Boontanon, N., Fujii, S., & Boontanon, S. K. (2022). Rapid and efficient removal of organic matter from sewage sludge for extraction of microplastics. Science of The Total Environment, 853, 158642.
Mizukawa, K., Takada, H., Ito, M., Geok, B. Y., Hosoda, J., Yamashita, R., Saha, M., Suzuki, S., Miguez, C., Frias, J., Antunes, C. J., Sobral, P., Santos, I., Micaelo, C., & Ferreira, M. A. (2013). Monitoring of a wide range of organic micropollutants on the Portuguese coast using plastic resin pellets. Marine Pollution Bulletin, 70(1-2), 296-302.
Moller, J. N., Loder, M. G. J., & Laforsch, C. (2020). Finding microplastics in soils: A review of analytical methods. Environmental Science & Technology, 54(4), 2078-2090.
Naidoo, T., Goordiyal, K., & Glassom, D. (2017). Are nitric acid (HNO3) digestions efficient in isolating microplastics from juvenile fish? Water, Air, & Soil Pollution, 228(12).
Neyens, E., & Baeyens, J. (2003). A review of classic fenton's peroxidation as an advanced oxidation technique. Journal of Hazardous Materials, 98(1-3), 33-50.
Pivokonsky, M., Cermakova, L., Novotna, K., Peer, P., Cajthaml, T., & Janda, V. (2018). Occurrence of microplastics in raw and treated drinking water. Science of The Total Environment, 643, 1644-1651.
Prata, J. C., Alves, R. J., Costa, D. P. J., Duarte, C. A., & Rocha-Santos, T. (2020). Major factors influencing the quantification of Nile Red stained microplastics and improved automatic quantification (MP-VAT 2.0). Science of The Total Environment, 719, 137498.
Prata, J. C., da Costa, J. P., Duarte, A. C., & Rocha-Santos, T. (2019). Methods for sampling and detection of microplastics in water and sediment: A critical review. TrAC Trends in Analytical Chemistry, 110, 150-159.
Prata, J. C., Reis, V., Matos, J. T. V., da Costa, J. P., Duarte, A. C., & Rocha-Santos, T. (2019). A new approach for routine quantification of microplastics using Nile Red and automated software (MP-VAT). Sci Total Environ, 690, 1277-1283.
Purwiyanto, S. I. A., Suteja, Y., Trisno, Ningrum, S. P., Putri, E. A. W., Rozirwan, Agustriani, F., Fauziyah, Cordova, R. M., & Koropitan, F. A. (2020). Concentration and adsorption of Pb and Cu in microplastics: Case study in aquatic environment. Marine Pollution Bulletin, 158, 111380.
Qi, R., Jones, D. L., Li, Z., Liu, Q., & Yan, C. (2020). Behavior of microplastics and plastic film residues in the soil environment: A critical review. Science of The Total Environment, 703, 134722.
Radford, F., Zapata-Restrepo, L. M., Horton, A. A., Hudson, M. D., Shaw, P. J., & Williams, I. D. (2021). Developing a systematic method for extraction of microplastics in soils. Analytical Methods, 13(14), 1695-1705.
Salehi, M. H., Beni, O. H., Harchegani, H. B., Borujeni, I. E., & Motaghian, H. R. (2011). Refining soil organic matter determination by loss-on-ignition. Pedosphere, 21(4), 473-482.
Savino, I., Campanale, C., Trotti, P., Massarelli, C., Corriero, G., & Uricchio, V. F. (2022). Effects and impacts of different oxidative digestion treatments on virgin and aged microplastic particles. Polymers (Basel), 14(10).
Scheurer, M., & Bigalke, M. (2018). Microplastics in Swiss floodplain soils. Environmental Science & Technology, 52(6), 3591-3598.
Seo, Y., Chevali, V., Lai, Y., Zhou, Z., Chen, G., Burey, P., Wang, S., & Song, P. (2025). Microplastics in soils: A comparative review on extraction, identification and quantification methods. Journal of Environmental Management, 377, 124556.
Shim, W. J., Song, Y. K., Hong, S. H., & Jang, M. (2016). Identification and quantification of microplastics using Nile Red staining. Marine Pollution Bulletin, 113(1-2), 469-476.
Simmerman, C. B., & Coleman Wasik, J. K. (2019). The effect of urban point source contamination on microplastic levels in water and organisms in a cold‐water stream. Limnology and Oceanography Letters, 5(1), 137-146.
Simon, M., Vianello, A., Shashoua, Y., & Vollertsen, J. (2021). Accelerated weathering affects the chemical and physical properties of marine antifouling paint microplastics and their identification by ATR-FTIR spectroscopy. Chemosphere, 274, 129749.
Sipps, K., Patil, S., Ochoa, L., Chan, J., Auguste, C., Arbuckle-Keil, G., & Fahrenfeld, N. L. (2023). Quantitative and qualitative impacts of nitric acid digestion on microplastic identification via FTIR and Raman spectroscopy, implications for environmental samples. Analytical and Bioanalytical Chemistry, 415(27), 6809- 6823.
Sturm, M. T., Horn, H., & Schuhen, K. (2021). The potential of fluorescent dyescomparative study of Nile red and three derivatives for the detection of microplastics. Analytical and Bioanalytical Chemistry, 413(4), 1059-1071.
Surendran, U., Jayakumar, M., Raja, P., Gopinath, G., & Chellam, P. V. (2023). Microplastics in terrestrial ecosystem: Sources and migration in soil environment. Chemosphere, 318, 137946.
Thiele, C. J., Hudson, M. D., & Russell, A. E. (2019). Evaluation of existing methods to extract microplastics from bivalve tissue: Adapted KOH digestion protocol improves filtration at single-digit pore size. Marine Pollution Bulletin, 142, 384- 393.Vermeiren, P., Munoz, C., & Ikejima, K. (2020). Microplastic identification and quantification from organic rich sediments: A validated laboratory protocol. Environmental Pollution, 262, 114298.
Walenna, M. A., Hanami, Z. A., Hidayat, R., Damayanti, A. D., Notodarmojo, S., Kurniaty, & Caroles, L. (2024). Examining soil microplastics: Prevalence and consequences across varied land use contexts. Civil Engineering Journal, 10(4), 1265-1291.
Wu, M., Yang, C., Du, C., & Liu, H. (2020). Microplastics in waters and soils: Occurrence, analytical methods and ecotoxicological effects. Ecotoxicology and Environmental Safety, 202, 110910.
Xu, C., Zhang, B., Gu, C., Shen, C., Yin, S., Aamir, M., & Li, F. (2020). Are we underestimating the sources of microplastic pollution in terrestrial environment? Journal of Hazardous Materials, 400, 123228.
Yan, P., Hao, X., & Zhang, S. (2023). Extraction and decontamination of microplastics from high organic matter soils: A simple, cost-saving and high efficient method. Journal of Environmental Management, 344, 118381.
Yang, L., Zhang, Y., Kang, S., Wang, Z., & Wu, C. (2021). Microplastics in soil: A review on methods, occurrence, sources, and potential risk. Science of The Total Environment, 780, 146546.
Ye, Y., Yu, K., & Zhao, Y. (2022). The development and application of advanced analytical methods in microplastics contamination detection: A critical review. Science of The Total Environment, 818, 151851.
Zarfl, C. (2019). Promising techniques and open challenges for microplastic identification and quantification in environmental matrices. Analytical and Bioanalytical Chemistry, 411(17), 3743-3756.
Zhou, W., Wang, Q., Wei, Z., Jiang, J., & Deng, J. (2023). Effects of microplastic type on growth and physiology of soil crops: Implications for farmland yield and food quality. Environmental Pollution, 326, 121512.
Zhou, Y., Liu, X., & Wang, J. (2019). Characterization of microplastics and the association of heavy metals with microplastics in suburban soil of central China. Science of The Total Environment, 694, 133798.
Zhou, Y., Wang, J., Zou, M., Yin, Q., Qiu, Y., Li, C., Ye, B., Guo, T., Jia, Z., Li, Y., Wang, C., & Zhou, S. (2022). Microplastics in urban soils of Nanjing in eastern China: Occurrence, relationships, and sources. Chemosphere, 303(Pt 2), 134999.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99143-
dc.description.abstract塑膠微粒污染是廣受關注的環境議題,其中土壤被視為其主要的匯集處之一。然而,土壤基質的複雜性,特別是有機質的干擾,使塑膠微粒的定量分析極具挑戰。本研究旨在建立並優化一套使用尼羅紅染色法結合螢光顯微鏡來定量土壤中小型塑膠微粒的分析方法。為此,本研究優化前處理流程,首先比較三種消化試劑,包括過氧化氫、硝酸與芬頓試劑去除土壤背景螢光之效率,並評估其對聚丙烯(PP;<100 µm)和聚氯乙烯(PVC;<150 µm)等塑膠微粒完整性的影響,接著探討氯化鈣與氯化鋅等高密度溶液對塑膠微粒的萃取回收率。實驗結果顯示,硝酸是去除土壤背景螢光最有效的試劑,在壤土和黏土中的去除率分別高達 89%與 82%,且對 PP 與 PVC 的表面形態和化學結構僅造成輕微影響。使用氯化鈣(1.4 g/cm³)溶液進行兩次萃取,在 PP 與 PVC 的回收率分別達到約 78-80%及 61-70%,考量其效率與較低的環境毒性,氯化鈣被選定為較佳萃取液。本研究應用此優化後的方法分析三處環境樣品,結果顯示農田土壤的塑膠微粒濃度最高(1.04×10⁵ 顆粒/公斤),其次為掩埋場(7.10×10⁴ 顆粒/公斤),公園則最低(4.00×10⁴ 顆粒/公斤)。在所有樣品中以粒徑小於 100 µm 的微粒占多數。綜合上述,本研究提供了一套經過系統性驗證的分析方法,可作為快速評估土壤環境中小型塑膠微粒污染的實用工具。zh_TW
dc.description.abstractMicroplastic pollution is a widespread environmental issue, with soil emerging as a major sink for these contaminants. The quantification of microplastics in soil, however, is challenging due to complex matrix interference, particularly from soil organic matter. This study aimed to develop and optimize a protocol for quantifying small-sized microplastics in soil using fluorescence staining with Nile red followed by fluorescence microscopy. To achieve this, the method was systematically optimized by comparing three digestion reagents, including H₂O₂, HNO₃, and Fenton's reagent, for their effectiveness in reducing background fluorescence and their impact on the integrity of polypropylene (PP;< 100 µm) and polyvinyl chloride (PVC;< 150 µm) microplastics. Additionally, the extraction efficiency using different high-density salt solutions including CaCl2 and ZnCl2 was evaluated. Results demonstrated that HNO₃ was the most effective and consistent reagent, achieving up to 89% removal of background fluorescence in loam and 82% in clay, with only minor effects on the morphology and chemical property of PP and PVC. A double extraction with CaCl2 (1.4 g/cm³) solution achieved recoveries of approximately 78-80% for PP and 61-70% for PVC, and was selected over the more toxic ZnCl2. The optimized method, involving HNO₃ digestion and CaCl2 extraction, was then applied to environmental samples. The highest microplastics concentration was found in farmland soil (1.04×10⁵ particles/kg), followed by a landfill site (7.10×10⁴ particles/kg) and a park (4.00×10⁴ particles/kg), with particles smaller than 100 µm being dominant in all samples. In conclusion, this study provides a systematically validated protocol that serves as a practical and rapid tool for assessing small microplastic contamination in complex soil environments.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-21T16:33:31Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-08-21T16:33:31Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents摘要 ....................... .......................... i
Abstract .................................................................................... ii
Contents .................................................................................. iv
List of Figures ......................................................................... vi
List of Tables ........................................................................ viii
Chapter 1 Introduction ............................................................. 1
1.1 Background .................................................................... 1
1.2 Research objectives ........................................................ 3
Chapter 2 Literature review ..................................................... 4
2.1 Microplastics pollution in soil ....................................... 4
2.2 Detection method for microplastics ............................... 5
2.3 Soil organic matter removal ........................................... 8
2.4 Extraction of microplastics from soil samples...................................................... 10
Chapter 3 Materials and Method ........................................... 12
3.1 Research framework .................................................... 12
3.2 Material and chemicals ................................................ 14
3.3 Characterization of soil properties ............................... 14
3.4 Quantification of spiked microplastics ........................ 15
3.5 Organic matter digestion .............................................. 16
3.6 Extractions of microplastics ......................................... 19
3.7 Analytical method ........................................................ 21
3.8 Environmental sample analysis ................................... 23
Chapter 4 Results and Discussion ......................................... 24
4.1 Digestion of soil organic matter and impact on microplastics.............................. 24
4.1.1 Soil properties ....................................................... 24
4.1.2 Optimization of digestion for background fluorescence removal.................. 25
4.1.3 Effect of digestion on microplastics properties.............................................. 27
4.2 Microplastics extraction ............................................... 33
4.2.1 Quantification of spiked microplastics........................................................... 33
4.2.2 Microplastics extraction efficiency ....................... 35
4.3 Environmental sample analysis ................................... 40
4.3.1 Soil properties ....................................................... 40
4.3.2 Microplastics contamination ................................. 41
Chapter 5 Conclusion and Recommendations ....................... 48
5.1 Conclusion ................................................................... 48
5.2 Recommendations ........................................................ 49
Reference ............................................................................... 51
-
dc.language.isoen-
dc.subject尼羅紅zh_TW
dc.subject土壤zh_TW
dc.subject塑膠微粒zh_TW
dc.subject定量方法zh_TW
dc.subject螢光染色zh_TW
dc.subjectsoilen
dc.subjectquantification methoden
dc.subjectNile reden
dc.subjectfluorescence stainingen
dc.subjectmicroplasticsen
dc.title螢光染色法定量土壤塑膠微粒之研究:消化試劑與分離萃取程序之優化zh_TW
dc.titleA Fluorescence-Based Protocol for Quantifying Microplastics in soil: Optimization of Digestion and Separation Proceduresen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee劉雅瑄;黃鼎荃zh_TW
dc.contributor.oralexamcommitteeYa-Hsuan Liou;Ding-Quan Ngen
dc.subject.keyword塑膠微粒,土壤,定量方法,尼羅紅,螢光染色,zh_TW
dc.subject.keywordmicroplastics,soil,quantification method,Nile red,fluorescence staining,en
dc.relation.page57-
dc.identifier.doi10.6342/NTU202503226-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2025-08-01-
dc.contributor.author-college工學院-
dc.contributor.author-dept環境工程學研究所-
dc.date.embargo-lift2025-08-22-
顯示於系所單位:環境工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf1.85 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved