請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99142完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 李承叡 | zh_TW |
| dc.contributor.advisor | Cheng-Ruei Lee | en |
| dc.contributor.author | Muhammad Waseem | zh_TW |
| dc.contributor.author | Muhammad Waseem | en |
| dc.date.accessioned | 2025-08-21T16:33:17Z | - |
| dc.date.available | 2025-08-22 | - |
| dc.date.copyright | 2025-08-21 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-08-01 | - |
| dc.identifier.citation | Abbo, S., & Gopher, A. (2022). On partnerships, responsibilities, and political correctness–Reflections on plant domestication at the landscape level. Quaternary Science Reviews, 296, 107674.
Altman, A., Shennan, S., & Odling-Smee, J. (2022). Ornamental plant domestication by aesthetics-driven human cultural niche construction. Trends in Plant Science, 27(2), 124-138. Angourakis, A., Alcaina-Mateos, J., Madella, M., & Zurro, D. (2022). Human-Plant Coevolution: A modelling framework for theory-building on the origins of agriculture. PloS one, 17(9), e0260904. Aviezer, I., & Lev-Yadun, S. (2015). Pod and seed defensive coloration (camouflage and mimicry) in the genus Pisum. Israel Journal of Plant Sciences, 62(1-2), 39-51. Ayzenberg, V., & Behrmann, M. (2024). Development of visual object recognition. Nature Reviews Psychology, 3(2), 73-90. Bitocchi, E., Rau, D., Bellucci, E., Rodriguez, M., Murgia, M. L., Gioia, T., Santo, D., Nanni, L., Attene, G., & Papa, R. (2017). Beans (Phaseolus ssp.) as a model for understanding crop evolution. Frontiers in Plant Science, 8, 722. Bogaard, A., Allaby, R., Arbuckle, B. S., Bendrey, R., Crowley, S., Cucchi, T., Denham, T., Frantz, L., Fuller, D., & Gilbert, T. (2021). Reconsidering domestication from a process archaeology perspective. World archaeology, 53(1), 56-77. Bohra, A., Tiwari, A., Kaur, P., Ganie, S. A., Raza, A., Roorkiwal, M., Mir, R. R., Fernie, A. R., Smýkal, P., & Varshney, R. K. (2022). The key to the future lies in the past: insights from grain legume domestication and improvement should inform future breeding strategies. Plant and Cell Physiology, 63(11), 1554-1572. Bowman, D. T., Bourland, F. M., Myers, G. O., Wallace, T. P., & Caldwell, D. (2004). Visual selection for yield in cotton breeding programs. J. Cotton Sci, 8(2), 62-68. Brooks, S. A., Yan, W., Jackson, A. K., & Deren, C. W. (2008). A natural mutation in rc reverts white-rice-pericarp to red and results in a new, dominant, wild-type allele: Rc-g. Theoretical and Applied Genetics, 117, 575-580. Brown, J., Caligari, P., Mackay, G., & Swan, G. (1984). The efficiency of seedling selection by visual preference in a potato breeding programme. The Journal of Agricultural Science, 103(2), 339-346. Busatta, S. (2014). The Perception of Color and The Meaning of Brilliance Among Archaic and Ancient Populations and Its Reflections on Language. Antrocom: Online Journal of Anthropology, 10(2). Chien, C.-C., Seiko, T., Muto, C., Ariga, H., Wang, Y.-C., Chang, C.-H., Sakai, H., Naito, K., & Lee, C.-R. (2025). A single domestication origin of adzuki bean in Japan and the evolution of domestication genes. Science, 388(6750), eads2871. Climent, J., AlÃa, R., Karkkainen, K., Bastien, C., Benito-Garzon, M., Bouffier, L., De Dato, G., Delzon, S., Dowkiw, A., & Elvira-Recuenco, M. (2024). Trade-offs and trait integration in tree phenotypes: consequences for the sustainable use of genetic resources. Current Forestry Reports, 10(3), 196-222. Cortinovis, G. (2022). Common bean as a model to understand crop evolution. Cortinovis, G., Di Vittori, V., Bellucci, E., Bitocchi, E., & Papa, R. (2020). Adaptation to novel environments during crop diversification. Current opinion in plant biology, 56, 203-217. Davies, K. M., Landi, M., van Klink, J. W., Schwinn, K. E., Brummell, D. A., Albert, N. W., Chagné, D., Jibran, R., Kulshrestha, S., & Zhou, Y. (2022). Evolution and function of red pigmentation in land plants. Annals of Botany, 130(5), 613-636. Dimitrova, M., & Merilaita, S. (2010). Prey concealment: visual background complexity and prey contrast distribution. Behavioral Ecology, 21(1), 176-181. Dohle, S., Berny Mier y Teran, J. C., Egan, A., Kisha, T., & Khoury, C. K. (2019). Wild beans (Phaseolus l.) of north America. North American Crop Wild Relatives, Volume 2: Important Species, 99-127. dos Santos Silva, F. C., da Silva, A. F., Gomes Bezerra, A. R., Costa Nobre, D. A., Rosa, D. P., Sediyama, T., Guimarães, C. M., Zuffo, A. M., da Silva, F. L., & Soto Gonzales, H. H. (2023). Efficiency of visual selection of agronomic traits for soybean production in a protected environment. Legume Science, 5(1), e164. Fernandez, A. R., Sáez, A., Quintero, C., Gleiser, G., & Aizen, M. A. (2021). Intentional and unintentional selection during plant domestication: herbivore damage, plant defensive traits and nutritional quality of fruit and seed crops. New Phytologist, 231(4), 1586-1598. Flint-Garcia, S. A. (2017). Kernel evolution: from teosinte to maize. Maize kernel development, 1-15. Flores, P. C., Yoon, J. S., Kim, D. Y., & Seo, Y. W. (2022). Transcriptome analysis of MYB genes and patterns of anthocyanin accumulation during seed development in wheat. Evolutionary Bioinformatics, 18, 11769343221093341. Freixas Coutin, J. A., Munholland, S., Silva, A., Subedi, S., Lukens, L., Crosby, W. L., Pauls, K. P., & Bozzo, G. G. (2017). Proanthocyanidin accumulation and transcriptional responses in the seed coat of cranberry beans (Phaseolus vulgaris L.) with different susceptibility to postharvest darkening. BMC Plant Biology, 17, 1-23. Fuller, D. Q., Allaby, R. G., & Stevens, C. (2010). Domestication as innovation: the entanglement of techniques, technology and chance in the domestication of cereal crops. World archaeology, 42(1), 13-28. Gowdy, J. (2020). Our hunter-gatherer future: Climate change, agriculture and uncivilization. Futures, 115, 102488. Guerra†GarcÃa, A., Balarynová, J., Smykal, P., von Wettberg, E. J., Noble, S. D., & Bett, K. E. (2025). Genetic and transcriptomic analysis of lentil seed imbibition and dormancy in relation to its domestication. The Plant Genome, 18(2), e70021. Hu, Y., Tang, Q., Sun, Y., Wu, J., Sun, Z., Zuo, M., Cai, J., Zhai, X., Zhou, C., & Shi, J. (2024). Comparative study on physicochemical, nutritional and cooking properties of different pigmented dehusked rice varieties influenced by superheated steam treatment. Journal of Cereal Science, 117, 103934. Hůla, M., & Flegr, J. (2021). Habitat selection and human aesthetic responses to flowers. Evolutionary Human Sciences, 3, e5. Jensen, P., & Wright, D. (2022). Behavioral genetics and animal domestication. In Genetics and the Behavior of Domestic Animals (pp. 49-93). Elsevier. Kuhn, D. A., Tünnermann, J., & Schubö, A. (2023). Visual Selection Interacts With Action Planning in Natural Foraging Tasks. Journal of vision, 23(9), 5394-5394. Lancelotti, C., Zurro, D., Whitehouse, N. J., Kramer, K. L., Madella, M., GarcÃa-Granero, J. J., & Greaves, R. D. (2016). Resilience of small-scale societies’ livelihoods: a framework for studying the transition from food gathering to food production. Ecology and Society, 21(4). Le Signor, C., Vernoud, V., Noguero, M., Gallardo, K., & Thompson, R. D. (2018). Functional genomics and seed development in Medicago truncatula: An Overview. Functional Genomics in Medicago truncatula: Methods and Protocols, 175-195. Leach, H. M. (2020). Selection and the unforeseen consequences of domestication. In Where the Wild Things Are Now (pp. 71-99). Routledge. Leceta, F., Binder, C., Mader, C., Mächtle, B., Marsh, E., Dietrich, L., Reindel, M., Eitel, B., & Meister, J. (2024). The impact of agriculture on tropical mountain soils in the western Peruvian Andes: a pedo-geoarchaeological study of terrace agricultural systems in the Laramate region (14.5 S). Soil, 10(2), 727-761. Li, X., & Camerer, C. F. (2022). Predictable effects of visual salience in experimental decisions and games. The Quarterly Journal of Economics, 137(3), 1849-1900. Liber, M., Duarte, I., Maia, A. T., & Oliveira, H. R. (2021). The history of lentil (Lens culinaris subsp. culinaris) domestication and spread as revealed by genotyping-by-sequencing of wild and landrace accessions. Frontiers in Plant Science, 12, 628439. Lye, Z. N., & Purugganan, M. D. (2019). Copy number variation in domestication. Trends in Plant Science, 24(4), 352-365. Marchese, F. J. (2018). Domestication of the Human: The Biology and Psychology of Aesthetics. North American Journal of Psychology, 20(3). Meghwal, A., & Meena, S. (2024). Digital Marketing: A Sustainable Way to Thrive in Competition of Agriculture Marketing. A Monthly Peer Reviewed Magazine for Agriculture and Allied Sciences, 64. Mishra, G. P., Ankita, Aski, M. S., Tontang, M. T., Choudhary, P., Tripathi, K., Singh, A., Kumar, R. R., Thimmegowda, V., & Stobdan, T. (2022). Morphological, molecular, and biochemical characterization of a unique lentil (Lens culinaris medik.) genotype showing seed-coat color anomalies due to altered anthocyanin pathway. Plants, 11(14), 1815. Nawroth, C., Wiesmann, K., Schlup, P., Keil, N., & Langbein, J. (2023). Domestication and breeding objective did not shape the interpretation of physical and social cues in goats (Capra hircus). Scientific Reports, 13(1), 19098. Palmer, S. E., & Schloss, K. B. (2010). An ecological valence theory of human color preference. Proceedings of the National Academy of Sciences, 107(19), 8877-8882. Plestenjak, E., MegliÄ , V., SinkoviÄ , L., & Pipan, B. (2024). Factors influencing the emergence of heterogeneous populations of common bean (Phaseolus vulgaris l.) and their potential for intercropping. Plants, 13(8), 1112. Rani, T. S., Umareddy, R., Sukruth, T., & Shankar, M. (2022). Improvement in pod shattering trait: Evolutionary significance in domesticated crops. Reynolds, A. (2012). Fitness-maximizing foragers can use information about patch quality to decide how to search for and within patches: optimal Lévy walk searching patterns from optimal foraging theory. Journal of the Royal Society Interface, 9(72), 1568-1575. Rocchetti, L., Rodriguez, M., Pieri, A., Papalini, S., De Antoni, L., Vitali, E., Vincze, A., Brezeanu, C., Bellucci, E., & Nanni, L. (2024). Landscape genomics highlights the adaptive evolution of chickpea. bioRxiv, 2024.2006. 2006.597750. Ruiz-Hernández, V., Joubert, L., RodrÃguez-Gómez, A., Artuso, S., Pattrick, J. G., Gómez, P. A., Eckerstorfer, S., Brandauer, S. S., Trcka-Rojas, C. G., & MartÃnez-Reina, L. (2021). Humans share more preferences for floral phenotypes with pollinators than with pests. Frontiers in Plant Science, 12, 647347. Sibbesson, E. (2022). Reclaiming the rotten: understanding food fermentation in the Neolithic and beyond. Environmental Archaeology, 27(1), 111-122. Smýkal, P., Coyne, C. J., Ambrose, M. J., Maxted, N., Schaefer, H., Blair, M. W., Berger, J., Greene, S. L., Nelson, M. N., & Besharat, N. (2015). Legume crops phylogeny and genetic diversity for science and breeding. Critical Reviews in Plant Sciences, 34(1-3), 43-104. Smýkal, P., Nelson, M. N., Berger, J. D., & Von Wettberg, E. J. (2018). The impact of genetic changes during crop domestication. Agronomy, 8(7), 119. Stetter, M. G., Vidal-Villarejo, M., & Schmid, K. J. (2020). Parallel seed color adaptation during multiple domestication attempts of an ancient new world grain. Molecular Biology and Evolution, 37(5), 1407-1419. Stitzer, M. C., & Ross†Ibarra, J. (2018). Maize domestication and gene interaction. New Phytologist, 220(2), 395-408. Tedore, C., & Nilsson, D.-E. (2019). Avian UV vision enhances leaf surface contrasts in forest environments. Nature communications, 10(1), 238. Trognitz, B., Cros, E., Assemat, S., Davrieux, F., Forestier-Chiron, N., Ayestas, E., Kuant, A., Scheldeman, X., & Hermann, M. (2013). Diversity of cacao trees in Waslala, Nicaragua: associations between genotype spectra, product quality and yield potential. PloS one, 8(1), e54079. Uebersax, M. A., Urrea, C., & Siddiq, M. (2022). Physical and physiological characteristics and market classes of common beans. Dry beans and pulses: Production, processing, and nutrition, 57-80. Van Tassel, D. L., Tesdell, O., Schlautman, B., Rubin, M. J., DeHaan, L. R., Crews, T. E., & Streit Krug, A. (2020). New food crop domestication in the age of gene editing: genetic, agronomic and cultural change remain co-evolutionarily entangled. Frontiers in Plant Science, 11, 789. Von Wettberg, E. J., Chang, P. L., BaÅŸdemir, F., Carrasquila-Garcia, N., Korbu, L. B., Moenga, S. M., Bedada, G., Greenlon, A., Moriuchi, K. S., & Singh, V. (2018). Ecology and genomics of an important crop wild relative as a prelude to agricultural innovation. Nature communications, 9(1), 649. Weeden, N. F. (2007). Genetic changes accompanying the domestication of Pisum sativum: is there a common genetic basis to the ‘domestication syndrome’for legumes? Annals of Botany, 100(5), 1017-1025. Wolfe, J. M., & Horowitz, T. S. (2017). Five factors that guide attention in visual search. Nature human behaviour, 1(3), 0058. Zhou, H., Wang, X., Au, W., Kang, H., & Chen, C. (2022). Intelligent robots for fruit harvesting: Recent developments and future challenges. Precision Agriculture, 23(5), 1856-1907. Zizumbo-Villarreal, D., Colunga-GarcÃaMarÃn, P., de la Cruz, E. P., Delgado-Valerio, P., & Gepts, P. (2005). Population structure and evolutionary dynamics of wild–weedy–domesticated complexes of common bean in a Mesoamerican region. Crop Science, 45(3), 1073-1083. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99142 | - |
| dc.description.abstract | 农业的发展可能是人类历史上最具革命性的转变。豆类的驯化涉及关键的形态和生理变化,特别是在种子传播、休眠和色素沉着方面。豆类驯化过程中最常见的变化是种子传播能力和色素沉着的降低。野生豆类的深色种皮在自然环境中起到天然伪装的作用,保护种子免受捕食者侵害。然而,人类对豆类的驯化选择不仅基于农业因素(如种子传播和休眠),也受到文化偏好(如视觉和感官特征)的影响。这种适应性特征可能影响了早期人类的选择行为,因为对较浅种皮颜色种子的视觉偏好可能促进了豆类最终的驯化。本研究探讨了视觉选择作为一种进化力量,是豆类驯化初期种皮颜色变化的重要原因。通过一系列的人类采集实验,参与者反复表现出对浅色种子的偏好,这意味着这些种子更易被察觉。然而,这种偏好并非刻意为之,而是视觉选择所产生的自然效果。统计分析(方差分析ANOVA)支持了参与者对浅色种子的选择,推测其原因是这些种子的可见性。本研究通过揭示豆类视觉选择在作物驯化中所起的作用,将人类感知与进化过程联系起来。 | zh_TW |
| dc.description.abstract | The development of agriculture is perhaps the most revolutionary transformation in human history. The domestication of beans involved key morphological and physiological changes, particularly in seed dispersal, dormancy, and pigmentation. The most frequent changes that happened during bean domestication are declines in seed dispersal and pigmentation. The dark seed coat color in wild beans serves as natural camouflage, protecting seeds from predators in the natural environment. However, Human selection for domestication is not solely based on agronomic factors (dispersal of seeds, seed dormancy), but also by cultural preferences, such as visual and sensory traits. This adaptive trait likely influenced early human selection practices, as visual preference for seeds with lighter seed coat colors may have contributed to the eventual domestication of beans. This research investigates visual selection acts as an evolutionary force that became the cause of the changes in seed coat coloration early in the process of domestication. Through a series of human collecting experiments, participants repeatedly preferred light-colored seeds, which implied that these seeds were more visible. This preference was not, however, deliberate, but an emergent effect of visual selection. The statistical analysis (ANOVA) supported that participant selected light-colored seeds, presumably because of their visibility. The study relates human perception to evolutionary evolution through the demonstration of how the visual selection of beans played a role in crop domestication. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-21T16:33:17Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-08-21T16:33:17Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | Chinese Abstract................................................................................................i
Abstract.......................................................................................................ii Contents ..............................................................................................................iii Figure Contents............................................................................................... v Table Contents................................................................................................ vi Introduction .........................................................................................................1 Materials and Methods ........................................................................................................10 Seed Preparation ....................................................................................................... 10 Soil Substrate ....................................................................................................... 10 Buckets................................................................................................ 11 Participants........................................................................................... 12 Experimental Setup .................................................................................... 12 Single-Bucket Experiment ....................................................................................................... 14 Competition-3 Experiment............................................................................................. 16 Competition-2 Experiment............................................................................................. 17 Results ............................................................................................... 19 Seed size of Beans ....................................................................................................... 19 Single-Bucket Experiment ....................................................................................................... 21 Competition-3 ....................................................................................................... 33 Competition-2 ....................................................................................................... 37 Discussion............................................................................................. 48 References ....................................................................................................... 56 Supplementary Data ........................................................................................................65 | - |
| dc.language.iso | en | - |
| dc.subject | 视觉选择 | zh_TW |
| dc.subject | 驯化 | zh_TW |
| dc.subject | 感知偏差 | zh_TW |
| dc.subject | 人类采集行为 | zh_TW |
| dc.subject | 驯化综合征 | zh_TW |
| dc.subject | Domestication Syndrome | en |
| dc.subject | Human Collecting Behavior | en |
| dc.subject | Perceptual Bias | en |
| dc.subject | Visual Selection | en |
| dc.subject | Domestication | en |
| dc.title | 由人類受試者採集實驗探究視覺選擇對豆類馴化的影響 | zh_TW |
| dc.title | Deciphering the Role of Visual Selection in the Domestication of Beans: Evidences from Human Collecting Experiments | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 何傳愷 ;何熙誠 | zh_TW |
| dc.contributor.oralexamcommittee | Chuan-Kai Ho;Hsi-Cheng Ho | en |
| dc.subject.keyword | 驯化,视觉选择,驯化综合征,人类采集行为,感知偏差, | zh_TW |
| dc.subject.keyword | Domestication,Visual Selection,Domestication Syndrome,Human Collecting Behavior,Perceptual Bias, | en |
| dc.relation.page | 71 | - |
| dc.identifier.doi | 10.6342/NTU202502793 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2025-08-05 | - |
| dc.contributor.author-college | 生命科學院 | - |
| dc.contributor.author-dept | 植物科學研究所 | - |
| dc.date.embargo-lift | 2025-08-22 | - |
| 顯示於系所單位: | 植物科學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf | 2.46 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
