Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 環境工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99140
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林逸彬zh_TW
dc.contributor.advisorYi-Pin Linen
dc.contributor.author劉書雲zh_TW
dc.contributor.authorShu-Yun Liuen
dc.date.accessioned2025-08-21T16:32:47Z-
dc.date.available2025-08-22-
dc.date.copyright2025-08-21-
dc.date.issued2025-
dc.date.submitted2025-07-31-
dc.identifier.citationReferences
Ali, J., Jiang, W., Shahzad, A., Ifthikar, J., Yang, X., Wu, B., Oyekunle, D. T., Jia, W., Chen, Z., Zheng, L., & Chen, Z. (2021). Isolated copper ions and surface hydroxyl groups as a function of non-redox metals to modulate the reactivity and persulfate activation mechanism of spinel oxides. Chemical Engineering Journal, 425, 130679.
Anipsitakis, G. P., & Dionysiou, D. D. (2003). Degradation of organic contaminants in water with sulfate radicals generated by the conjunction of peroxymonosulfate with cobalt. Environmental Science & Technology, 37(20), 4790-4797.
Anipsitakis, G. P., & Dionysiou, D. D. (2004). Radical generation by the interaction of transition metals with common oxidants. Environmental Science & Technology, 38(13), 3705-3712.
Awtrey, A. D., & Connick, R. E. (1951). The absorption spectra of I2, I3-, I-, IO3-, S4O6= and S2O3=. Heat of the reaction I3-= I2+ I. Journal of the American Chemical Society, 73(4), 1842-1843.
Bilski, P., Reszka, K., Bilska, M., & Chignell, C. F. (1996). Oxidation of the spin trap 5,5-Dimethyl-1-pyrroline N-Oxide by singlet oxygen in aqueous solution. Journal of the American Chemical Society, 118(6), 1330-1338.
Bokare, A. D., & Choi, W. (2014). Review of iron-free Fenton-like systems for activating H2O2 in advanced oxidation processes. Journal of Hazardous Materials, 275, 121-135.
Cai, P., Zhao, J., Zhang, X., Zhang, T., Yin, G., Chen, S., Dong, C.-L., Huang, Y.-C., Sun, Y., Yang, D., & Xing, B. (2022). Synergy between cobalt and nickel on NiCo2O4 nanosheets promotes peroxymonosulfate activation for efficient norfloxacin degradation. Applied Catalysis B: Environmental, 306, 121091.
Cai, S., Wang, T., Wu, C., Tang, W., & Chen, J. (2023). Efficient degradation of norfloxacin using a novel biochar-supported CuO/Fe3O4 combined with peroxydisulfate: Insights into enhanced contribution of nonradical pathway. Chemosphere, 329, 138589.
Chen, K., Liang, J., Xu, X., Zhao, L., Qiu, H., Wang, X., & Cao, X. (2022). Roles of soil active constituents in the degradation of sulfamethoxazole by biochar/persulfate: Contrasting effects of iron minerals and organic matter. Science of The Total Environment, 853, 158532.
Cheng, M., Zhang, Y., Lai, B., Wang, L., Yang, S., Li, K., Wang, D., Wu, Y., Chen, G.-H., & Qian, J. (2023). Nitrogen and phosphorus co-doped porous carbons (NPCs) for peroxydisulfate (PDS) activation towards tetracycline degradation: Defects enhanced adsorption and non-radical mechanism dominated by electron transfer. Chemical Engineering Journal, 455, 140615.
Cho, Y.-C., Lin, R.-Y., & Lin, Y.-P. (2020). Degradation of 2,4-dichlorophenol by CuO-activated peroxydisulfate: Importance of surface-bound radicals and reaction kinetics. Science of The Total Environment, 699, 134379.
Dean, B. J. (1985). Recent findings on the genetic toxicology of benzene, toluene, xylenes and phenols. Mutation Research/Reviews in Genetic Toxicology, 154(3), 153-181.
Deister, U., & Warneck, P. (1990). Photooxidation of sulfite (SO32-) in aqueous solution. The Journal of Physical Chemistry, 94(5), 2191-2198.
Dong, C.-D., Chen, C.-W., & Hung, C.-M. (2017). Synthesis of magnetic biochar from bamboo biomass to activate persulfate for the removal of polycyclic aromatic hydrocarbons in marine sediments. Bioresource Technology, 245, 188-195.
Duan, X., Sun, H., Shao, Z., & Wang, S. (2018). Nonradical reactions in environmental remediation processes: Uncertainty and challenges. Applied Catalysis B: Environmental, 224, 973-982.
Farhadian, M., Vachelard, C., Duchez, D., & Larroche, C. (2008). In situ bioremediation of monoaromatic pollutants in groundwater: A review. Bioresource Technology, 99(13), 5296-5308.
Fedorov, K., Plata-Gryl, M., Khan, J. A., & Boczkaj, G. (2020). Ultrasound-assisted heterogeneous activation of persulfate and peroxymonosulfate by asphaltenes for the degradation of BTEX in water. Journal of Hazardous Materials, 397, 122804.
Fedorov, K., Sun, X., & Boczkaj, G. (2021). Combination of hydrodynamic cavitation and SR-AOPs for simultaneous degradation of BTEX in water. Chemical Engineering Journal, 417, 128081.
Fiol, N., & Villaescusa, I. (2009). Determination of sorbent point zero charge: usefulness in sorption studies. Environmental Chemistry Letters, 7(1), 79-84.
Furman, O. S., Teel, A. L., & Watts, R. J. (2010). Mechanism of base activation of persulfate. Environmental Science & Technology, 44(16), 6423-6428.
Gao, D., Lu, Y., Chen, Y., Bao, M., & Xu, N. (2022). Novel CoFe2Px derived from CoFe2O4 for efficient peroxymonosulfate activation: Switching the reaction route and suppressing metal leaching. Applied Catalysis B: Environmental, 309, 121234.
Gao, Y., Wang, Q., Ji, G., & Li, A. (2022). Degradation of antibiotic pollutants by persulfate activated with various carbon materials. Chemical Engineering Journal, 429, 132387.
Hua, L.-C., Weng, C.-Y., Chuang, Y.-H. B., Kennedy, M., & Huang, C. (2024). Iron enhancing superoxide-mediated Mn(II) oxidation by peroxymonosulfate: Elucidating the role of superoxide radicals. ACS ES&T Engineering, 4(11), 2687-2698.
Huang, J., Dai, Y., Singewald, K., Liu, C.-C., Saxena, S., & Zhang, H. (2019). Effects of MnO2 of different structures on activation of peroxymonosulfate for bisphenol A degradation under acidic conditions. Chemical Engineering Journal, 370, 906-915.
Huang, K.-C., Couttenye, R. A., & Hoag, G. E. (2002). Kinetics of heat-assisted persulfate oxidation of methyl tert-butyl ether (MTBE). Chemosphere, 49(4), 413-420.
Huang, K.-C., Zhao, Z., Hoag, G. E., Dahmani, A., & Block, P. A. (2005). Degradation of volatile organic compounds with thermally activated persulfate oxidation. Chemosphere, 61(4), 551-560.
Jawad, A., Zhan, K., Wang, H., Shahzad, A., Zeng, Z., Wang, J., Zhou, X., Ullah, H., Chen, Z., & Chen, Z. (2020). Tuning of persulfate activation from a free radical to a nonradical pathway through the incorporation of non-redox magnesium oxide. Environmental Science & Technology, 54(4), 2476-2488.
Ji, Y., Xie, W., Fan, Y., Shi, Y., Kong, D., & Lu, J. (2016). Degradation of trimethoprim by thermo-activated persulfate oxidation: Reaction kinetics and transformation mechanisms. Chemical Engineering Journal, 286, 16-24.
Johnson, P. C., Das, A., & Bruce, C. (1999). Effect of flow rate changes and pulsing on the treatment of source zones by in situ air sparging. Environmental Science & Technology, 33(10), 1726-1731.
Kambhu, A., Comfort, S., Chokejaroenrat, C., & Sakulthaew, C. (2012). Developing slow-release persulfate candles to treat BTEX contaminated groundwater. Chemosphere, 89(6), 656-664.
Khodaei, K., Nassery, H. R., Asadi, M. M., Mohammadzadeh, H., & Mahmoodlu, M. G. (2017). BTEX biodegradation in contaminated groundwater using a novel strain (Pseudomonas sp. BTEX-30). International Biodeterioration & Biodegradation, 116, 234-242.
Lange, A., & Brauer, H.-D. (1996). On the formation of dioxiranes and of singlet oxygen by the ketone-catalysed decomposition of Caro's acid [10.1039/P29960000805]. Journal of the Chemical Society, Perkin Transactions 2(5), 805-811.
Lee, H., Lee, H.-J., Jeong, J., Lee, J., Park, N.-B., & Lee, C. (2015). Activation of persulfates by carbon nanotubes: Oxidation of organic compounds by nonradical mechanism. Chemical Engineering Journal, 266, 28-33.
Lee, J., von Gunten, U., & Kim, J.-H. (2020). Persulfate-based advanced oxidation: Critical assessment of opportunities and roadblocks. Environmental Science & Technology, 54(6), 3064-3081.
Li, M., Zhang, H., Liu, Z., Su, Y., & Du, C. (2022). Surface lattice oxygen mobility inspired peroxymonosulfate activation over Mn2O3 exposing different crystal faces toward bisphenol A degradation. Chemical Engineering Journal, 450, 138147.
Li, X., Cao, H., Cao, Y., Zhao, Y., Zhang, W., Shen, J., Sun, Z., Ma, F., & Gu, Q. (2023). Insights into the mechanism of persulfate activation with biochar composite loaded with Fe for 2,4-dinitrotoluene degradation. Journal of Environmental Management, 341, 117955.
Liang, C., Huang, C.-F., & Chen, Y.-J. (2008). Potential for activated persulfate degradation of BTEX contamination. Water Research, 42(15), 4091-4100.
Liang, C., Huang, C.-F., Mohanty, N., & Kurakalva, R. M. (2008). A rapid spectrophotometric determination of persulfate anion in ISCO. Chemosphere, 73(9), 1540-1543.
Liang, C., & Su, H.-W. (2009). Identification of sulfate and hydroxyl radicals in thermally activated persulfate. Industrial & Engineering Chemistry Research, 48(11), 5558-5562.
Lim, J., Yang, Y., & Hoffmann, M. R. (2019). Activation of peroxymonosulfate by oxygen vacancies-enriched cobalt-doped black TiO2 nanotubes for the removal of organic pollutants. Environmental Science & Technology, 53(12), 6972-6980.
Liu, H., Bruton, T. A., Doyle, F. M., & Sedlak, D. L. (2014). In situ chemical oxidation of contaminated groundwater by persulfate: Decomposition by Fe(III)- and Mn(IV)-containing oxides and aquifer materials. Environmental Science & Technology, 48(17), 10330-10336.
Luo, D., Lin, H., Li, X., Wang, Y., Ye, L., Mai, Y., Wu, P., Ni, Z., Lin, Q., & Qiu, R. (2024). The dual role of natural organic matter in the degradation of organic pollutants by persulfate-based advanced oxidation processes: A mini-review. Toxics, 12(11), 770.
Ma, J., Yang, Y., Jiang, X., Xie, Z., Li, X., Chen, C., & Chen, H. (2018). Impacts of inorganic anions and natural organic matter on thermally activated persulfate oxidation of BTEX in water. Chemosphere, 190, 296-306.
Malefane, M. E., Mafa, P. J., Mamba, P. P., Managa, M., Nkambule, T. T. I., & Kuvarega, A. T. (2024). Induced S-scheme CoMn-LDH/C-MgO for advanced oxidation of amoxicillin under visible light. Chemical Engineering Journal, 480, 148250.
Nie, C., Dai, Z., Liu, W., Duan, X., Wang, C., Lai, B., Ao, Z., Wang, S., & An, T. (2020). Criteria of active sites in nonradical persulfate activation process from integrated experimental and theoretical investigations: boron–nitrogen-co-doped nanocarbon-mediated peroxydisulfate activation as an example [10.1039/D0EN00347F]. Environmental Science: Nano, 7(7), 1899-1911.
Park, H.-R., & Getoff, N. (1992). Radiolysis of aqueous ethanol in the presence of CO. Zeitschrift für Naturforschung A, 47(9), 985-991.
Qi, C., Liu, X., Ma, J., Lin, C., Li, X., & Zhang, H. (2016). Activation of peroxymonosulfate by base: Implications for the degradation of organic pollutants. Chemosphere, 151, 280-288.
Qin, F., Peng, Y., Song, G., Fang, Q., Wang, R., Zhang, C., Zeng, G., Huang, D., Lai, C., Zhou, Y., Tan, X., Cheng, M., & Liu, S. (2020). Degradation of sulfamethazine by biochar-supported bimetallic oxide/persulfate system in natural water: Performance and reaction mechanism. Journal of Hazardous Materials, 398, 122816.
Rayaroth, M. P., Marchel, M., & Boczkaj, G. (2023). Advanced oxidation processes for the removal of mono and polycyclic aromatic hydrocarbons – A review. Science of The Total Environment, 857, 159043.
Rice, E. W., Baird, R. B., Eaton, A. D., & Clesceri, L. S. (2012). Standard methods for the examination of water and wastewater.
Shao, F., Wang, Y., Mao, Y., Shao, T., & Shang, J. (2020). Degradation of tetracycline in water by biochar supported nanosized iron activated persulfate. Chemosphere, 261, 127844.
Shi, Q., Deng, S., Zheng, Y., Du, Y., Li, L., Yang, S., Zhang, G., Du, L., Wang, G., Cheng, M., & Liu, Y. (2022). The application of transition metal-modified biochar in sulfate radical based advanced oxidation processes. Environmental Research, 212, 113340.
Sun, J., Zhang, D., Xia, D., & Li, Q. (2023). Orange peels biochar doping with Fe-Cu bimetal for PMS activation on the degradation of bisphenol A: A synergy of SO4−, OH, 1O2 and electron transfer. Chemical Engineering Journal, 471, 144832.
Tian, K., Hu, L., Li, L., Zheng, Q., Xin, Y., & Zhang, G. (2022). Recent advances in persulfate-based advanced oxidation processes for organic wastewater treatment. Chinese Chemical Letters, 33(10), 4461-4477.
USEPA. (2014). Priority Pollutant List. Retrieved from https://www.epa.gov/eg/toxic-and-priority-pollutants-under-clean-water-act
Wacławek, S., Lutze, H. V., Grübel, K., Padil, V. V. T., Černík, M., & Dionysiou, D. D. (2017). Chemistry of persulfates in water and wastewater treatment: A review. Chemical Engineering Journal, 330, 44-62.
Wang, G., Ge, L., Liu, Z., Zhu, X., Yang, S., Wu, K., Jin, P., Zeng, X., & Zhang, X. (2022). Activation of peroxydisulfate by defect-rich CuO nanoparticles supported on layered MgO for organic pollutants degradation: An electron transfer mechanism. Chemical Engineering Journal, 431, 134026.
Wang, J., & Wang, S. (2018). Activation of persulfate (PS) and peroxymonosulfate (PMS) and application for the degradation of emerging contaminants. Chemical Engineering Journal, 334, 1502-1517.
Wang, J., & Wang, S. (2021). Effect of inorganic anions on the performance of advanced oxidation processes for degradation of organic contaminants. Chemical Engineering Journal, 411, 128392.
Wang, L., Lu, X., Chen, G., Zhao, Y., & Wang, S. (2023). Synergy between MgFe2O4 and biochar derived from banana pseudo-stem promotes persulfate activation for efficient tetracycline degradation. Chemical Engineering Journal, 468, 143773.
Wang, M., Liao, L., Zhang, X., & Li, Z. (2012). Adsorption of low concentration humic acid from water by palygorskite. Applied Clay Science, 67-68, 164-168.
Wang, S., & Wang, J. (2020). Peroxymonosulfate activation by Co9S8@ S and N co‐doped biochar for sulfamethoxazole degradation. Chemical Engineering Journal, 385, 123933.
Wang, S., Xu, L., & Wang, J. (2019). Nitrogen-doped graphene as peroxymonosulfate activator and electron transfer mediator for the enhanced degradation of sulfamethoxazole. Chemical Engineering Journal, 375, 122041.
Wang, Y., Indrawirawan, S., Duan, X., Sun, H., Ang, H. M., Tadé, M. O., & Wang, S. (2015). New insights into heterogeneous generation and evolution processes of sulfate radicals for phenol degradation over one-dimensional α-MnO2 nanostructures. Chemical Engineering Journal, 266, 12-20.
Wang, Y., Wang, L., Cao, Y., & Ma, F. (2023). Oxygen vacancies-enriched Fe-Cu bimetallic minerals-based magnetic biochar activated peroxydisulfate for durable sulfonamides degradation: pH-dependence adsorption and singlet oxygen evolution mechanism. Separation and Purification Technology, 317, 123866.
Wang, Z.-S., Cho, Y.-C., & Lin, Y.-P. (2024). Removal of cyanide by peroxydisulfate activated by copper ions inherently present in the electroplating wastewater. Journal of Environmental Chemical Engineering, 12(5), 113517.
Watts, R. J., & Teel, A. L. (2006). Treatment of contaminated soils and groundwater using ISCO. Practice Periodical of Hazardous, Toxic, and Radioactive Waste Management, 10(1), 2-9.
Wei, K.-H., Ma, J., Xi, B.-D., Yu, M.-D., Cui, J., Chen, B.-L., Li, Y., Gu, Q.-B., & He, X.-S. (2022). Recent progress on in-situ chemical oxidation for the remediation of petroleum contaminated soil and groundwater. Journal of Hazardous Materials, 432, 128738.
Xia, Y., Cheng, Y., Li, L., Chen, Y., & Jiang, Y. (2020). A microcosm study on persulfate oxidation combined with enhanced bioremediation to remove dissolved BTEX in gasoline-contaminated groundwater. Biodegradation, 31(3), 213-222.
Xiao, S., Cheng, M., Zhong, H., Liu, Z., Liu, Y., Yang, X., & Liang, Q. (2020). Iron-mediated activation of persulfate and peroxymonosulfate in both homogeneous and heterogeneous ways: A review. Chemical Engineering Journal, 384, 123265.
Yadav, J., & Reddy, C. (1993). Degradation of benzene, toluene, ethylbenzene, and xylenes (BTEX) by the lignin-degrading basidiomycete Phanerochaete chrysosporium. Applied and environmental microbiology, 59(3), 756-762.
Yan, Y., Wei, Z., Duan, X., Long, M., Spinney, R., Dionysiou, D. D., Xiao, R., & Alvarez, P. J. J. (2023). Merits and limitations of radical vs. nonradical pathways in persulfate-based advanced oxidation processes. Environmental Science & Technology, 57(33), 12153-12179.
Yang, X., Beckmann, D., Fiorenza, S., & Niedermeier, C. (2005). Field study of pulsed air sparging for remediation of petroleum hydrocarbon contaminated soil and groundwater. Environmental Science & Technology, 39(18), 7279-7286.
Yang, Y., Banerjee, G., Brudvig, G. W., Kim, J.-H., & Pignatello, J. J. (2018). Oxidation of organic compounds in water by unactivated peroxymonosulfate. Environmental Science & Technology, 52(10), 5911-5919.
Yao, B., Luo, Z., Du, S., Yang, J., Zhi, D., & Zhou, Y. (2022). Magnetic MgFe2O4/biochar derived from pomelo peel as a persulfate activator for levofloxacin degradation: Effects and mechanistic consideration. Bioresource Technology, 346, 126547.
Yin, R., Guo, W., Wang, H., Du, J., Wu, Q., Chang, J.-S., & Ren, N. (2019). Singlet oxygen-dominated peroxydisulfate activation by sludge-derived biochar for sulfamethoxazole degradation through a nonradical oxidation pathway: Performance and mechanism. Chemical Engineering Journal, 357, 589-599.
Yun, E.-T., Yoo, H.-Y., Bae, H., Kim, H.-I., & Lee, J. (2017). Exploring the role of persulfate in the activation process: Radical precursor versus electron acceptor. Environmental Science & Technology, 51(17), 10090-10099.
Zhang, R., Sun, P., Boyer, T. H., Zhao, L., & Huang, C.-H. (2015). Degradation of pharmaceuticals and metabolite in synthetic human urine by UV, UV/H2O2, and UV/PDS. Environmental Science & Technology, 49(5), 3056-3066.
Zhao, Y., Song, M., Cao, Q., Sun, P., Chen, Y., & Meng, F. (2020). The superoxide radicals’ production via persulfate activated with CuFe2O4@Biochar composites to promote the redox pairs cycling for efficient degradation of o-nitrochlorobenzene in soil. Journal of Hazardous Materials, 400, 122887.
Zhen, J., Zhang, S., Zhuang, X., Ahmad, S., Lee, T., Si, H., Cao, C., & Ni, S.-Q. (2021). Sulfate radicals based heterogeneous peroxymonosulfate system catalyzed by CuO-Fe3O4-Biochar nanocomposite for bisphenol A degradation. Journal of Water Process Engineering, 41, 102078.
Zhou, T., Shi, C., Wang, Y., Wang, X., Lei, Z., Liu, X., Wu, J., Luo, F., & Wang, L. (2024). Progress of metal-loaded biochar-activated persulfate for degradation of emerging organic contaminants. Water Science and Technology, 90(3), 824-843.
Zhu, J., Song, Y., Wang, L., Zhang, Z., Gao, J., Tsang, D. C. W., Ok, Y. S., & Hou, D. (2022). Green remediation of benzene contaminated groundwater using persulfate activated by biochar composite loaded with iron sulfide minerals. Chemical Engineering Journal, 429, 132292.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99140-
dc.description.abstractBTEX(苯、甲苯、乙苯與二甲苯)是常見的單環芳香族揮發性有機污染物,廣泛存在於石油產品中,因其毒性與致癌性已被列為優先污染物。為有效處理受 BTEX 污染的地下水,本研究開發並評估以銅、鐵、鎂氧化物與生物炭複合材料(CuFeMgO-BC)活化過單硫酸鹽(PMS)系統之降解效能與機制。研究包含材料特性分析、批次反應實驗、自由基偵測、以及地下水基質成分影響評估。
研究結果顯示CuFeMgO-BC 表面具備多金屬氧化物晶相,並展現優異的 PMS 活化能力。在最佳條件下(PMS 20 mM、CuFeMgO-BC 1 g/L),BTEX 四種化合物於 360 分鐘內去除率達 100%。自由基捕捉實驗與電子順磁共振(EPR)結果證實,硫酸根自由基(SO4•⁻)為主要反應物種,羥基自由基(OH•)與單態氧(1O2)亦參與反應。進一步發現,高劑量的活化劑可能因團聚或自由基消耗而導致效率下降,地下水常見基質如氯離子、硫酸根離子、碳酸氫根離子與腐植酸對降解效率不具明顯抑制作用,然而採用真實地下水時降解效率卻顯著提升,能在30分鐘內達到97-100%的BTEX去除效率。
綜上所述,CuFeMgO-BC 為一具潛力且可穩定活化 PMS 的異相催化材料,適用於實地 BTEX 污染治理,並可因應地下水中多變的基質環境。
zh_TW
dc.description.abstractBTEX (benzene, toluene, ethylbenzene, and xylene) are common monocyclic aromatic volatile organic compounds present in groundwater contaminated by petroleum products. Due to their toxicity and carcinogenicity, they have been listed as the priority pollutants. To effectively remediate BTEX-contaminated groundwater, this study developed and evaluated a novel system using the Cu/Fe/Mg oxide-biochar composite (CuFeMgO-BC) to activate peroxymonosulfate (PMS) for BTEX degradation.
The results demonstrated that CuFeMgO-BC exhibited well-defined multi-metal oxide crystalline structures and possessed an excellent PMS activation capability. Under optimal conditions (PMS = 20 mM, CuFeMgO-BC = 1 g/L), complete removal of BTEX was achieved within 360 min when synthesized groundwater was used. Quenching tests and electron paramagnetic resonance (EPR) analysis confirmed that sulfate radicals (SO4•⁻) were the dominant reactive species, while hydroxyl radicals (OH•) and singlet oxygen (1O2) also partially contributed to the degradation. Excessive dosages of the activator led to reduced efficiency due to particle agglomeration or radical quenching. The presence of typical ions in groundwater, such as chloride, sulfate, bicarbonate, and humic acid, did not significantly inhibit the degradation. Notably, the degradation of BTEX in real groundwater was significantly enhanced, achieving 97-100% within just 30 min.
In summary, CuFeMgO-BC is a promising and stable heterogeneous catalyst for PMS activation, offering a high potential for in situ remediation of BTEX-contaminated groundwater.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-21T16:32:47Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-08-21T16:32:47Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsContents

摘要 i
Abstract ii
Contents iii
List of Figures v
List of Tables x
Chapter 1 Introduction 1
1.1 Background 1
1.2 Research objectives 2
Chapter 2 Literature review 3
2.1 BTEX 3
2.2 BTEX removal technologies 4
2.3 Persulfate-based advanced oxidation processes 5
2.4 Degradation mechanisms of organic compounds by activated persulfates 7
2.5 Influences of groundwater matrices 10
Chapter 3 Materials and method 12
3.1 Research framework 12
3.2 Chemicals and reagents 14
3.3 Preparation of Cu/Fe/Mg oxide-biochar composite (CuFeMgO-BC) 14
3.4 BTEX degradation experiments 16
3.5 Analytical methods 17
Chapter 4 Results and Discussion 20
4.1 Characterization of CuFeMgO-BC 20
4.2 Degradation of BTEX by PMS activated by CuFeMgO-BC 30
4.3 Influence of solution compositions on BTEX degradation by CuFeMgO-BC- activated PMS 36
4.4 Identification of reactive species and stability of CuFeMgO-BC 44
4.5 Influence of groundwater matrices on BTEX removal and reusability test 55
Chapter 5 Conclusions and Recommendations 66
5.1 Conclusions 66
5.2 Recommendations 67
References 68
-
dc.language.isoen-
dc.subject過單硫酸鹽zh_TW
dc.subject地下水zh_TW
dc.subjectBTEXzh_TW
dc.subject生物炭zh_TW
dc.subject金屬氧化物zh_TW
dc.subjectperoxymonosulfateen
dc.subjectmetal oxidesen
dc.subjectbiocharen
dc.subjectgroundwateren
dc.subjectBTEXen
dc.title利用銅/鐵/鎂氧化物-生物炭複合材料活化過單硫酸鹽降解BTEXzh_TW
dc.titleDegradation of BTEX by Cu/Fe/Mg oxide-biochar composite activated peroxymonosulfateen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee高立誠;劉雅瑄;楊汶達zh_TW
dc.contributor.oralexamcommitteeLi-Cheng Kao;Ya-Hsuan Liou;Wen-Ta Yangen
dc.subject.keywordBTEX,過單硫酸鹽,金屬氧化物,生物炭,地下水,zh_TW
dc.subject.keywordBTEX,peroxymonosulfate,metal oxides,biochar,groundwater,en
dc.relation.page75-
dc.identifier.doi10.6342/NTU202503250-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2025-08-05-
dc.contributor.author-college工學院-
dc.contributor.author-dept環境工程學研究所-
dc.date.embargo-lift2025-08-22-
顯示於系所單位:環境工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf2.38 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved