Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99139Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 劉如熹 | zh_TW |
| dc.contributor.advisor | Ru-Shi Liu | en |
| dc.contributor.author | 陳冠群 | zh_TW |
| dc.contributor.author | Kuan-Chun Chen | en |
| dc.date.accessioned | 2025-08-21T16:32:32Z | - |
| dc.date.available | 2025-08-22 | - |
| dc.date.copyright | 2025-08-21 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-07-30 | - |
| dc.identifier.citation | (1) Newton, I. Opticks, or, a Treatise of the Reflections, Refractions, Inflections & Colours of Light; Courier Corporation, 1952.
(2) De Broglie, L. Waves and Quanta. Nature 1923, 112, 540–540. (3) Djuretić, J.; Dimitrijević, M.; Stojanović, M.; Stevuljević, J. K.; Hamblin, M. R.; Micov, A.; Stepanović-Petrović, R.; Leposavić, J. Infrared Radiation from Cage Bedding Moderates Rat Inflammatory and Autoimmune Responses in Collagen-Induced Arthritis. Sci. Rep. 2021, 11, 2882. (4) Miao, S.; Liang, Y.; Zhang, Y.; Chen, D.; Wang, X. J. Broadband Short-Wave Infrared Light-Emitting Diodes Based on Cr3+-Doped LiScGeO4 Phosphor. ACS Appl. Mater. Interfaces 2021, 13, 36011–36019. (5) Gai, S.; Zhou, C.; Peng, L.; Wu, M.; Gao, P.; Su, L.; Molokeev, M.; Zhou, Z.; Xia, M. A Novel Cr3+-Doped Stannate Far Red Phosphor for Plant Lighting: Structure Evolution, Broad-Narrow Spectrum Tuning and Application Prospect. Mater. Today Chem. 2022, 26, 101107. (6) Das, S.; Sharma, S.; Manam, J. Near Infrared Emitting Cr3+ Doped Zn3Ga2Ge2O10 Long Persistent Phosphor for Night Vision Surveillance and Anti-Counterfeit Applications. Ceram. Int. 2022, 48, 824–831. (7) Kim, J. G.; Xia, M.; Liu, H. Extinction Coefficients of Hemoglobin for Near-Infrared Spectroscopy of Tissue. IEEE Eng. Med. Biol. Mag. 2005, 24, 118–121. (8) Wang, C.; Wang, X.; Zhou, Y.; Zhang, S.; Li, C.; Hu, D.; Xu, L.; Jiao, H. An Ultra-Broadband Near-Infrared Cr3+-Activated Gallogermanate Mg3Ga2GeO8 Phosphor as Light Sources for Food Analysis. ACS Appl. Electron. Mater. 2019, 1, 1046–1053. (9) Zhang, Q.; Wang, Q.; Xu, X.; Liu, J.; Lu, X.; Huang, W.; Fan, Q. Diketopyrrolopyrrole Derivatives-Based NIR-II Fluorophores for Theranostics. Dyes and Pigm. 2021, 193, 109480. (10) Zhao, M.; Li, B.; Zhang, H.; Zhang, F. Activatable Fluorescence Sensors for in Vivo Bio-Detection in the Second Near-Infrared Window. Chem. Sci. 2021, 12, 3448–3459. (11) Tsai, Y. T.; Huang, Y. K.; Jiang, Z. F.; Yao, Y.; Lo, P. H.; Chao, Y. C.; Lin, B. H.; Lin, C. C. Cation Substitution-Induced Partial Inversion to Pervade Short-Wave Infrared Light for Improving the Accuracy of Artificial Intelligence Image Recognition System. ACS Mater. Lett. 2023, 5, 738–743. (12) Liu, B. M.; Gu, S. M.; Huang, L.; Zhou, R. F.; Zhou, Z.; Ma, C. G.; Zou, R.; Wang, J. Ultra-Broadband and High-Efficiency Phosphors to Brighten NIR-II Light Source Applications. Cell Rep. Phys. Sci. 2022, 3, 101078. (13) Rajendran, V.; Chen, K. C.; Huang, W. T.; Kamiński, M.; Grzegorczyk, M.; Mahlik, S.; Leniec, G.; Lu, K. M.; Wei, D. H.; Chang, H.; Liu, R. S. Unraveling Luminescent Energy Transfer Pathways: Futuristic Approach of Miniature Shortwave Infrared Light-Emitting Diode Design. ACS Energy Lett. 2023, 8, 2395–2400. (14) Rajendran, V.; Huang, W. T.; Chen, K. C.; Wei, D. H.; Chang, H.; Liu, R. S. Shortwave Infrared Luminescence of Tetravalent Chromium and Divalent Nickel: Phosphor Design Principles and Applications. ACS Appl. Opt. Mater. 2023, 1, 1063–1079. (15) Huang, W. T.; Chen, K. C.; Huang, M. H.; Liu, R. S. Tunable Spinel Structure Phosphors: Dynamic Change in Near‐Infrared Windows and their Applications. Adv. Opt. Mater. 2023, 11, 2301166. (16) Yuan, L.; Jin, Y.; Wu, H.; Deng, K.; Qu, B.; Chen, L.; Hu, Y.; Liu, R. S. Ni2+-Doped Garnet Solid-Solution Phosphor-Converted Broadband Shortwave Infrared Light-Emitting Diodes toward Spectroscopy Application. ACS Appl. Mater. Interfaces 2022, 14, 4265–4275. (17) Yuan, L.; Jin, Y.; Zhu, D.; Mou, Z.; Xie, G.; Hu, Y. Ni2+-Doped Yttrium Aluminum Gallium Garnet Phosphors: Bandgap Engineering for Broad-Band Wavelength-Tunable Shortwave-Infrared Long-Persistent Luminescence and Photochromism. ACS Sustain. Chem. Eng. 2020, 8, 6543–6550. (18) Diao, S.; Blackburn, J. L.; Hong, G.; Antaris, A. L.; Chang, J.; Wu, J. Z.; Zhang, B.; Cheng, K.; Kuo, C. J.; Dai, H. Fluorescence Imaging in Vivo at Wavelengths beyond 1500 nm. Angew. Chem. 2015, 127, 14971–14975. (19) Liu, C. N.; Chang, K. C.; Tsai, C. L.; Cheng, W. C.; Shih, T. T.; Huang, S. L.; Cheng, W. H. 17-dB Net Gain of Broadband Single-Mode Cr-Doped Crystalline Core Fiber Fabricated by Small Core. IEEE Photonics J. 2023, 15, 1–6. (20) Yeh, S. M.; Huang, S. L.; Chiu, Y. J.; Taga, H.; Huang, P. L.; Huang, Y. C.; Lu, Y. K.; Wu, J. P.; Wang, W. L.; Kong, D. M. Broadband Chromium-Doped Fiber Amplifiers for Next-Generation Optical Communication Systems. J. Light. Technol. 2012, 30, 921–927. (21) Liu, C. N.; Li, J. W.; Tung, Y. H.; Yang, C. C.; Cheng, W. C.; Huang, S. L.; Cheng, W. H. Enhancement of Tetrahedral Chromium (Cr4+) Concentration for High-Gain in Single-Mode Crystalline Core Fibers. IEEE Photonics J. 2020, 12, 1–11. (22) Valeur, B.; Berberan-Santos, M. N. A Brief History of Fluorescence and Phosphorescence before the Emergence of Quantum Theory. J. Chem. Educ. 2011, 88, 731–738. (23) Shinde, K. N.; Dhoble, S.; Swart, H.; Park, K. Phosphate phosphors for solid-state lighting; Springer Science & Business Media, 2012. (24) Kwan, A.; Dudley, J.; Lantz, E. Who Really Discovered Snell’s Law? Phys. World 2002, 15, 64. (25) Gonçalves, M. E. B.; de Lima Costa, C. M.; Vieira, R. A.; Guerreiro, J.; Ramalho, S.; Da Silva, V. L. Optical Fibers Characterization for Macrobending Sensors. J. Bioeng. Technol. Health 2024, 7, 51–56. (26) Aljaff, P. M.; Rasheed, B. O. Design Optimization for Efficient Erbium-Doped Fiber Amplifiers. Int. J. Math. Sci. 2008, 2, 704–707. (27) Yoneda, E.; Kikushima, K.; Tsuchiya, T.; Suto, K. I. Erbium-Doped Fiber Amplifier for Video Distribution Networks. Int. J. Sci. Arts Commer. 1990, 8, 1249–1256. (28) Krishnan, M.; Bastien, S. P.; Sunak, H. R.; Kalomiris, V. E. Pr3+-Doped Fluoride Fiber Amplifiers: Optimum Design Considerations. Physics and Simulation of Optoelectronic Devices, 1992, 1679, 212–219. (29) Kasamatsu, T.; Yano, Y.; Sekita, H. 1.50-µm-Band Gain-Shifted Thulium-Doped Fiber Amplifier with 1.05-and 1.56-µm Dual-Wavelength Pumping. Opt. Lett. 1999, 24, 1684–1686. (30) Bufetov, I. A.; Melkumov, M. A.; Firstov, S. V.; Riumkin, K. E.; Shubin, A. V.; Khopin, V. F.; Guryanov, A. N.; Dianov, E. M. Bi-Doped Optical Fibers and Fiber Lasers. IEEE J. Sel. Top. Quantum Electron. 2014, 20, 111–125. (31) Firstov, S. V.; Alyshev, S. V.; Riumkin, K. E.; Khopin, V. F.; Guryanov, A. N.; Melkumov, M. A.; Dianov, E. M. A 23-dB Bismuth-Doped Optical Fiber Amplifier for a 1700-nm Band. Sci. Rep. 2016, 6, 28939. (32) Batagelj, B.; Erzen, V.; Tratnik, J.; Naglic, L.; Bagan, V.; Ignatov, Y.; Antonenko, M. Optical Access Network Migration from GPON to XG-PON. In The Third International Conference on Access Networks, 2012, 62–67. (33) Liu, C. N.; Liu, C. M.; Huang, S. L.; Cheng, W. H. Broadband Single-Mode Cr-Doped Crystalline Core Fiber with Record 11-dB Net Gain by Precise Laser-Heated Pedestal Growth and Tetrahedral Chromium Optimization. J. Light. Technol. 2021, 39, 3531–3538. (34) Liu, C. N.; Li, J. W.; Yang, C. C.; Tu, C.; Cheng, W. H. Higher-Gain Broadband Single-Mode Chromium-Doped Fiber Amplifiers by Tetrahedral-Chromium Enhancement. In Optical Fiber Communication Conference, 2019; Optica Publishing Group: Th2A. 14. (35) Chang, K. C.; Cheng, W. C.; Liu, C. N.; Tu, C.; Shih, T. T.; Huang, S. L.; Cheng, W. H. Record Gain of 300 nm Broadband Single-Model Cr-Doped Crystalline Fiber Employing Novel Growth of Smaller Core. In Next-Generation Optical Communication: Components, Sub-Systems, and Systems XI, 2022, 12028, 112–115. (36) Chang, K. C.; Tsai, C. L.; Cheng, W. C.; Liu, C. N.; Shih, T. T.; Huang, S. L.; Tu, C. W.; Cheng, W. H. Record Gain of 18-dB for Broadband Single-Model Cr-Doped Crystalline Core Fiber by Small Core Diameter. In Opt. Fiber Commun. Conf. Exhib. 2023, 1–3. (37) Round, H. J. A note on carborundum. In Semiconductor devices: pioneering papers, World Scientific, 1991; pp 879–879. (38) Bergh, A. A.; Dean, P. J. Light-emitting diodes. Proc. IEEE 1972, 60, 156–223. (39) Nakamura, S. Nobel Lecture: Background Story of the Invention of Efficient Blue InGaN Light Emitting Diodes. Rev. Mod. Phys. 2015, 87, 1139–1151. (40) Cho, J.; Park, J. H.; Kim, J. K.; Schubert, E. F. White Light‐Emitting Diodes: History, Progress, and Future. Laser Photonics Rev. 2017, 11, 1600147. (41) Ma, Y.; Hu, R.; Yu, X.; Shu, W.; Luo, X. A Modified Bidirectional Thermal Resistance Model for Junction and Phosphor Temperature Estimation in Phosphor-Converted Light-Emitting Diodes. Int. J. Heat Mass Transf. 2017, 106, 1–6. (42) Shionoya, S.; Yen, W. M.; Yamamoto, H. Phosphor handbook; CRC press, 2018. (43) Kinsman, K. M.; McKittrick, J.; Sluzky, E.; Hesse, K. Phase Development and Luminescence in Chromium‐Doped Yttrium Aluminum Garnet (YAG:Cr) Phosphors. J. Am. Ceram. Soc. 1994, 77, 2866–2872. (44) Shi, H.; Zhu, C.; Huang, J.; Chen, J.; Chen, D.; Wang, W.; Wang, F.; Cao, Y.; Yuan, X. Luminescence Properties of YAG:Ce,Gd Phosphors Synthesized under Vacuum Condition and their White LED Performances. Opt. Mater. Express 2014, 4, 649–655. (45) Pan, Y.; Wu, M.; Su, Q. Tailored Photoluminescence of YAG:Ce Phosphor through Various Methods. J. Phys. Chem. Sol. 2004, 65, 845–850. (46) Zhang, Y.; Li, X.; Lai, Z.; Zhang, R.; Lewis, E.; Azmi, A. I.; Gao, Z.; Lu, X.; Chu, Y.; Liu, Y. Largest Enhancement of Broadband Near-Infrared Emission of Ni2+ in Transparent Nanoglass Ceramics: Using Nd3+ as a Sensitizer and Yb3+ as an Energy-Transfer Bridge. J. Phys. Chem. C 2019, 123, 10021–10027. (47) Yu, G.; Wang, W.; Jiang, C. Linear Tunable NIR Emission via Selective Doping of Ni2+ Ion into ZnX2O4 (X= Al, Ga, Cr) Spinel Matrix. Ceram. Int. 2021, 47, 17678–17683. (48) Yang, Z.; Zhao, Y.; Zhou, Y.; Qiao, J.; Chuang, Y. C.; Molokeev, M. S.; Xia, Z. Giant Red‐Shifted Emission in (Sr,Ba)Y2O4:Eu2+ Phosphor toward Broadband Near‐Infrared Luminescence. Adv. Func. Mater. 2022, 32, 2103927. (49) Jaffé, H. H.; Miller, A. L. The Fates of Electronic Excitation Energy. J. Chem. Educ. 1966, 43, 469. (50) Jablonski, A. Efficiency of Anti-Stokes Fluorescence in Dyes. Nature 1933, 131, 839–840. (51) Kasha, M. Characterization of Electronic Transitions in Complex Molecules. Discuss. Faraday Soc. 1950, 9, 14–19. (52) Lax, M. The Franck‐Condon Principle and its Application to Crystals. J. Chem. Phys. 1952, 20, 1752–1760. (53) Gupta, V. Principles and applications of quantum chemistry; Academic Press, 2015. (54) Coolidge, A. S.; James, H. M.; Present, R. D. A Study of the Franck‐Condon Principle. J. Chem. Phys. 1936, 4, 193–211. (55) Guilbault, G. G. Practical fluorescence; CRC Press, 2020. (56) Tchougréeff, A. L.; Dronskowski, R. Nephelauxetic Effect Revisited. Int. J. Quantum Chem. 2009, 109, 2606–2621. (57) Benz, F.; Gonser, A.; Völker, R.; Walther, T.; Mosebach, J. T.; Schwanda, B.; Mayer, N.; Richter, G.; Strunk, H. P. Concentration Quenching of the Luminescence from Trivalent Thulium, Terbium, and Erbium Ions Embedded in an AlN Matrix. J. Lumin. 2014, 145, 855–858. (58) Som, S.; Kunti, A.; Kumar, V.; Kumar, V.; Dutta, S.; Chowdhury, M.; Sharma, S.; Terblans, J.; Swart, H. Defect Correlated Fluorescent Quenching and Electron Phonon Coupling in the Spectral Transition of Eu3+ in CaTiO3 for Red Emission in Display Application. J. Appl. Phys. 2014, 115, 193101. (59) Lin, Y. C.; Bettinelli, M.; Karlsson, M. Unraveling the Mechanisms of Thermal Quenching of Luminescence in Ce3+-Doped Garnet Phosphors. Chem. Mater. 2019, 31, 3851–3862. (60) Amachraa, M.; Wang, Z.; Chen, C.; Hariyani, S.; Tang, H.; Brgoch, J.; Ong, S. P. Predicting Thermal Quenching in Inorganic Phosphors. Chem. Mater. 2020, 32, 6256–6265. (61) Rajendran, V.; Chang, H.; Liu, R. S. Recent Progress on Broadband Near-Infrared Phosphors-Converted Light Emitting Diodes for Future Miniature Spectrometers. Opt. Mater.: X 2019, 1, 100011. (62) Yeerlan, M.; Zhang, M.; Dai, P. Near‐Unity Quantum Efficiency Wavelength‐Tunable NIR Phosphors (Sr2−yCay) Sc1−xSbO6:xFe3+ with Excellent Thermal Stability. J. Am. Ceram. Soc. 2024, 107, 5588–5597. (63) Xiao, Y.; Xiong, P.; Zhang, S.; Chen, K.; Tian, S.; Sun, Y.; Shao, P.; Qin, K.; Brik, M. G.; Ye, S. Deep-Red to NIR Mechanoluminescence in Centrosymmetric Perovskite MgGeO3:Mn2+ for Potential Dynamic Signature Anti-Counterfeiting. Chem. Eng. J. 2023, 453, 139671. (64) Fang, M. H.; De Guzman, G. N. A.; Bao, Z.; Majewska, N.; Mahlik, S.; Grinberg, M.; Leniec, G.; Kaczmarek, S. M.; Yang, C. W.; Lu, K. M.; Sheu, H. S.; Hu, S. F.; Liu, R. S. Ultra-High-Efficiency Near-Infrared Ga2O3:Cr3+ Phosphor and Controlling of Phytochrome. J. Mater. Chem. C 2020, 8, 11013–11017. (65) Kowalska, K.; Kuwik, M.; Pisarska, J.; Pisarski, W. A. Near-IR Luminescence of Rare-Earth Ions (Er3+, Pr3+, Ho3+, Tm3+) in Titanate–Germanate Glasses under Excitation of Yb3+. Mater. 2022, 15, 3660. (66) AitMellal, O.; Oufni, L.; Messous, M.; Tahri, M.; Neatu, Ş.; Florea, M.; Neatu, F.; Secu, M. Structural Properties and Near-Infrared Light from Ce3+/Nd3+-Co-Doped LaPO4 Nanophosphors for Solar Cell Applications. J. Mater. Sci.: Mater. Electron. 2022, 33, 4197–4210. (67) Qiao, J.; Zhang, S.; Zhou, X.; Chen, W.; Gautier, R.; Xia, Z. Near‐Infrared Light‐Emitting Diodes Utilizing a Europium‐Activated Calcium Oxide Phosphor with External Quantum Efficiency of up to 54.7%. Adv. Mater. 2022, 34, 2201887. (68) Hayashi, D. Applications of Infrared Phosphors in Medical Diagnostics (invited talk at Global Phosphor Summit 2017); 2017. DOI: 10.13140/RG.2.2.31443.99364. (69) Griffith, J.; Orgel, L. Ligand-Field Theory. Chem. Soc. Rev. 1957, 11, 381–393. (70) Chen, L.; Zhong, J.; Zeng, L.; Zhao, W. Achieving an Ultra-High Absorption Efficiency in a Monoclinic LiAlP2O7:Cr3+ Near-Infrared Phosphor. J. Lumin. 2023, 263, 120139. (71) Zhu, F.; Gao, Y.; Zhao, C.; Pi, J.; Qiu, J. Achieving Broadband NIR-I to NIR-II Emission in an All-Inorganic Halide Double-Perovskite Cs2NaYCl6:Cr3+ Phosphor for Night Vision Imaging. ACS Appl. Mater. Interfaces 2023, 15, 39550–39558. (72) Xie, J.; Tian, J.; Jiang, L.; Cao, M.; Zhuang, W. An Efficient and Thermally Stable Cr3+-Activated Y2GdSc2Al2GaO12 Garnet Phosphor for NIR Spectroscopy Applications. Dalton Trans. 2023, 52, 15950–15957. (73) Wu, Z.; Xiang, J.; Chen, C.; Li, Z.; Zhou, X.; Jin, Y.; Guo, C. Multi-Site Occupancy High-Efficient Mg2LaTaO6:Cr3+ Phosphor for Application in Broadband NIR Pc-LEDs. Ceram. Int. 2024, 50, 5242–5249. (74) Lin, Q.; Li, Y.; Wu, X.; Peng, J.; You, W.; Huang, D.; Ye, X. Blueshift and Photoluminescence Enhancement in Broadband Near‐Infrared Emitting Phosphor NaSr2(Al/Ga)Ge5O14:Cr3+ Dependence on the Sc/In Substitution. Adv. Opt. Mater. 2024, 12, 2302687. (75) Fang, M. H.; Chen, K. C.; Majewska, N.; Leśniewski, T.; Mahlik, S.; Leniec, G.; Kaczmarek, S. M.; Yang, C. W.; Lu, K. M.; Sheu, H. S.; Liu, R. S. Hidden Structural Evolution and Bond Valence Control in Near-Infrared Phosphors for Light-Emitting Diodes. ACS Energy Lett. 2021, 6, 109–114. (76) Chen, K. C.; Fang, M. H.; Huang, W. T.; Kamiński, M.; Majewska, N.; Leśniewski, T.; Mahlik, S.; Leniec, G.; Kaczmarek, S. M.; Yang, C. W.; Lu, K. M.; Sheu, H. S.; Liu, R. S. Chemical and Mechanical Pressure-Induced Photoluminescence Tuning via Structural Evolution and Hydrostatic Pressure. Chem. Mater. 2021, 33, 3832–3840. (77) Chen, X.; Wu, Y.; Lu, Z.; Wei, N.; Qi, J.; Shi, Y.; Hua, T.; Zeng, Q.; Guo, W.; Lu, T. Assessment of Conversion Efficiency of Cr4+ Ions by Aliovalent Cation Additives in Cr:YAG Ceramic for Edge Cladding. J. Am. Ceram. Soc. 2018, 101, 5098–5109. (78) Zhou, H.; Cai, H.; Zhao, J.; Song, Z.; Liu, Q. Crystallographic Control for Cr4+ Activators toward Efficient NIR-II Luminescence. Inorg. Chem. Front. 2022, 9, 1912–1919. (79) Zhang, Q.; Liu, D.; Wang, Z.; Dang, P.; Lian, H.; Li, G.; Lin, J. LaMgGa11O19:Cr3+,Ni2+ as Blue‐Light Excitable Near‐Infrared Luminescent Materials with Ultra‐Wide Emission and High External Quantum Efficiency. Adv. Opt. Mater. 2023, 11, 2202478. (80) De Guzman, G. N. A.; Fang, M. H.; Liang, C. H.; Bao, Z.; Hu, S. F.; Liu, R. S. Near-Infrared Phosphors and their Full Potential: a Review on Practical Applications and Future Perspectives. J. Lumin. 2020, 219, 116944. (81) Tanabe, Y.; Sugano, S. On the Absorption Spectra of Complex Ions II. J. Phys. Soc. Jpn. 1954, 9, 766–779. (82) Racah, G. Theory of Complex Spectra. II. Phys. Rev. 1942, 62, 438. (83) Tanabe, Y.; Sugano, S. On the Absorption Spectra of Complex Ions, III the Calculation of the Crystalline Field Strength. J. Phys. Soc. Jpn. 1956, 11, 864–877. (84) Wang, Y.; Liu, G.; Xia, Z. NIR‐II Luminescence in Cr4+ Activated CaYGaO4 toward Non‐Invasive Temperature Sensing and Composition Detection. Laser Photonics Rev. 2024, 18, 2300717. (85) Wang, C.; Zhang, Y.; Han, X.; Hu, D.; He, D.; Wang, X.; Jiao, H. Energy Transfer Enhanced Broadband Near-Infrared Phosphors: Cr3+/Ni2+ Activated ZnGa2O4–Zn2SnO4 Solid Solutions for the Second NIR Window Imaging. J. Mater. Chem. C 2021, 9, 4583–4590. (86) Zhang, X.; Huang, Y.; Gong, M. Dual-emitting Ce3+,Tb3+ Co-Doped LaOBr Phosphor: Luminescence, Energy Transfer and Ratiometric Temperature Sensing. Chem. Eng. J. 2017, 307, 291–299. (87) Yang, W. J.; Luo, L.; Chen, T. M.; Wang, N. S. Luminescence and Energy Transfer of Eu-and Mn-Coactivated CaAl2Si2O8 as a Potential Phosphor for White-Light UVLED. Chem. Mater. 2005, 17, 3883–3888. (88) Li, K.; Shang, M.; Lian, H.; Lin, J. Recent Development in Phosphors with Different Emitting Colors via Energy Transfer. J. Mater. Chem. C 2016, 4, 5507–5530. (89) Wang, L. L.; Wang, Q. L.; Xu, X. Y.; Li, J. Z.; Gao, L. B.; Kang, W. K.; Shi, J. S.; Wang, J. Energy Transfer from Bi3+ to Eu3+ Triggers Exceptional Long-Wavelength Excitation Band in ZnWO4:Bi3+,Eu3+ Phosphors. J. Mater. Chem. C 2013, 1, 8033–8040. (90) Miao, S.; Liang, Y.; Zhang, Y.; Chen, D.; Wang, X. J. Blue LED-Pumped Broadband Short-Wave Infrared Emitter Based on LiMgPO4:Cr3+,Ni2+ Phosphor. Adv. Mater. Technol. 2022, 7, 2200320. (91) Zhuo, Y.; Wu, F.; Niu, Y.; Wang, Y.; Zhang, Q.; Teng, Y.; Dong, H.; Mu, Z. Super Broadband Emission across NIR‐I and NIR‐II under Blue Light Excitation of Cr3+,Ni2+ Co‐Doped Sr2GaTaO6 Phosphor Achieved by Two‐Site Occupation and Effective Energy Transfer. Laser Photonics Rev. 2024, 18, 2400105. (92) Chang, C. Y.; Huang, M. H.; Chen, K. C.; Huang, W. T.; Kamiński, M.; Majewska, N.; Klimczuk, T.; Chen, J. H.; Cherng, D. H.; Lu, K. M.; Pang, W. K.; Peterson, V. K.; Mahlik, S.; Leniec, G.; Liu, R. S. Ultrahigh Quantum Efficiency Near-Infrared-II Emission Achieved by Cr3+ Clusters to Ni2+ Energy Transfer. Chem. Mater. 2024, 36, 3941–3948. (93) Nair, G. B.; Swart, H.; Dhoble, S. A Review on the Advancements in Phosphor-Converted Light Emitting Diodes (pc-LEDs): Phosphor Synthesis, Device Fabrication and Characterization. Prog. Mater. Sci. 2020, 109, 100622. (94) Pan, Y.; Wu, M.; Su, Q. Comparative Investigation on Synthesis and Photoluminescence of YAG:Ce Phosphor. Mater. Sci. Eng. B 2004, 106, 251–256. (95) Wang, T.; Zhang, J.; Zhang, N.; Wang, S.; Wu, B.; Jia, Z.; Tao, X. The Characteristics of High-Quality Yb:YAG Single Crystal Fibers Grown by a LHPG Method and the Effects of their Discoloration. RSC Adv. 2019, 9, 22567−22575. (96) Pan, F.; Zhou, M.; Zhang, J.; Zhang, X.; Wang, J.; Huang, L.; Kuang, X.; Wu, M. Double Substitution Induced Tunable Luminescent Properties of Ca3−xYxSc2−xMgxSi3O12:Ce3+ Phosphors for White LEDs. J. Mater. Chem. C 2016, 4, 5671−5678. (97) Shannon, R. D. Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides. Acta Cryst. A 1976, 32, 751−767. (98) Rajendran, V.; Chang, C. Y.; Huang, M. H.; Chen, K. C.; Huang, W. T.; Kamiński, M.; Lesniewski, T.; Mahlik, S.; Leniec, G.; Lu, K. M.; Wei, D. H.; Chang, H.; Liu, R. S. Chromium Cluster Luminescence: Advancing Near‐Infrared Light‐Emitting Diode Design for Next‐Generation Broadband Compact Light Sources. Adv. Opt. Mater. 2024, 12, 2302645. (99) Wei, T.; Tian, Y.; Chen, F.; Cai, M.; Zhang, J.; Jing, X.; Wang, F.; Zhang, Q.; Xu, S. Mid-Infrared Fluorescence, Energy Transfer Process and Rate Equation Analysis in Er3+ Doped Germanate Glass. Sci. Rep. 2014, 4, 6060. (100) Eckert, M. Max von Laue and the Discovery of X‐Ray Diffraction in 1912. WILEY‐VCH Verlag Berlin: 2012; Vol. 524, pp A83−A85. (101) Bragg, W. H.; Bragg, W. L. The Reflection of X-Rays by Crystals. Proc. R. Soc. Lond. A 1913, 88, 428−438. (102) Pecharsky, V. K.; Zavalij, P. Y. Properties, Sources, and Detection of Radiation. Fundamentals of Powder Diffraction and Structural Characterization of Materials, Pecharsky, V. K., Zavalij, P. Y. Eds.; Springer US, 2009; pp 107–132. (103) Balerna, A.; Mobilio, S. Introduction to Synchrotron Radiation. In Synchrotron Radiation: Basics, Methods and Applications, Springer, 2014; pp 3−28. (104) Mobilio, S.; Boscherini, F.; Meneghini, C. Synchrotron Radiation; Springer, 2016. (105) Hastings, J.; Thomlinson, W.; Cox, D. Synchrotron X-Ray Powder Diffraction. J. Appl. Crystallogr. 1984, 17, 85–95. (106) Le Bail, A. Whole Powder Pattern Decomposition Methods and Applications: A Retrospection. Powder diffr. 2005, 20, 316−326. (107) Rietveld, H. M. A Profile Refinement Method for Nuclear and Magnetic Structures. J. Appl. Crystallogr. 1969, 2, 65–71. (108) McCusker, L.; Von Dreele, R.; Cox, D.; Louër, D.; Scardi, P. Rietveld Refinement Guidelines. J. Appl. Crystallogr. 1999, 32, 36–50. (109) Toby, B. H. R Factors in Rietveld Analysis: How Good is Good Enough? Powder Diffr. 2006, 21, 67–70. (110) Hummer, A. A.; Rompel, A. X-Ray Absorption Spectroscopy: A Tool to Investigate the Local Structure of Metal-Based Anticancer Compounds in Vivo. In Advances in Protein Chemistry and Structural Biology, Christov, C. Z. Ed.; Vol. 93; Academic Press, 2013; pp 257–305. (111) Yamamoto, T. Assignment of Pre‐Edge Peaks in K‐Edge X‐Ray Absorption Spectra of 3d Transition Metal Compounds: Electric Dipole or Quadrupole? X-Ray Spectrom. 2008, 37, 572−584. (112) Koningsberger, D. C.; Prins, R. X-Ray Absorption: Principles, Applications, Techniques of EXAFS, SEXAFS and XANES; 1987. (113) Ravel, B.; Newville, M. ATHENA, ARTEMIS, HEPHAESTUS: Data Analysis for X-Ray Absorption Spectroscopy Using IFEFFIT. J. Synchrotron Rad. 2005, 12, 537–541. (114) Munir, N.; Hanif, M.; Dias, D. A.; Abideen, Z. The Role of Halophytic Nanoparticles towards the Remediation of Degraded and Saline Agricultural Lands. Environ. Sci. Pollut. Res. 2021, 28, 60383−60405. (115) Leniec, G. Electron Paramagnetic Resonance: A Technique to Locate the Nearest Environment of Chromium Luminescent Centers. ACS Appl. Opt. Mater. 2023, 1, 1114−1121. (116) De Mello, J. C.; Wittmann, H. F.; Friend, R. H. An Improved Experimental Determination of External Photoluminescence Quantum Efficiency. Adv. Mater. 1997, 9, 230−232. (117) Kubicki, A. A.; Bojarski, P.; Grinberg, M.; Sadownik, M.; Kukliński, B. Time-Resolved Streak Camera System with Solid State Laser and Optical Parametric Generator in Different Spectroscopic Applications. Opt. Commun. 2006, 263, 275−280. (118) Chang, C. Y.; Majewska, N.; Chen, K. C.; Huang, W. T.; Lesniewski, T.; Leniec, G.; Kaczmarek, S. M.; Pang, W. K.; Peterson, V. K.; Cherng, D. H.; Lu, K. M.; Mahlik, S.; Liu, R. S. Broadening Phosphor-Converted Light-Emitting Diode Emission: Controlling Disorder. Chem. Mater. 2022, 34, 10190−10199. (119) Majewska, N.; Muñoz, A.; Liu, R. S.; Mahlik, S. Influence of Chemical and Mechanical Pressure on the Luminescence Properties of Near-Infrared Phosphors. Chem. Mater. 2023, 35, 4680−4690. (120) Barzowska, J.; Lesniewski, T.; Mahlik, S.; Seo, H. J.; Grinberg, M. KMgF3:Eu2+ as a New Fluorescence-Based Pressure Sensor for Diamond Anvil Cell Experiments. Opt. Mater. 2018, 84, 99−102. (121) Shen, G.; Mao, H. K. High-Pressure Studies with X-Rays Using Diamond Anvil Cells. Rep. Prog. Phys. 2016, 80, 016101. (122) Mao, H.; Xu, J. A.; Bell, P. Calibration of the Ruby Pressure Gauge to 800 kbar under Quasi‐Hydrostatic Conditions. Res. Solid Earth 1986, 91, 4673−4676. (123) Llovet, X.; Moy, A.; Pinard, P. T.; Fournelle, J. H. Electron Probe Microanalysis: A Review of Recent Developments and Applications in Materials Science and Engineering. Prog. Mater. Sci. 2021, 116, 100673. (124) Hsiao, Y. H.; Chen, K. C.; Chien, C. L.; Huang, W. T.; Majewska, N.; Kamiński, M.; Mahlik, S.; Leniec, G.; Mijowska, E.; Huang, S. L.; Liu, R. S. Broadband Near‐Infrared Cr4+‐Doped Garnet Phosphors through Divalent Calcium Charge Compensation for Advanced Crystal Fiber Amplifiers. Adv. Opt. Mater. 2024, 12, 2401543. (125) Yuan, S.; Mu, Z.; Lou, L.; Zhao, S.; Zhu, D.; Wu, F. Broadband NIR-II Phosphors with Cr4+ Single Activated Centers Based on Special Crystal Structure for Nondestructive Analysis. Ceram. Int. 2022, 48, 26884–26893. (126) Wu, Y.; Zhao, X.; Zhang, Z.; Xiang, J.; Suo, H.; Guo, C. Dual-Mode Dichromatic SrBi4Ti4O15:Er3+ Emitting Phosphor for Anti-Counterfeiting Application. Ceram. Int. 2021, 47, 15067–15072. (127) Liu, B. M.; Guo, X. X.; Huang, L.; Zhou, R. F.; Zou, R.; Ma, C. G.; Wang, J. A Super‐Broadband NIR Dual‐Emitting Mg2SnO4:Cr3+,Ni2+ Phosphor for Ratiometric Phosphor‐Converted NIR Light Source Applications. Adv. Mater. Technol. 2023, 8, 2201181. (128) Gasca, L. From O to L: The Future of Optical-Wavelength Bands. Broadband Prop. 2008, 6, 83–85. (129) Sugimoto, A.; Nobe, Y.; Yamagishi, K. Crystal Growth and Optical Characterization of Cr,Ca:Y3Al5O12. J. Cryst. Growth 1994, 140, 349–354. (130) Piotrowski, W.; Kinzhybalo, V.; Marciniak, L. Revisiting Y3Al5−xGaxO12 Solid Solutions Doped with Chromium Ions: Effect of Local Symmetry on Thermal Quenching of Cr3+ and Cr4+ Ions. ECS J. Solid State Sci. Technol. 2023, 12, 066003. (131) Bezotosnyi, V.; Kanaev, A. Y.; Kopylov, Y. L.; Koromyslov, A.; Lopukhin, K.; Tupitsyn, I.; Cheshev, E. Influence of CaO/MgO Ratio on Cr3+ to Cr4+ Conversion Efficiency in YAG:Cr4+ Ceramic Saturable Absorbers. Opt. Mater. 2020, 100, 109671. (132) Chaika, M.; Tomala, R.; Strek, W.; Hreniak, D.; Dluzewski, P.; Morawiec, K.; Mateychenko, P.; Fedorov, A.; Doroshenko, A.; Parkhomenko, S. Kinetics of Cr3+ to Cr4+ Ion Valence Transformations and Intra-Lattice Cation Exchange of Cr4+ in Cr,Ca: YAG Ceramics Used as Laser Gain and Passive Q-Switching Media. J. Chem. Phys. 2019, 151, 134708. (133) Coelho, A. A. Topas and Topas-Academic: An Optimization Program Integrating Computer Algebra and Crystallographic Objects Written in C++. J. Appl. Crystallogr. 2018, 51, 210–218. (134) Momma, K.; Izumi, F. Vesta 3 for Three-Dimensional Visualization of Crystal, Volumetric and Morphology Data. J. Appl. Crystallogr. 2011, 44, 1272–1276. (135) Fukaya, S.; Adachi, K.; Obara, M.; Kumagai, H. The Growth of Cr4+:YAG and Cr4+:GGG Thin Films by Pulsed Laser Deposition. Opt. Commun. 2001, 187, 373–377. (136) Guo, W.; Huang, J.; Lin, Y.; Huang, Q.; Fei, B.; Chen, J.; Wang, W.; Wang, F.; Ma, C.; Yuan, X. A Low Viscosity Slurry System for Fabricating Chromium Doped Yttrium Aluminum Garnet (Cr:YAG) Transparent Ceramics. J. Eur. Ceram. Soc. 2015, 35, 3873–3878. (137) Senden, T.; van Dijk-Moes, R. J.; Meijerink, A. Quenching of the Red Mn4+ Luminescence in Mn4+-Doped Fluoride LED Phosphors. Light Sci. Appl. 2018, 7, 8. (138) Majewska, N.; Tsai, Y. T.; Zeng, X. Y.; Fang, M. H.; Mahlik, S. Advancing Near-Infrared Light Sources: Enhancing Chromium Emission through Cation Substitution in Ultra-Broadband Near-Infrared Phosphors. Chem. Mater. 2023, 35, 10228–10237. (139) Tsai, C. N.; Lin, Y. S.; Huang, K. Y.; Lai, C. C.; Huang, S. L. Enhancement of Cr4+ Concentration in Y3Al5O12 Crystal Fiber by Pregrowth Perimeter Deposition. Jpn. J. Appl. Phys. 2008, 47, 6369. (140) Chen, K. C.; Hsiao, Y. H.; Chien, C. L.; Huang, W. T.; Majewska, N.; Mazurek, M. R.; Leśniewski, T.; Mahlik, S.; Leniec, G.; Cherng, D. H.; Lu, K. M.; Huang, S. L.; Liu, R. S. Bifunctional Energy Efficient (Ga,Ge)2O3:Cr3+,Ni2+ Phosphor for Shortwave Infrared Optical Applications. ACS Energy Lett. 2025, 10, 3050–3057. (141) Miao, S.; Liang, Y.; Shi, R.; Wang, W.; Li, Y.; Wang, X. J. Broadband Short-Wave Infrared-Emitting MgGa2O4:Cr3+,Ni2+ Phosphor with Near-Unity Internal Quantum Efficiency and High Thermal Stability for Light-Emitting Diode Applications. ACS Appl. Mater. Interfaces 2023, 15, 32580–32588. (142) Zhang, T.; Zhang, X.; Mao, Q.; Zhao, F.; Yang, H.; Li, X.; Zhong, J. NIR-I Excitable and NIR-II Emissive Cr,Yb, Co-Doped Cs2NaScCl6 Double Perovskite Halides for Biodetection. ACS Appl. Electron. Mater. 2025, 7, 2610–2618. (143) Chen, Z.; Xiang, Y.; Qin, X.; Lei, Z.; Liao, H.; Liu, S.; Wang, J.; Zheng, K.; Hou, D.; Zhou, L. Revealing Energy Transfer Mechanisms and Accelerating Intelligent Detection: Cr3+ and Ni2+ Co-Doped Lu2CaMg2Si3O12 Phosphors for NIR Applications. J. of Mater. Chem. C 2025, DOI: 10.1039/D5TC00476D. (144) Mombourquette, M.; Weil, J.; McGavin, D. EPR-NMR User’s Manual. Department of Chemistry, University of Saskatchewan, Saskatoon, SK, Canada 1999. (145) Merrill, L.; Bassett, W. A. Miniature Diamond Anvil Pressure Cell for Single Crystal X‐Ray Diffraction Studies. Rev. Sci. Instrum. 1974, 45, 290–294. (146) Walsh, C.; Donegan, J.; Glynn, T.; Morgan, G.; Imbusch, G.; Remeika, J. Luminescence from β-Ga2O3:Cr3+. J. Lumin. 1988, 40, 103–104. (147) Vasyltsiv, V.; Luchechko, A.; Zhydachevskyy, Y.; Kostyk, L.; Lys, R.; Slobodzyan, D.; Jakieła, R.; Pavlyk, B.; Suchocki, A. Correlation between Electrical Conductivity and Luminescence Properties in β-Ga2O3:Cr3+ and β-Ga2O3:Cr,Mg Single Crystals. J. Vac. Sci. Technol. A 2021, 39, 033201. (148) Lu, Y. Y.; Liu, F.; Gu, Z.; Pan, Z. Long-Lasting Near-Infrared Persistent Luminescence from β-Ga2O3:Cr3+ Nanowire Assemblies. J. Lumin. 2011, 131, 2784–2787. (149) Fang, M. H.; Li, T. Y.; Huang, W. T.; Cheng, C. L.; Bao, Z.; Majewska, N.; Mahlik, S.; Yang, C. W.; Lu, K. M.; Leniec, G. Kaczmarek, S. M.; Sheu, H. S.; Liu, R. S. Surface-Protected High-Efficiency Nanophosphors via Space-Limited Ship-in-a-Bottle Synthesis for Broadband Near-Infrared Mini-Light-Emitting Diodes. ACS Energy Lett. 2021, 6, 659–664. (150) Grinberg, M. 2E→ 4A2 Fluorescence of Cr3+ in High and Intermediate Field Garnets. J. Lumin. 1993, 54, 369–382. (151) He, H.; Orlando, R.; Blanco, M. A.; Pandey, R.; Amzallag, E.; Baraille, I.; Rérat, M. First-Principles Study of the Structural, Electronic, and Optical Properties of Ga2O3 in Its Monoclinic and Hexagonal Phases. Phys. Rev. B 2006, 74, 195123. (152) Lipinska-Kalita, K.; Chen, B.; Kruger, M.; Ohki, Y.; Murowchick, J.; Gogol, E. High-Pressure X-Ray Diffraction Studies of the Nanostructured Transparent Vitroceramic Medium K2O−SiO2−Ga2O3. Phys. Rev. B 2003, 68, 035209. (153) Chen, K. C.; Huang, M. H.; Huang, W. T.; Kamiński, M.; Cherng, D. H.; Lu, K. M.; Leniec, G.; Mahlik, S.; Liu, R. S. Tuning Shortwave Infrared Emission Wavelengths by Chemical Pressure in Cr3+, Ni2+ Co‐Doped Spinel Phosphors. Adv. Opt. Mater. 2025, 2500393, DOI: 10.1002/adom.202500393. (154) Pradhan, S.; Dalmases, M.; Konstantatos, G. Solid‐State Thin‐Film Broadband Short‐Wave Infrared Light Emitters. Adv. Mater. 2020, 32, 2003830. (155) Pulli, T.; Dönsberg, T.; Poikonen, T.; Manoocheri, F.; Kärhä, P.; Ikonen, E. Advantages of White LED Lamps and New Detector Technology in Photometry. Light Sci. Appl. 2015, 4, e332. (156) Xie, Y.; Liu, W.; Deng, W.; Wu, H.; Wang, W.; Si, Y.; Zhan, X.; Gao, C.; Chen, X. K.; Wu, H. Bright Short-Wavelength Infrared Organic Light-Emitting Devices. Nat. Photon. 2022, 16, 752–761. (157) Cai, H.; Chen, H.; Zhou, H.; Zhao, J.; Song, Z.; Liu, Q. Controlling Cr3+/Cr4+ Concentration in Single-Phase Host toward Tailored Super-Broad Near-Infrared Luminescence for Multifunctional Applications. Mater. Today Chem. 2021, 22, 100555. (158) Jia, Q.; Yao, L.; Yu, S.; Gong, S.; Jiang, J.; Shao, Q. Efficient and Ultra-Broadband Cr3+/Ni2+ Co-Doped Phosphors for Light-Emitting Diodes with Spectral Output over NIR-I and NIR-II Regions. J. Mater. Chem. C 2023, 11, 11046–11054. (159) Rajendran, V.; Fang, M. H.; Huang, W. T.; Majewska, N.; Lesniewski, T.; Mahlik, S.; Leniec, G.; Kaczmarek, S. M.; Pang, W. K.; Peterson, V. K.; Lu, K. M.; Chang, H.; Liu, R. S. Chromium Ion Pair Luminescence: A Strategy in Broadband Near-Infrared Light-Emitting Diode Design. J. Am. Chem. Soc. 2021, 143, 19058–19066. (160) Derkosch, J.; Mikenda, W.; Preisinger, A. N-Lines and Chromium-Pairs in the Luminescence Spectra of the Spinels ZnAl2O4:Cr3+ and MgAl2O4:Cr3+. J. Solid State Chem. 1977, 22, 127–133. (161) Vink, A. P.; de Bruin, M. A.; Roke, S.; Peijzel, P. S.; Meijerink, A. Luminescence of Exchange Coupled Pairs of Transition Metal Ions. J. Electrochem. Soc. 2001, 148, E313. (162) Ueda, J.; Minowa, T.; Xu, J.; Tanaka, S.; Nakanishi, T.; Takeda, T.; Tanabe, S. Highly Thermal Stable Broadband Near-Infrared Luminescence in Ni2+-Doped LaAlO3 with Charge Compensator. ACS Appl. Opt. Mater. 2023, 1, 1128–1137. (163) Türker-Kaya, S.; Huck, C. W. A Review of Mid-Infrared and Near-Infrared Imaging: Principles, Concepts and Applications in Plant Tissue Analysis. Mol. 2017, 22, 168. (164) Zhou, Y.; Li, C.; Wang, Y. Crystal‐Field Engineering Control of an Ultraviolet–Visible‐Responsive Near‐Infrared‐Emitting Phosphor and its Applications in Plant Growth, Night Vision, and NIR Spectroscopy Detection. Adv. Opt. Mater. 2022, 10, 2102246. (165) Liu, G.; Chen, W.; Xiong, Z.; Wang, Y.; Zhang, S.; Xia, Z. Laser-Driven Broadband Near-Infrared Light Source with Watt-Level Output. Nat. Photon. 2024, 18, 562–568. (166) Tobin, R.; Halimi, A.; McCarthy, A.; Soan, P. J.; Buller, G. S. Robust Real-Time 3d Imaging of Moving Scenes through Atmospheric Obscurant Using Single-Photon Lidar. Sci. Rep. 2021, 11, 11236. (167) Shi, Y.; Wang, Z.; Peng, J.; Wang, Y.; He, S.; Li, J.; Li, R.; Wei, G.; Yang, Y.; Li, P. Achieving the Ultra-Broadband Near-Infrared La3SnGa5O14:Cr3+ Phosphor via Multiple Lattice Sites Occupation for Biological Nondestructive Detection and Night-Vision Technology. Mater. Today Adv. 2022, 16, 100305. (168) Saeed, A.; Chaudhry, M. R.; Khan, M. U. A.; Saeed, M. A.; Ghfar, A. A.; Yasir, M. N.; Ajmal, H. M. S. Simplifying Vein Detection for Intravenous Procedures: A Comparative Assessment through near‐Infrared Imaging System. Int. J. Imaging Syst. and Technol. 2024, 34, e23068. (169) Xue, Z.; Zeng, S.; Hao, J. Non-Invasive through-Skull Brain Vascular Imaging and Small Tumor Diagnosis Based on NIR-II Emissive Lanthanide Nanoprobes Beyond 1500 Nm. Biomater. 2018, 171, 153–163. (170) Xue, D.; Wang, Y.; Zhang, H. Advances of NIR Light Responsive Materials for Diagnosis and Treatment of Brain Diseases. Adv. Opt. Mater. 2023, 11, 2202888. (171) Feng, Z.; Tang, T.; Wu, T.; Yu, X.; Zhang, Y.; Wang, M.; Zheng, J.; Ying, Y.; Chen, S.; Zhou, J. Perfecting and Extending the Near-Infrared Imaging Window. Light: Sci. Appl. 2021, 10, 197. (172) Youssef, P.; Sheibani, N.; Albert, D. Retinal Light Toxicity. Eye 2011, 25, 1–14. (173) Li, H. H.; Wang, Y. K.; Liao, L. S. Near‐Infrared Luminescent Materials Incorporating Rare Earth/Transition Metal Ions: From Materials to Applications. Adv. Mater. 2024, 36, 2403076. (174) Rao, Y. D.; Sekhar, A. V.; Kumar, V. R.; Kumar, V. R.; Venkatramaiah, N.; Purnachand, N.; Gandhi, Y.; Veeraiah, N. Luminescence Features of Ho3+, Er3+ and Tm3+ Ions in Red Lead Added Non‐Conventional Antimony Oxide Glass System. Lumin. 2024, 39, e4603. (175) Xu, J.; Murata, D.; Katayama, Y.; Ueda, J.; Tanabe, S. Cr3+/Er3+ Co-Doped LaAlO3 Perovskite Phosphor: A Near-Infrared Persistent Luminescence Probe Covering the First and Third Biological Windows. J. Mater. Chem. B 2017, 5, 6385–6393. (176) Gan, W.; Cao, L.; Gu, S.; Lian, H.; Xia, Z.; Wang, J. Broad-Band Sensitization in Cr3+–Er3+ Co-Doped Cs2AgInCl6 Double Perovskites with 1.5 mm near-Infrared Emission. Chem. Mater. 2023, 35, 5291–5299. (177) Antoniak, M. A.; Zelewski, S. J.; Oliva, R.; Zak, A.; Kudrawiec, R.; Nyk, M. Combined Temperature and Pressure Sensing Using Luminescent NaBiF4:Yb,Er Nanoparticles. ACS Appl. Nano Mater. 2020, 3, 4209–4217. (178) Tikhomirov, V.; Rodríguez, V.; Méndez-Ramos, J.; Del-Castillo, J.; Kirilenko, D.; Van Tendeloo, G.; Moshchalkov, V. Optimizing Er/Yb Ratio and Content in Er–Yb Co-Doped Glass-Ceramics for Enhancement of the Up-and Down-Conversion Luminescence. Sol. Energy Mater. Sol. Cells 2012, 100, 209–215. (179) Sun, J.; Zheng, W.; Huang, P.; Zhang, M.; Zhang, W.; Deng, Z.; Yu, S.; Jin, M.; Chen, X. Efficient Near‐Infrared Luminescence in Lanthanide‐Doped Vacancy‐Ordered Double Perovskite Cs2ZrCl6 Phosphors via Te4+ Sensitization. Angew. Chem. 2022, 134, e202201993. (180) Zhou, J.; Teng, Y.; Liu, X.; Ye, S.; Xu, X.; Ma, Z.; Qiu, J. Intense Infrared Emission of Er3+ in Ca8Mg(SiO4)4Cl2 Phosphor from Energy Transfer of Eu2+ by Broadband Down-Conversion. Opt. Express 2010, 18, 21663–21668. (181) Zhong, C.; Xu, Y.; Wu, X.; Yin, S.; Zhang, X.; Zhou, L.; You, H. Near-Infrared Sr7NaGa(PO4)6:Cr3+,Ln3+(Ln= Nd, Er, and Yb) Phosphors with Different Energy Transfer Paths: Photoluminescence Enhancement and Versatility. J. Mater. Chem. C 2023, 11, 3375–3385. (182) Huang, W.; Peng, H.; Huang, J.; Yang, Y.; Wei, Q.; Ke, B.; Khan, M. S.; Zhao, J.; Zou, B. Efficient Near‐Infrared Emission in Lanthanum Ion Doped Double Perovskite Cs2NaScCl6 via Cr3+ Sensitization under Visible Light Excitation. EcoMat 2024, 6, e12437. (183) Lin, H.; Fang, S.; Lang, T.; Yu, J.; Cheng, H.; Ou, J.; Ye, Z.; Xu, R.; Shui, X.; Qu, H. Unlocking Non-Characteristic Near-Infrared Emission of Rare Earth Ions for Photosynthetic Bacteria Cultivation and Vein Imaging Applications. J. Mater. Chem. C 2024, 12, 15070–15081. (184) MacCraith, B.; Imbusch, G.; Glynn, T.; Remeika, J.; Wood, D. Luminescence from LiGa5O8:Cr3+ with Varying Concentrations of Chromium. J. Lumin. 1981, 24, 269–271. (185) Shih, Y. H.; Chen, Y. L.; Tan, J. H.; Chang, S. H.; Uen, W. Y.; Chen, S. L.; Lin, M. Y.; Chen, Y. C.; Tu, W. C. Low-Power, Large-Area and High-Performance CdSe Quantum Dots/Reduced Graphene Oxide Photodetectors. IEEE Access 2020, 8, 95855–95863. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99139 | - |
| dc.description.abstract | 短波紅外線因其獨特性質,於不同領域具高應用潛力。於固態照明中,螢光粉轉化發光二極體已為現今常見之光源,且短波紅外線螢光粉亦可應用於此類發光二極體,且具可調控放光波段之優勢,為短波紅外線光源提供另一選擇。然短波紅外線螢光粉應用於光纖放大器之應用仍待發展與研究。故於本研究中,將探討短波紅外光螢光粉之調控與其應用於光纖放大器與發光二極體。
本研究中前半(Chapters 3 and 4)部分,著重短波紅外線螢光粉之合成與分析研究,且將最佳條件之螢光粉進行晶體光纖之生長,評估其應用潛力。因現今商用Y3Al5O12:Cr4+晶體光纖無法調整Cr4+之濃度導致其發光強度受限,故其一(Chapter 3)為Y3Al5O12:Cr3+/4+,Ca2+,Mg2+,藉Cr離子濃度調整與二價陽離子摻雜,最佳化Cr4+之放光表現,且所生長之晶體光纖於短波紅外線之放光強度,高於商用Y3Al5O12:Cr4+商用晶體光纖。此外,晶體光纖研究領域之材料多樣性受局限,故其二(Chapter 4)為開發全新晶體光纖系統(Ga,Ge)2O3:Cr3+,Ni2+,藉Cr3+與Ni2+雙活化劑摻雜與Ge4+摻雜進行價數補償。因Cr3+得有效能量轉移至Ni2+,故得獲寬譜帶放射峰於短波紅外線之波段。除生長為晶體光纖之應用,因Cr3+可有效藉藍光激發,故此系列螢光粉亦可應用於短波紅外線光源。 本研究後半(Chapters 5 and 6)部分,致力於短波紅外線尖晶石螢光粉之研究,建立有效調控放光波段之策略與延伸放光波段之策略,亦評估其於短波紅外線光源之應用可行性。其一(Chapter 5)為Cr3+與Ni2+雙活化劑摻雜之MgAl2O4–MgGa2O4–Mg2SnO4固態溶液系統,探討尖晶石系統結構轉換於放光性質之影響,且著重探討Cr3+團簇之消長與Ni2+放光波段之調控。將合成之螢光粉進行發光二極體封裝測試,展現其短波紅外線光源之應用示範。其二(Chapter 6)為MgGa2O4:Cr3+,Er3+,藉Cr3+濃度變化探討Cr3+離子團簇於能量轉移至Er3+之影響,並藉Er3+濃度調整得最佳化之放光強度於短波紅外線波段,搭配局部結構與進階光譜分析揭示Cr3+團簇於Er3+放光強度之影響,得改善稀土元素低吸收導致之螢光強度受限窘境。 綜上所述,本研究致力於推動短波紅外線螢光粉之發展,藉系統性之陽離子取代策略、結構調控及能量轉移機制探討,提升螢光粉之放光表現且建立有效調控放光位置之策略,同時藉螢光粉之配方設計思維改良與開發晶體光纖材料,揭示螢光粉於晶體光纖與發光二極體之應用潛力,為短波紅外線螢光粉領域提供嶄新之設計思路與應用方向。 | zh_TW |
| dc.description.abstract | Shortwave infrared (SWIR) phosphors possess high application potential in various fields due to their unique properties. In solid-state lighting, phosphor-converted light-emitting diodes (pc-LEDs) have become common light sources nowadays. SWIR phosphors can also be applied to such pc-LEDs and have the advantage of tunable emission wavelengths, providing another option for SWIR light sources. However, the application of SWIR phosphors in optical fiber amplifiers still needs development and research. Therefore, this study will explore the emission tuning of SWIR phosphors and their applications in optical fiber amplifiers and pc-LEDs.
The first half (Chapters 3 and 4) of this study focused on the synthesis and analysis of SWIR phosphors, and crystal fibers were grown using the optimized phosphors to evaluate their application potential. The current commercial crystal fiber faces the challenge of low photoluminescence intensity because of the limited Cr4+ content in commercial Y3Al5O12:Cr4+ crystal fiber. Hence, the first part (Chapter 3) is Y3Al5O12:Cr3+/4+,Ca2+,Mg2+, which optimizes Cr4+ photoluminescence performance through Cr ion concentration tuning and divalent cations doping. The grown crystal fiber shows higher SWIR emission intensity than commercial Y3Al5O12:Cr4+ crystal fibers. Besides, the crystal fiber research field also encounters the challenge of low material diversity. Therefore, the second part (Chapter 4) aims to develop a new material system, (Ga,Ge)2O3:Cr3+,Ni2+, using Cr3+ and Ni2+ co-activators doping for obtaining SWIR emission and Ge4+ doping for charge compensation. Due to effective energy transfer from Cr3+ to Ni2+, a broadband emission peak in the SWIR band is obtained. In addition to crystal fiber applications, since Cr3+ can be effectively excited by blue light, this series of phosphors can also be applied to SWIR light sources. The latter half (Chapters 5 and 6) of this study focused on SWIR spinel phosphor research and evaluated their feasibility for SWIR light source applications. The effective emission tuning strategy and emission range extension method were established. The first part (Chapter 5) is the MgAl2O4–MgGa2O4–Mg2SnO4 spinel solid-solution system doped with Cr3+ and Ni2+ activators, investigating the effects of spinel system structural evolution on photoluminescence properties, with emphasis on exploring the relationship between Cr3+ clusters and Ni2+ emission band tuning. Pc-LED packaging tests were conducted on the synthesized phosphors, demonstrating their potential for application as SWIR light sources. The second part (Chapter 6) is MgGa2O4:Cr3+,Er3+, exploring the effect of Cr3+ clusters on Er3+ through Cr3+ concentration tuning and optimizing emission intensity in the SWIR band through Er3+ concentration tuning. Local structure investigation and advanced photoluminescence analysis are also conducted to reveal the effect of Cr3+ clusters on Er3+ emission intensity, which can overcome the issue of low absorption for rare-earth elements. In summary, this study is dedicated to advancing the development of SWIR phosphors through systematic cation substitution strategies, structural regulation, and energy transfer investigations to enhance the luminescence performance of phosphors and establish effective emission position-controlling strategies. Meanwhile, by developing optical crystal fiber through phosphor design concepts, this work reveals the potential of phosphors in optical crystal fibers and pc-LEDs, providing novel design approaches and directions for the application of SWIR phosphors. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-21T16:32:32Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-08-21T16:32:32Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員審定書 I
誌謝 II 摘要 III Abstract V Contents VII Figure Contents XV Table Contents XXIX Abbreviation List XXXII Chapter 1 Introduction 1 1.1 Light 1 1.1.1 Infrared light 2 1.1.2 Photoluminescence 5 1.2 Optical Communication 5 1.2.1 Optical fiber 6 1.2.2 Optical fiber amplifiers 10 1.3 Solid-State Lighting 13 1.3.1 Light-emitting diodes 14 1.3.2 Inorganic phosphor materials 17 1.4 Fundamentals of Photoluminescence in Inorganic Phosphor Materials 18 1.4.1 Jabłoński diagram 19 1.4.2 Franck-Condon principle 22 1.4.3 Electron-phonon coupling and Stokes shift 24 1.4.4 Nephelauxetic effect 26 1.4.5 Quenching effect 27 1.5 Selection Principle of Activators 30 1.5.1 Advantages of 3d transition metal activators 32 1.5.2 Characteristics of the Cr3+ activators 33 1.5.3 Characteristics of the Cr4+ activators 35 1.5.4 Characteristics of the Ni2+ activators 37 1.6 Photoluminescence Tunning Strategies for Phosphors 38 1.6.1 Crystal field theory 39 1.6.2 Tanabe–Sugano diagram 43 1.6.3 Charge compensation 46 1.6.4 Energy transfer 46 1.7 Research Motivation 50 Chapter 2 Experimental Approaches and Techniques 52 2.1 Chemical Reagents 52 2.2 Synthesis of Inorganic Phosphor and Growth of Crystal Fiber 53 2.2.1 Design and synthesis of Y3Al5O12:Cr3+/4+,Ca2+,Mg2+ phosphor 54 2.2.2 Crystal fiber growth of Y3Al5O12:Cr3+/4+,Ca2+,Mg2+ 57 2.2.3 Design and synthesis of (Ga,Ge)2O3:Cr3+Ni2+ phosphor 59 2.2.4 Crystal fiber growth of (Ga,Ge)2O3:Cr3+,Ni2+ 61 2.2.5 Design and synthesis of MgAl2O4–MgGa2O4–Mg2SnO4 solid-solution phosphor 62 2.2.6 Design and synthesis of MgGa2O4:Cr3+,Er3+ phosphor 66 2.3 Instrumental Analysis 68 2.3.1 Structural investigation 69 2.3.1.1 Powder X-ray diffraction 70 2.3.1.2 Synchrotron X-ray diffraction 74 2.3.1.3 Structural refinement 75 2.3.1.4 X-ray absorption spectroscopy 78 2.3.1.5 Transmission electron microscope 83 2.3.1.6 Electron paramagnetic resonance 85 2.3.2 Photoluminescence analysis 88 2.3.2.1 Photoluminescence spectroscopy 88 2.3.2.2 Absolute photoluminescence quantum yield spectrometer 89 2.3.2.3 Time-resolved photoluminescence spectroscopy 91 2.3.2.4 Temperature-dependent photoluminescence spectroscopy 93 2.3.2.5 Pressure-dependent photoluminescence spectroscopy 95 2.3.3 Crystal fiber analysis 96 2.3.3.1 Electron probe microanalysis 97 2.3.3.2 Optical spectrum analysis 98 2.3.3.3 Laser scanning confocal microscopy 99 2.3.4 Phosphor applications 100 2.3.4.1 Phosphor-converted light-emitting diode 101 2.3.4.2 Shortwave infrared camera 102 Chapter 3 High-Concentration Cr4+-Doped Garnet Phosphors Development for Broadband Shortwave Infrared Optical Fiber Amplifiers by Divalent Cations Substitutions 103 3.1 Introduction 103 3.2 Experimental Section 106 3.2.1 Synthesis of Y3−yAl5−xO12:xCr3+/4+,yCa2+ (x = 0.02–0.16, y = 0; x = 0.1, y = 0–0.22) and Y3−y−zAl5−xO12:xCr3+/4+,yCa2+,zMg2+ (x = 0.1, y = 0.16, z = 0.08–0.24; x = 0.1, y = 0.08, z = 0.08; x = 0.1 y = 0, z = 0.16, 0.24) phosphor 106 3.2.2 Crystal fiber growth of Y3−yAl5−xO12:xCr3+/4+,yCa2+ (x = 0.1, y = 0, 0.16) and Y3−y−zAl5−xO12:xCr3+/4+,yCa2+,zMg2+ (x = 0.1, y = 0.16, z = 0.08) 106 3.2.3 Powder X-ray diffraction and synchrotron X-ray diffraction analyses 107 3.2.4 Transmission electron microscope (TEM)/Scanning TEM with energy dispersive X-ray spectroscopy 108 3.2.5 X-ray absorption spectroscopy 108 3.2.6 Electron paramagnetic resonance spectroscopy 109 3.2.7 Photoluminescence excitation/emission spectrum measurements 109 3.2.8 Internal quantum efficiency 110 3.2.9 Temperature- and pressure-dependent photoluminescence spectrum measurements 110 3.2.10 Luminescence kinetics measurements 111 3.2.11 Optical spectrum analysis 111 3.2.12 Electron probe microanalysis 112 3.3 Results and Discussion 112 3.3.1 Crystal structure and morphology of Y3−yAl5−xO12:xCr3+/4+,yCa2+ 112 3.3.2 Local environment of Y3−yAl5−xO12:xCr3+/4+,yCa2+ 119 3.3.3 Photoluminescence of Y3−yAl5−xO12:xCr3+/4+,yCa2+ 123 3.3.4 Crystal fiber growth and demonstration of Y3−yAl5−xO12:xCr3+/4+,yCa2+ 135 3.3.5 Crystal structure and morphology of Y3−y−zAl5−xO12:xCr3+/4+,yCa2+,zMg2+ 138 3.3.6 Local environment of Y3−y−zAl5−xO12:xCr3+/4+,yCa2+,zMg2+ 146 3.3.7 Photoluminescence of Y3−y−zAl5−xO12:xCr3+/4+,yCa2+,zMg2+ 150 3.3.8 Crystal fiber growth and demonstration of Y3−y−zAl5−xO12:xCr3+/4+,yCa2+,zMg2+ 156 3.4 Summary 157 Chapter 4 Blue Light-Pumped Ga1.98−2xGexO3:0.02Cr3+,xNi2+ Energy Transfer Shortwave Infrared Phosphor for Broadband Optical Fiber Amplifiers and Light-Emitting Diodes Applications 159 4.1 Introduction 159 4.2 Experimental Section 161 4.2.1 Synthesis of Ga1.98−2xGexO3:0.02Cr3+,xNi2+ (x = 0–0.020) and Ga1.97Ge0.015O3:0.015Ni2+ 161 4.2.2 Crystal fiber growth of Ga1.95Ge0.015O3:0.02Cr3+,0.015Ni2+ 161 4.2.3 Powder X-ray diffraction and synchrotron X-ray diffraction analyses 162 4.2.4 X-ray absorption spectroscopy 162 4.2.5 Electron paramagnetic resonance spectroscopy 162 4.2.6 Photoluminescence excitation/emission spectrum measurements 163 4.2.7 Internal quantum efficiency 163 4.2.8 Temperature- and pressure-dependent photoluminescence spectrum measurements 163 4.2.9 Luminescence kinetics measurements 164 4.2.10 Optical spectrum analysis 165 4.2.11 Electron probe microanalysis 165 4.3 Results and Discussion 166 4.3.1 Crystal structure of Ga1.98−2xGexO3:0.02Cr3+,xNi2+ 166 4.3.2 Local environment of Ga1.98−2xGexO3:0.02Cr3+,xNi2+ 169 4.3.3 Photoluminescence of Ga1.98−2xGexO3:0.02Cr3+,xNi2+ 173 4.3.4 Crystal fiber growth and LED package Ga1.98−2xGexO3:0.02Cr3+,xNi2+ 185 4.4 Summary 191 Chapter 5 Tuning Shortwave Infrared Emission Wavelengths by Chemical Pressure in Cr3+,Ni2+ Co-Doped Spinel Phosphors 192 5.1 Introduction 192 5.2 Experimental Section 194 5.2.1 Synthesis of Mg0.98Ga1.94−2xAl2xO4:0.06Cr3+,0.02Ni2+ (x = 0–0.9) and Mg0.98+yGa1.94−2ySnyO4:0.06Cr3+,0.02Ni2+ (y = 0–0.9) spinel phosphor 194 5.2.2 Powder X-ray diffraction and synchrotron X-ray diffraction analyses 194 5.2.3 X-ray absorption spectroscopy 195 5.2.4 Electron paramagnetic resonance spectroscopy 196 5.2.5 Photoluminescence excitation/emission spectrum measurements 196 5.2.6 Internal quantum efficiency 197 5.2.7 Temperature- and pressure-dependent photoluminescence spectrum measurements 197 5.2.8 Luminescence kinetics measurements 199 5.3 Results and Discussion 199 5.3.1 Crystal structure of Mg0.98Ga1.94−2xAl2xO4:0.06Cr3+,0.02Ni2+ and Mg0.98+yGa1.94−2ySnyO4:0.06Cr3+,0.02Ni2+ spinel phosphor 199 5.3.2 Local environment of Mg0.98Ga1.94−2xAl2xO4:0.06Cr3+,0.02Ni2+ and Mg0.98+yGa1.94−2ySnyO4:0.06Cr3+,0.02Ni2+ spinel phosphor 208 5.3.3 Photoluminescence of Mg0.98Ga1.94−2xAl2xO4:0.06Cr3+,0.02Ni2+ and Mg0.98+yGa1.94−2ySnyO4:0.06Cr3+,0.02Ni2+ spinel phosphor 216 5.3.4 LED package and demonstration of Mg0.98Ga1.94−2xAl2xO4:0.06Cr3+,0.02Ni2+ and Mg0.98+yGa1.94−2ySnyO4:0.06Cr3+,0.02Ni2+ spinel phosphor 237 5.4 Summary 239 Chapter 6 Enhancement of Er3+ Shortwave Infrared Emission through Cr3+ Cluster Energy Transfer Pathway in Partially Inverse Spinel Phosphor 240 6.1 Introduction 240 6.2 Experimental Section 242 6.2.1 Synthesis of MgGa2−x−yO4:xCr3+,yEr3+ (x = 0.02, y = 0–0.036; x = 0.06, y = 0–0.028) spinel phosphor 242 6.2.2 Powder X-ray diffraction and synchrotron X-ray diffraction analyses 242 6.2.3 X-ray absorption spectroscopy 243 6.2.4 Transmission electron microscope (TEM)/Scanning TEM with energy dispersive X-ray spectroscopy 243 6.2.5 Electron paramagnetic resonance spectroscopy 243 6.2.6 Photoluminescence excitation/emission spectrum measurements 244 6.2.7 Internal quantum efficiency 244 6.2.8 Temperature- and pressure-dependent photoluminescence spectrum measurements 245 6.2.9 Luminescence kinetics measurements 246 6.3 Results and Discussion 246 6.3.1 Crystal structure of MgGa2−x−yO4:xCr3+,yEr3+ spinel phosphor 246 6.3.2 Local environment of MgGa2−x−yO4:xCr3+,yEr3+ spinel phosphor 254 6.3.3 Photoluminescence of MgGa2−x−yO4:xCr3+,yEr3+ spinel phosphor 256 6.3.4 LED package and demonstration of MgGa2−x−yO4:xCr3+,yEr3+ spinel phosphor 274 6.4 Summary 277 Chapter 7 Conclusions and Future Perspectives 278 References 281 Publications in International Scientific Journals 304 Patents 308 | - |
| dc.language.iso | en | - |
| dc.subject | 螢光粉 | zh_TW |
| dc.subject | 短波紅外線 | zh_TW |
| dc.subject | 晶體光纖 | zh_TW |
| dc.subject | 光纖放大器 | zh_TW |
| dc.subject | 能量轉移 | zh_TW |
| dc.subject | 發光二極體 | zh_TW |
| dc.subject | Light-emitting diode | en |
| dc.subject | Shortwave infrared | en |
| dc.subject | Crystal fiber | en |
| dc.subject | Optical fiber amplifier | en |
| dc.subject | Energy transfer | en |
| dc.subject | Phosphor | en |
| dc.title | 短波紅外線螢光粉調控及其於光纖放大器與發光二極體之應用 | zh_TW |
| dc.title | Control of Shortwave Infrared Phosphors and Their Applications in Optical Fiber Amplifiers and Light-Emitting Diodes | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 博士 | - |
| dc.contributor.oralexamcommittee | 陳威廷;彭之皓;吳學亮;許火順;蘇昭瑾;李育群 ;蔡易州 | zh_TW |
| dc.contributor.oralexamcommittee | Wei-Tin Chen;Chi-How Peng;Hsyueh-Liang Wu;Hwo-Shuenn Sheu;Chaochin Su;Yu-Chun Lee;Yi-Chou Tsai | en |
| dc.subject.keyword | 螢光粉,短波紅外線,晶體光纖,光纖放大器,能量轉移,發光二極體, | zh_TW |
| dc.subject.keyword | Phosphor,Shortwave infrared,Crystal fiber,Optical fiber amplifier,Energy transfer,Light-emitting diode, | en |
| dc.relation.page | 308 | - |
| dc.identifier.doi | 10.6342/NTU202502961 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2025-07-31 | - |
| dc.contributor.author-college | 理學院 | - |
| dc.contributor.author-dept | 化學系 | - |
| dc.date.embargo-lift | 2025-08-22 | - |
| Appears in Collections: | 化學系 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| ntu-113-2.pdf Access limited in NTU ip range | 17.67 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
