請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99137完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 周中哲 | zh_TW |
| dc.contributor.advisor | Chung-Che Chou | en |
| dc.contributor.author | 簡澔瑋 | zh_TW |
| dc.contributor.author | Hao-Wei Chien | en |
| dc.date.accessioned | 2025-08-21T16:32:00Z | - |
| dc.date.available | 2025-08-22 | - |
| dc.date.copyright | 2025-08-21 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-08-05 | - |
| dc.identifier.citation | 1.AISC (2016), Seismic Provisions for Structural Steel Buildings, ANSI/AISC 341- 16, American Institute of Steel Construction, Chicago, Illinois.
2.AISC (2022), Seismic Provisions for Structural Steel Buildings, ANSI/AISC 341- 22 , American Institute of Steel Construction, Chicago, Illinois. 3.AISC (2022), Specification for Structural Steel Buildings, ANSI/AISC 360-22, American Institute of Steel Construction, Chicago, Illinois. 4. ASCE (2022). Minimum Design Loads for Buildings and Other Structures, ASCE/SEI 7-22, American Society of Civil Engineers, Washington, D.C 5. Chou, C. C., & Chen, S. Y.(2010). Subassemblage tests and finite element analyses of sandwiched buckling-restrained braces. Engineering structures, 32 (8), 2108-2121. 6. Chou, C. C., & Jao, C. K. (2010). Seismic rehabilitation of welded steel beam-to-box column connections utilizing internal flange stiffeners. Earthquake spectra, 26(4), 927-950. 7. Chou C-C and Chen Y-C. (2012). “Development and seismic performance of steel dual-core self-centering braces.” The 15th World Conference on Earthquake Engineering, Lisbon, Portugal. (Paper No. 1648) 8. Chou C-C and Chen Y-C. (2013). “Development of steel dual-core self-centering braces: quasi-static cyclic tests and finite element analyses.” Earthquake Spectra. (Available online September 6, 2013). 9. Chung-Che Chou, Li-Yu Huang, Mechanics and validation tests of a post-tensioned self-centering brace with adjusted stiffness and deformation capacities using disc springs, Thin-Walled Structures, Volume 195, 2024, 111430, ISSN 0263-8231, https://doi.org/10.1016/j.tws.2023.111430. 10. Kasai, K., & Nam, T. T. Analysis of full-scale building collapse test using fiber hinge element considering two-directional column deteriorations. 11. Wen, J., Han, Q., & Du, X. (2019). Shaking table tests of bridge model with friction sliding bearings under bi-directional earthquake excitations. Structure and Infrastructure Engineering, 15(9), 1264-1278. 12. Baek, E. R., Pohoryles, D. A., & Bournas, D. (2024). Seismic assessment of the in‐plane/out‐of‐plane interaction of masonry infills in a two‐storey RC building subjected to bi‐directional shaking table tests. Earthquake Engineering & Structural Dynamics, 53(6), 2230-2251. 13. Uang, C.-M. and Bertero, V.V. (1990), Evaluation of seismic energy in structures. Earthquake Engng. Struct. Dyn., 19: 77-90. https://doi.org/10.1002/eqe.4290190108 14. Tsampras G, Sause R, Fleischman RB, Restrepo JI. Experimental study of deformable connection consisting of friction device and rubber bearings to connect floor system to lateral force resisting system. Earthquake Eng Struct Dynamics. 2016;47(4):1032‐1053. 15. Chou C-C, Lin H-Z, Córdova A, et al. Earthquake simulator testing of a three-story steel building for evaluating built-up box column performance and effect of sliding slab. Earthquake Engng Struct Dyn. 2024;1-19. https://doi.org/10.1002/eqe.4130 16. Ooki Y, Kasai K, Motoyui S, Kaneko K, Kajiwara K, and Hikino T. Full-scale tests of passively-controlled 5-story steel building usinf E-Defense shake table, Part 3: Full-scale tests for dampers and beam-column subassemblies. Proceedings of 6th International Conference on Behavior of Steel Structures in Seismic Areas, Philadelphia, Pennsylvania, USA, 2009. 17. Zhang, Z., Fleischman, R. B., Restrepo, J. I., Guerrini, G., Nema, A., Zhang, D., doi:10.6342/NTU202303734 79 Ulina, S., Tsampras, G., Sause, R.,(2018). Shake‐table test performance of an inertial force‐limiting floor anchorage system. Earthquake Engineering & Structural Dynamics, 47(10), 1987-2011. 18. 陳昇陽 (2008),「可更換核心板之挫屈束制消能支撐耐震實驗與有限元素分析」,碩士論文,國立交通大學土木工程系。 19. 陳映全 (2011)「雙核心自復位消能斜撐之發展與驗證」,碩士論文指導教授:周中哲,國立臺灣大學土木工程學系。 20. 林皇佐 (2023),「實尺寸三層樓鋼構架二元系統於 2022 池上地震下之振動台試驗:中等韌性箱型鋼柱、全鋼型夾型挫屈束制斜撐及滑動樓版之耐震性能」,碩士論文,國立臺灣大學土木工程學系。 21. 黃于慈 (2023),「以訊號分析方法進行長期結構健康監測」,碩士論文,國立臺灣大學土木工程系。 22. 吳其錚 (2024)「實尺寸三層樓自復位斜撐構架含滑動消能樓版之振動台試驗」,碩士論文指導教授:周中哲,國立臺灣大學土木工程學系。 23. 黃立宇 (2023),「可變勁度自復位斜撐與自復位碟型彈簧抗震裝置研發及振動台試驗」,碩士論文,國立臺灣大學土木工程學系。 24. 謝旻諺 (2025) ,「BRB及SCB鋼構架含滑動樓板雙向振動台試驗之模型發展與驗證」,碩士論文,國立臺灣大學土木工程學系。 25. 陳緯軒 (2025) ,「AISC 341韌性銲接組合箱型鋼柱新寬厚比規定研究」,碩士論文,國立臺灣大學土木工程學系。 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99137 | - |
| dc.description.abstract | 本研究探討滑動消能樓版系統於雙向地震作用下之可行性與耐震效益,並比較不同水平裝置對構架整體行為之影響。試驗採用實尺寸一層樓鋼構架進行振動台試驗,構架南北向配置自復位斜撐(Self-Centering Brace, SCB),東西向則採用夾型挫屈束制斜撐(Diagonal Buckling-Restrained Brace, DBRB)搭配抗彎構架(SMRF)所構成之二元抗側力系統(Dual System)。本試驗共分為四階段,前兩階段於構架與樓板之間分別安裝水平夾型挫屈束制支撐(HBRB)及摩擦型消能裝置(FD),第三階段以高勁度 T 型鋼桿模擬傳統固接樓板,作為滑動樓板系統之對照組;第四階段則拆除所有斜撐,以觀察構架系統極限行為。
為實現滑動樓板於雙向地震下之面外運動能力,本研究將水平裝置之端部改為鉸接設計,使其於面外方向可自由轉動。試驗採用2022年台東池上地震(EYUL)東西向地震歷時,並依據PGA進行比例縮放,最大振動台輸入達0.73g。結果顯示,滑動樓板系統於雙向輸入下能有效發揮,且第一與第二階段試驗皆於 0.8×DBE 等級開始出現相對滑移,證實滑動行為之可行性與穩定性。與固接樓板相比,滑動樓板在 DBE 及 MCE 級距下皆有效降低構架側位移與基底剪力,尤以摩擦裝置階段(Phase 2)之減震效果最為顯著。 此外,試驗結果與 ASCE 7-22 標準中 Method 2 採用不同 Rs值之設計剪力預測趨勢相符,顯示其對滑動與固接樓板系統皆具良好預測性,較傳統 Method 1 設計較為精確及保守。加速度反應方面,第三階段試體樓板與構架運動趨於一致,顯示地震能量直接傳遞至樓板;反觀滑動樓板系統則能有效減緩樓板震動反應,並降低傳遞至構架之慣性力。自復位斜撐(SCB)於震後可有效抑制殘餘變形,顯示其具良好回復性能,而斜撐之面外穩定性方面,SCB表現較DBRB穩定,DBRB於端部出現些許面外變形趨勢,為設計上需留意之重點。 | zh_TW |
| dc.description.abstract | This study investigates seismic performance of a sliding energy dissipation floor system under bidirectional earthquake loading and compares the influence of various horizontal connection devices on the overall behavior of the structural frame. Full-scale shake table tests were conducted on a one-story steel frame. The lateral force-resisting system consists of a self-centering brace (SCB) in the north-south direction and a dual system in the east-west direction, composed of diagonal buckling-restrained braces (DBRBs) and a special moment-resisting frame (SMRF). The experiment was divided into four phases: in the first two phases, the floor was connected to the frame using horizontal buckling-restrained braces (HBRBs) and friction devices (FDs), respectively. The third phase replaced the horizontal devices with high-stiffness T-shaped steel bars to simulate a traditional fixed floor system, serving as a control. In the fourth phase, all bracing members were removed to observe the frame’s limit-state behavior.
To enable out-of-plane movement of the sliding floor under bidirectional excitation, the end connections of the horizontal devices were designed as pinned joints, allowing free rotation during out-of-plane motion. The tests utilized the east-west ground motion record from the 2022 Chishang earthquake (EYUL) in Taitung, Taiwan, scaled to multiple PGA levels, with the peak table input reaching 0.73g. The results demonstrated that the sliding floor system effectively engaged under bidirectional input, with relative sliding observed in Phases 1 and 2 starting at 0.8×DBE. Compared to the fixed-floor configuration, the sliding system significantly reduced lateral displacement and base shear forces at both DBE and MCE levels, with the friction device (Phase 2) showing the most pronounced damping effect. Furthermore, the experimental results aligned well with the predicted design base shear using Method 2 of ASCE 7-22, which incorporates reduction factors (Rs) for different floor systems. Method 2 provided accurate and conservative predictions for both sliding and fixed floors, whereas Method 1 underestimated the demand in all cases. In terms of acceleration response, the floor and frame moved synchronously in Phase 3, indicating direct energy transmission to the floor, while the sliding systems in Phases 1 and 2 effectively reduced the floor’s acceleration and inertial force transfer. Post-earthquake residual drift was minimal in the SCB-equipped direction, indicating excellent recentering performance. Regarding out-of-plane stability, the SCB showed more favorable behavior than the DBRB, which exhibited minor out-of-plane deformation at brace ends—a consideration that must be addressed in design. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-21T16:32:00Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-08-21T16:32:00Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 致謝 ii
摘要 iv ABSTRACT v 目次 vii 圖次 x 表次 xiv 照片次 xv 第一章 緒論 1 1.1 前言 1 1.2 文獻回顧 2 1.3 研究方法 4 1.4 論文架構 5 第二章 實尺寸一層樓鋼構架試體設計與規劃 7 2.1 一層樓構架試體規劃 7 2.2 一層樓鋼構架試體設計 9 2.2.1 構架試體設計力 9 2.2.2 柱桿件強度檢核 11 2.2.3 梁桿件強度檢核 13 2.2.4 強柱弱梁檢核 14 2.2.5 特殊抗彎構架樑柱接頭設計 14 2.2.6 可變勁度自復位斜撐 15 2.2.7 斜向夾型挫屈束制支撐 18 2.2.8 斜撐接合版 19 2.2.9 鉸接接合 19 2.2.10 柱底螺栓 20 2.3 滑動樓版系統 20 2.3.1 滑動樓版機制 20 2.3.2 水平裝置設計 20 2.3.3 樓板設計力探討 22 2.3.4 水平裝置細節與行為 23 2.3.5 PISA 3D 模型分析 24 2.4 試體製造與安裝 24 2.4.1 樓版鑽孔 24 2.4.2 鋼構架製造 24 2.4.3 斜撐與水平裝置製造 25 2.4.4 SCB鋼絞線施拉預力 26 2.4.5 實驗場試體組裝與安裝 27 2.5 量測系統 28 2.5.1 應變計 28 2.5.2 位移計 29 2.5.3 加速規 29 2.5.4 荷重元 29 2.5.5 光學動態捕捉系統 30 2.6 試體力量與位移計算方式 30 2.6.1 慣性力與樓層剪力 30 2.6.2 構架位移與滑動量 31 2.6.3 梁柱桿件內力 32 2.6.4 塑性彎矩強度計算 34 2.6.5 斜撐內力 35 2.7 材料性質 35 2.8 樓板滑動復位處理 36 第三章 實尺寸一層樓鋼構架試體實驗結果分析 38 3.1 試體整體反應分析 38 3.1.1 構架位移 38 3.1.2 構架雙向位移比較 39 3.1.3 構架基底剪力 40 3.1.4 構架整體行為 41 3.1.5 雙向構架基底剪力包絡線比較 42 3.2 構架與樓版反應分析 43 3.2.1 樓板相對構架滑動量 43 3.2.2 樓板與構架加速度 45 3.2.3 構架與樓板雙向行為比較 46 3.3 構架構件反應分析 47 3.3.1 梁柱桿件反應 47 3.3.2 雙向彎矩與軸力互制關係 49 3.3.3 斜撐反應分析 50 3.3.4 斜撐面外變形討論 52 3.3.5 構件水平力分析 53 3.3.6 高性能元件試驗 55 第四章 結論與建議 57 參考文獻 60 附錄A 試體設計圖 179 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 自復位斜撐 | zh_TW |
| dc.subject | 夾型挫屈束制支撐 | zh_TW |
| dc.subject | 雙向振動台試驗 | zh_TW |
| dc.subject | 滑動消能樓版 | zh_TW |
| dc.subject | 銲接箱型鋼柱 | zh_TW |
| dc.subject | Bidirectional Shaking table test | en |
| dc.subject | Sandwiched buckling-restrained brace | en |
| dc.subject | Sliding slab | en |
| dc.subject | Welded box steel column | en |
| dc.subject | Self-centering brace | en |
| dc.title | BRB及SCB鋼構架含滑動樓板雙向振動台試驗: 構架設計及實驗 | zh_TW |
| dc.title | Bidirectional Shaking Table Tests of a BRB-SCB Steel Frame with Sliding Slab:Design and Experimental Response | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 鍾育霖;李中生 | zh_TW |
| dc.contributor.oralexamcommittee | Yu-Lin Chung;Chung-Sheng Lee | en |
| dc.subject.keyword | 滑動消能樓版,夾型挫屈束制支撐,自復位斜撐,銲接箱型鋼柱,雙向振動台試驗, | zh_TW |
| dc.subject.keyword | Sliding slab,Sandwiched buckling-restrained brace,Self-centering brace,Welded box steel column,Bidirectional Shaking table test, | en |
| dc.relation.page | 195 | - |
| dc.identifier.doi | 10.6342/NTU202503840 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2025-08-08 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 土木工程學系 | - |
| dc.date.embargo-lift | 2025-08-22 | - |
| 顯示於系所單位: | 土木工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf | 162.22 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
