請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99131完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 詹魁元 | zh_TW |
| dc.contributor.advisor | Kuei-Yuan Chan | en |
| dc.contributor.author | 蘇瑄 | zh_TW |
| dc.contributor.author | Hsuan Su | en |
| dc.date.accessioned | 2025-08-21T16:30:33Z | - |
| dc.date.available | 2025-08-22 | - |
| dc.date.copyright | 2025-08-21 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-07-30 | - |
| dc.identifier.citation | [1] J. K. Aggarwal and Q. Cai, “Human motion analysis: A review,” Computer vision and image understanding, vol. 73, no. 3, pp. 428–440, 1999.
[2] B. P. Ortega and J. M. J. Olmedo, “Application of motion capture technology for sport performance analysis,” Retos: nuevas tendencias en educación física, deporte y recreación, no. 32, pp. 241–247, 2017. [3] S. Patel, H. Park, P. Bonato, L. Chan, and M. Rodgers, “A review of wearable sensors and systems with application in rehabilitation,” Journal of neuroengineering and rehabilitation, vol. 9, pp. 1–17, 2012. [4] M. Sassi, M. Villa Corta, M. G. Pisani, G. Nicodemi, E. Schena, L. Pecchia, and U. G. Longo, “Advanced home-based shoulder rehabilitation: a systematic review of remote monitoring devices and their therapeutic efficacy,” Sensors, vol. 24, no. 9, p. 2936, 2024. [5] D. G. Lloyd and T. F. Besier, “An emg-driven musculoskeletal model to estimate muscle forces and knee joint moments in vivo,” Journal of biomechanics, vol. 36, no. 6, pp. 765–776, 2003. [6] C.-Y. Chiu, C.-C. Chang, Y.-C. Chiang, and C.-Y. Chiang, “Automatic video analysis of countermovement jump performance using a single uncalibrated camera,” Journal of Biomechanics, vol. 186, p. 112695, 2025. [7] G. Villa, A. Bonfiglio, M. Galli, and V. Cimolin, “Vertical jump height estimation using low-sampling imu in countermovement jumps: A feasible alternative to motion capture and force platforms,” Sensors, vol. 24, no. 24, p. 7877, 2024. [8] L. Guo, J. Wang, Q. Wu, X. Li, B. Zhang, L. Zhou, and D. Xiong, “Clinical study of a wearable remote rehabilitation training system for patients with stroke: randomized controlled pilot trial,” JMIR mHealth and uHealth, vol. 11, p. e40416, 2023. [9] M. Sadeghi, M. Emadi Andani, F. Bahrami, and M. Parnianpour, “Trajectory of human movement during sit to stand: a new modeling approach based on movement decomposition and multi-phase cost function,” Experimental brain research, vol. 229, pp. 221–234, 2013. [10] J. Aleksic, D. Mesaroš, D. Kanevsky, O. M. Knežević, D. Cabarkapa, L. Faj, and D. M. Mirkov, “Advancing field-based vertical jump analysis: Markerless pose estimation vs. force plates,” Life, vol. 14, no. 12, p. 1641, 2024. [11] J. A. Albert, V. Owolabi, A. Gebel, C. M. Brahms, U. Granacher, and B. Arnrich, “Evaluation of the pose tracking performance of the azure kinect and kinect v2 for gait analysis in comparison with a gold standard: A pilot study,” Sensors, vol. 20, no. 18, p. 5104, 2020. [12] Y.-C. Fu, B. T. Torres, and S. C. Budsberg, “Evaluation of a three-dimensional kinematic model for canine gait analysis,” American journal of veterinary research, vol. 71, no. 10, pp. 1118–1122, 2010. [13] J. Navik, Pilot study using Oxford Rig, customized METALAB program, and Vicon system to study the stifle joint. PhD thesis, University of Georgia, 2011. [14] Vicon, “Full body modeling with plug-in gait,” 2024. Accessed: 2024-07-19. [15] B.-J. Ladru, R. Langhout, D.-J. Veeger, M. Gijssel, and I. Tak, “Lead knee extension contributes to drag-flick performance in field hockey,” International Journal of Performance Analysis in Sport, vol. 19, no. 4, pp. 556–566, 2019. [16] Movella, “Xsens mtw awinda,” 2024. Accessed: 2024-07-13. [17] D.-S. Komaris, G. Tarfali, B. O'Flynn, and S. Tedesco, “Unsupervised IMU-based evaluation of at-home exercise programmes: a feasibility study,” BMC Sports Science, Medicine and Rehabilitation, vol. 14, no. 1, p. 28, 2022. [18] T. J. Kirby, J. M. McBride, T. L. Haines, and A. M. Dayne, “Relative net vertical impulse determines jumping performance,” Journal of applied biomechanics, vol. 27, no. 3, pp. 207–214, 2011. [19] A. Mansfield and E. L. Inness, “Force plate assessment of quiet standing balance control: perspectives on clinical application within stroke rehabilitation,” Rehabilitation Process and Outcome, vol. 4, pp. RPO–S20363, 2015. [20] A. Karatsidis, G. Bellusci, H. M. Schepers, M. De Zee, M. S. Andersen, and P. H. Veltink, “Estimation of Ground Reaction Forces and Moments During Gait Using Only Inertial Motion Capture,” Sensors, vol. 17, no. 1, p. 75, 2016. [21] K. L. Newcomer, T. D. Jacobson, D. A. Gabriel, D. R. Larson, R. H. Brey, and K.N. An, “Muscle Activation Patterns in Subjects With and Without Low Back Pain,”Archives of physical medicine and rehabilitation, vol. 83, no. 6, pp. 816–821, 2002. [22] P. Colne and P. Thoumie, “Muscular compensation and lesion of the anterior cruciate ligament: Contribution of the soleus muscle during recovery from a forward fall,”Clinical Biomechanics, vol. 21, no. 8, pp. 849–859, 2006. [23] S. Micera, J. Carpaneto, and S. Raspopovic, “Control of Hand Prostheses Using Peripheral Information,” IEEE reviews in biomedical engineering, vol. 3, pp. 48–68, 2010. [24] Jali Medical, “Delsys trigno wireless emg system.” https://www.jalimedical.com/delsys-trigno-wireless-emg-system, 2025. Accessed: 2025-05-13. [25] S. Heintz, Muscular forces from static optimization. PhD thesis, KTH, 2006. [26] D. A. Winter, Biomechanics and motor control of human movement. John wiley & sons, 2009. [27] S. L. Delp, F. C. Anderson, A. S. Arnold, P. Loan, A. Habib, C. T. John, E. Guendelman, and D. G. Thelen, “OpenSim: Open-Source Software to Create and Analyze Dynamic Simulations of Movement,” IEEE transactions on biomedical engineering, vol. 54, no. 11, pp. 1940–1950, 2007. [28] A. V. Hill, “The heat of shortening and the dynamic constants of muscle,” Proceedings of the Royal Society of London. Series B-Biological Sciences, vol. 126, no. 843, pp. 136–195, 1938. [29] F. E. Zajac, “Muscle and tendon: properties, models, scaling, and application to biomechanics and motor control.,” Critical reviews in biomedical engineering, vol. 17, no. 4, pp. 359–411, 1989. [30] D. G. Thelen, “Adjustment of muscle mechanics model parameters to simulate dynamic contractions in older adults,” J. Biomech. Eng., vol. 125, no. 1, pp. 70–77, 2003. [31] M. Millard, T. Uchida, A. Seth, and S. L. Delp, “Flexing computational muscle: modeling and simulation of musculotendon dynamics,” Journal of biomechanical engineering, vol. 135, no. 2, p. 021005, 2013. [32] S. P. Magnusson, P. Aagaard, S. Rosager, P. Dyhre-Poulsen, and M. Kjaer, “Loaddisplacement properties of the human triceps surae aponeurosis in vivo,” The Journal of physiology, vol. 531, no. 1, pp. 277–288, 2001. [33] C. N. Maganaris and J. P. Paul, “Tensile properties of the in vivo human gastrocnemius tendon,” Journal of biomechanics, vol. 35, no. 12, pp. 1639–1646, 2002. [34] T. M. Winters, M. Takahashi, R. L. Lieber, and S. R. Ward, “Whole muscle lengthtension relationships are accurately modeled as scaled sarcomeres in rabbit hindlimb muscles,” Journal of biomechanics, vol. 44, no. 1, pp. 109–115, 2011. [35] S. K. Gollapudi and D. C. Lin, “Experimental determination of sarcomere force–length relationship in type-i human skeletal muscle fibers,” Journal of biomechanics, vol. 42, no. 13, pp. 2011–2016, 2009. [36] H. Mashima, “Force-velocity relation and contractility in striated muscles,” The Japanese journal of physiology, vol. 34, no. 1, pp. 1–17, 1984. [37] G. Joyce, P. Rack, and D. Westbury, “The mechanical properties of cat soleus muscle during controlled lengthening and shortening movements,” The Journal of physiology, vol. 204, no. 2, pp. 461–474, 1969. [38] E. Mathieu, S. Crémoux, D. Duvivier, D. Amarantini, and P. Pudlo, “Biomechanical modeling for the estimation of muscle forces: toward a common language in biomechanics, medical engineering, and neurosciences,” Journal of NeuroEngineering and Rehabilitation, vol. 20, no. 1, p. 130, 2023. [39] T. S. Buchanan, D. G. Lloyd, K. Manal, and T. F. Besier, “Neuromusculoskeletal modeling: estimation of muscle forces and joint moments and movements from measurements of neural command,” Journal of applied biomechanics, vol. 20, no. 4, pp. 367–395, 2004. [40] A. Asadi Nikooyan, H. Veeger, E. Chadwick, M. Praagman, and F. C. van der Helm,“Development of a comprehensive musculoskeletal model of the shoulder and elbow,” Medical & biological engineering & computing, vol. 49, pp. 1425–1435, 2011. [41] A. Seth, J. L. Hicks, T. K. Uchida, A. Habib, C. L. Dembia, J. J. Dunne, C. F. Ong, M. S. DeMers, A. Rajagopal, M. Millard, et al., “Opensim: Simulating musculoskeletal dynamics and neuromuscular control to study human and animal movement,” PLoS computational biology, vol. 14, no. 7, p. e1006223, 2018. [42] D. G. Thelen, F. C. Anderson, and S. L. Delp, “Generating dynamic simulations of movement using computed muscle control,” Journal of biomechanics, vol. 36, no. 3, pp. 321–328, 2003. [43] K. M. Steele, A. Seth, J. L. Hicks, M. H. Schwartz, and S. L. Delp, “Muscle contributions to vertical and fore-aft accelerations are altered in subjects with crouch gait,”Gait & posture, vol. 38, no. 1, pp. 86–91, 2013. [44] M. Ackermann and A. J. Van den Bogert, “Optimality principles for model-based prediction of human gait,” Journal of biomechanics, vol. 43, no. 6, pp. 1055–1060, 2010. [45] J. Challis and D. Kerwin, “An analytical examination of muscle force estimations using optimization techniques,” Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, vol. 207, no. 3, pp. 139–148, 1993. [46] R. D. Crowninshield and R. A. Brand, “A physiologically based criterion of muscle force prediction in locomotion,” Journal of biomechanics, vol. 14, no. 11, pp. 793–801, 1981. [47] M. F. Bobbert, M. Mackay, D. Schinkelshoek, P. Huijing, and G. van Ingen Schenau,“Biomechanical analysis of drop and countermovement jumps,” European journal of applied physiology and occupational physiology, vol. 54, pp. 566–573, 1986. [48] P. Cormie, M. R. McGuigan, and R. U. Newton, “Developing maximal neuromuscular power: part 2—training considerations for improving maximal power production,” Sports medicine, vol. 41, pp. 125–146, 2011. [49] A. Sánchez-Sixto, A. J. Harrison, and P. Floría, “Larger countermovement increases the jump height of countermovement jump,” Sports, vol. 6, no. 4, p. 131, 2018. [50] R. Mandic, S. Jakovljevic, and S. Jaric, “Effects of countermovement depth on kinematic and kinetic patterns of maximum vertical jumps,” Journal of Electromyography and Kinesiology, vol. 25, no. 2, pp. 265–272, 2015. [51] C. Hubley and R. Wells, “A work-energy approach to determine individual joint contributions to vertical jump performance,” European Journal of Applied Physiology and Occupational Physiology, vol. 50, pp. 247–254, 1983. [52] J. G. Claudino, J. Cronin, B. Mezêncio, D. T. McMaster, M. McGuigan, V. Tricoli, A. C. Amadio, and J. C. Serrão, “The countermovement jump to monitor neuromuscular status: A meta-analysis,” Journal of science and medicine in sport, vol. 20, no. 4, pp. 397–402, 2017. [53] J. L. Nuzzo, J. M. McBride, P. Cormie, and G. O. McCaulley, “Relationship between countermovement jump performance and multijoint isometric and dynamic tests of strength,” The Journal of Strength & Conditioning Research, vol. 22, no. 3, pp. 699–707, 2008. [54] Xsens Technologies B.V., MTw Awinda User Manual. Xsens, May 2018. Document MW0502P, Revision L. [55] Movella Inc., “Xsens awinda starter–product image,” 2025. Accessed: 2025-07-10. [56] Delsys Inc., “Trigno avanti sensor–product image,” 2025. Accessed: 2025-07-10. [57] Delsys Inc., “Delsys–all products on medicalexpo,” 2025. Accessed: 2025-07-10. [58] A. C. Severin and J. Danielsen, “Rotation sequence and marker tracking method affects the humerothoracic kinematics of manual wheelchair propulsion,” Journal of Biomechanics, vol. 141, p. 111212, 2022. [59] 張問蕖, “以動態最佳化方法結合慣性量測估測人體運動狀態與地面反作用力:反向跳行為分析,”國立臺灣大學機械工程學系學位論文, pp. 1–80, 2024. [60] R. Van Hulle, C. Schwartz, V. Denoël, J.-L. Croisier, B. Forthomme, and O. Brüls, “A foot/ground contact model for biomechanical inverse dynamics analysis,” Journal of Biomechanics, vol. 100, p. 109412, 2020. [61] J. Son, S. R. Ward, and R. L. Lieber, “Scaling relationships between human leg muscle architectural properties and body size,” Journal of Experimental Biology, vol. 227, no. 6, p. jeb246567, 2024. [62] E. M. Arnold, S. R. Hamner, A. Seth, M. Millard, and S. L. Delp, “How muscle fiber lengths and velocities affect muscle force generation as humans walk and run at different speeds,” Journal of Experimental Biology, vol. 216, no. 11, pp. 2150–2160, 2013. [63] K. Boren, C. Conrey, J. Le Coguic, L. Paprocki, M. Voight, and T. K. Robinson,“Electromyographic analysis of gluteus medius and gluteus maximus during rehabilitation exercises,” International journal of sports physical therapy, vol. 6, no. 3, p. 206, 2011. [64] G. Avdan, S. Onal, and B. K. Smith, “Normalization of emg signals: optimal mvc positions for the lower limb muscle groups in healthy subjects,” Journal of medical and biological engineering, vol. 43, no. 2, pp. 195–202, 2023. [65] F. Michaud, M. Lamas, U. Lugrís, and J. Cuadrado, “A fair and emg-validated comparison of recruitment criteria, musculotendon models and muscle coordination strategies, for the inverse-dynamics based optimization of muscle forces during gait,”Journal of neuroengineering and rehabilitation, vol. 18, pp. 1–15, 2021. [66] B. I. Prilutsky and V. M. Zatsiorsky, “Optimization-based models of muscle coordination,” Exercise and sport sciences reviews, vol. 30, no. 1, pp. 32–38, 2002. [67] S. Heintz and E. M. Gutierrez-Farewik, “Static optimization of muscle forces during gait in comparison to emg-to-force processing approach,” Gait & posture, vol. 26, no. 2, pp. 279–288, 2007. [68] D. Ao and B. J. Fregly, “Comparison of synergy extrapolation and static optimization for estimating multiple unmeasured muscle activations during walking,” Journal of NeuroEngineering and Rehabilitation, vol. 21, no. 1, p. 194, 2024. [69] F. C. Anderson and M. G. Pandy, “Storage and utilization of elastic strain energy during jumping,” Journal of biomechanics, vol. 26, no. 12, pp. 1413–1427, 1993. [70] A. Struzik, J. Zawadzki, and A. Rokita, “Leg stiffness and potential energy in the countermovement phase and the cmj jump height,” Biomedical Human Kinetics, vol. 8, no. 1, p. 39, 2016. [71] C. BOSCO, J. Tihanyi, P. Komi, G. Fekete, and P. Apor, “Store and recoil of elastic energy in slow and fast types of human skeletal muscles,” Acta Physiologica Scandinavica, vol. 116, no. 4, pp. 343–349, 1982. [72] M. F. Bobbert, K. G. Gerritsen, M. C. Litjens, and A. J. Van Soest, “Why is countermovement jump height greater than squat jump height?,” Medicine and science in sports and exercise, vol. 28, pp. 1402–1412, 1996. [73] T. Finni, P. V. Komi, and V. Lepola, “In vivo human triceps surae and quadriceps femoris muscle function in a squat jump and counter movement jump,” European journal of applied physiology, vol. 83, pp. 416–426, 2000. [74] D. Robertson, J.-M. J. Wilson, and T. A. S. Pierre, “Lower extremity muscle functions during full squats,” Journal of applied biomechanics, vol. 24, no. 4, pp. 333–339, 2008. [75] B. Van Hooren and J. Zolotarjova, “The difference between countermovement and squat jump performances: a review of underlying mechanisms with practical applications,” The Journal of Strength & Conditioning Research, vol. 31, no. 7, pp. 2011–2020, 2017. [76] T. Finni, S. Ikegaw, V. Lepola, and P. Komi, “In vivo behavior of vastus lateralis muscle during dynamic performances,” European Journal of Sport Science, vol. 1, no. 1, pp. 1–13, 2001. [77] T. Finni, S. Ikegawa, and P. V. Komi, “Concentric force enhancement during human movement,” Acta Physiologica Scandinavica, vol. 173, no. 4, pp. 369–377, 2001. [78] B. J. Schoenfeld, “Squatting kinematics and kinetics and their application to exercise performance,” The Journal of Strength & Conditioning Research, vol. 24, no. 12, pp. 3497–3506, 2010. [79] D. Toutoungi, T. Lu, A. Leardini, F. Catani, and J. O'connor, “Cruciate ligament forces in the human knee during rehabilitation exercises,” Clinical biomechanics, vol. 15, no. 3, pp. 176–187, 2000. [80] A. Nagano, T. Komura, S. Fukashiro, and R. Himeno, “Force, work and power output of lower limb muscles during human maximal-effort countermovement jumping,”Journal of Electromyography and Kinesiology, vol. 15, no. 4, pp. 367–376, 2005. [81] A. Arampatzis, K. Karamanidis, S. Stafilidis, G. Morey-Klapsing, G. DeMonte, and G.-P. Brüggemann, “Effect of different ankle-and knee-joint positions on gastrocnemius medialis fascicle length and emg activity during isometric plantar flexion,”Journal of biomechanics, vol. 39, no. 10, pp. 1891–1902, 2006. [82] B. Lauber, G. A. Lichtwark, and A. G. Cresswell, “Reciprocal activation of gastrocnemius and soleus motor units is associated with fascicle length change during knee flexion,” Physiological reports, vol. 2, no. 6, p. e12044, 2014. [83] M. F. Bobbert and G. J. van Ingen Schenau, “Coordination in vertical jumping,”Journal of biomechanics, vol. 21, no. 3, pp. 249–262, 1988. [84] K. Kipp and H. Kim, “Relative contributions and capacities of lower extremity muscles to accelerate the body's center of mass during countermovement jumps,”Computer Methods in Biomechanics and Biomedical Engineering, vol. 23, no. 12, pp. 914–921, 2020. [85] K. Kipp and H. Kim, “Force-length-velocity behavior and muscle-specific joint moment contributions during countermovement and squat jumps,” Computer Methods in Biomechanics and Biomedical Engineering, vol. 25, no. 6, pp. 688–697, 2022. [86] A. Cerrah, E. O. Gungor, A. Soylu, and H. Ertan, “Muscular activation differences between professional and amateur soccer players during countermovement jump,”Turkish Journal of Sport and Exercise, vol. 16, no. 2, pp. 51–58, 2014. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99131 | - |
| dc.description.abstract | 本論文針對人體生物力學領域中,無法直接量測之肌肉力問題,提出一套結合穿戴式感測技術與最佳化演算法的肌肉力估算架構,並以反向跳(Countermovement Jump)動作為研究對象,發展可應用於非實驗室環境下的動作分析方法。傳統肌肉力分析多仰賴實驗室設備與固定目標函數,難以反映動作階段變化與實際應用需求。本研究突破此侷限,設計具階段性調整能力的多目標函數模型,並結合慣性測量單元(IMU)感測資料,建立一套適用於遠距復健及日常運動場域的分析流程。
本研究首先建立簡化人體肌肉骨骼模型,並利用希爾式肌肉模型模擬肌肉力學行為,將反向跳動作分為下蹲與推蹬兩階段分別進行最佳化計算。分析過程中,針對目標函數中各子目標(如力矩誤差、肌肉應力、功與功率)進行權重設計與測試,以提升模擬結果的生理合理性與動力學精度。最終透過肌電圖(EMG)驗證模擬結果之啟動時機與趨勢,確保模型具備生理一致性。 研究結果顯示,所提出之方法能合理分配各肌肉於不同動作階段的施力,並展現良好的生理解釋力。多層次分析證實參數設置與目標函數彈性有助於提升模型可信度與應用潛力。 綜合而言,本論文建立了一套具生理一致性與動作分析能力的肌肉力模擬架構,為下肢肌群功能分析提供重要基礎,並具備高度擴充性與遠距應用潛力,對運動科學與復健領域具有實質貢獻。 | zh_TW |
| dc.description.abstract | This thesis addresses the challenge of estimating muscle forces, which cannot be directly measured in the field of human biomechanics, by proposing a framework that integrates wearable sensing technology with optimization algorithms. Focusing on the countermovement jump (CMJ) as the research subject, the study develops a motion analysis method applicable outside laboratory environments. Traditional muscle force analysis often relies on laboratory equipment and fixed objective functions, which limits its ability to reflect changes across movement phases and meet practical application needs. To overcome these limitations, this research designs a multi-objective function model with phase-specific adjustment capabilities and incorporates IMU sensor data to establish an analysis process suitable for remote rehabilitation and everyday sports scenarios. The methodology involves constructing a simplified human musculoskeletal model and using the Hill-type muscle model to simulate muscle mechanics, dividing the countermovement jump into squatting and push-off phases for separate optimization calculations. During analysis, weights for each sub-objective—such as moment error, muscle stress, work, and power—are designed and tested to enhance the physiological plausibility and dynamic accuracy of the simulation results. Electromyography (EMG) is used to verify the timing and trends of simulated muscle activation, ensuring physiological consistency of the model. The results demonstrate that the proposed method can reasonably allocate muscle forces across different movement phases and exhibits strong physiological interpretability. Multi-level analysis confirms that flexible parameter settings and objective functions improve the model’s credibility and application potential. In conclusion, this thesis establishes a muscle force simulation framework with physiological consistency and motion analysis capabilities, providing a significant foundation for lower limb muscle function analysis and offering high extensibility and potential for remote applications, thereby making a substantial contribution to sports science and rehabilitation. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-21T16:30:33Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-08-21T16:30:33Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
誌謝 ii 中文摘要 iv Abstract v 目次 vii 圖次 x 表次 xii 第一章 緒論 1 1.1 前言 1 1.2 研究動機與目的 1 1.3 論文架構 2 第二章 文獻回顧 4 2.1 人體動作捕捉 4 2.1.1 運動學量測 4 2.1.2 動力學量測 7 2.1.3 肌肉訊號量測 8 2.2 人體模型 9 2.2.1 簡化模型 9 2.2.2 生物力學分析軟體 11 2.3 肌肉模型 12 2.4 肌肉力估測 15 2.4.1 計算策略 15 2.4.2 問題類型 16 2.4.3 最佳化方法 16 2.5 反向跳動作與評估指標 18 2.6 小結 20 第三章 研究方法 21 3.1 實驗與量測數據前置處理 23 3.1.1 動作實驗量測 23 3.1.2 資料處理與外部邊界條件計算 25 3.2 簡化模型建立 27 3.2.1 模型假設建立 27 3.2.2 可視化人體肌肉骨骼簡化模型結果 28 3.3 最佳化肌肉力計算 31 3.3.1 目標函數設計 33 3.3.2 動力方程與肌肉模型限制訂定 35 3.4 肌肉活化計算 43 3.4.1 實驗肌肉活化計算 44 3.4.2 最佳肌肉活化計算 46 3.5 小結 47 第四章 研究結果分析 48 4.1 最佳化參數分析 48 4.1.1 肌肉長度變化 49 4.1.2 目標函數權重設置 53 4.2 肌肉力趨勢分析 55 4.2.1 各別肌肉力分析 55 4.2.2 整體肌群與階段性分析 62 4.3 最佳化計算與實驗肌肉活化比較分析 65 4.4 小結 71 第五章 結論與未來工作 72 5.1 研究成果與貢獻 72 5.2 研究挑戰與應對策略 73 5.3 未來工作 75 參考文獻 76 附錄A AppendixA 86 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 肌肉力估算 | zh_TW |
| dc.subject | 反向跳動作分析 | zh_TW |
| dc.subject | 多目標最佳化 | zh_TW |
| dc.subject | 希爾式肌肉模型 | zh_TW |
| dc.subject | 遠距復健 | zh_TW |
| dc.subject | Muscle Force Estimation | en |
| dc.subject | Countermovement Jump Analysis | en |
| dc.subject | Multi-Objective Optimization | en |
| dc.subject | Hill-Type Muscle Model | en |
| dc.subject | Telerehabilitation | en |
| dc.title | 反向跳躍中肌肉力分布之最佳化估算:階段性分析與局部肌電圖驗證 | zh_TW |
| dc.title | Optimization-Based Estimation of Muscle Force Distribution in Countermovement Jump: Stage-Wise Analysis with Partial EMG Validation | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 張秉純;徐瑋勵 | zh_TW |
| dc.contributor.oralexamcommittee | Biing-Chwen Chang;Wei-Li Hsu | en |
| dc.subject.keyword | 肌肉力估算,反向跳動作分析,多目標最佳化,希爾式肌肉模型,遠距復健, | zh_TW |
| dc.subject.keyword | Muscle Force Estimation,Countermovement Jump Analysis,Multi-Objective Optimization,Hill-Type Muscle Model,Telerehabilitation, | en |
| dc.relation.page | 89 | - |
| dc.identifier.doi | 10.6342/NTU202502202 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2025-08-01 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 機械工程學系 | - |
| dc.date.embargo-lift | 2025-08-22 | - |
| 顯示於系所單位: | 機械工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf | 8.06 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
