Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 漁業科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99122
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳育騏zh_TW
dc.contributor.advisorYu-Chi Wuen
dc.contributor.author許渟zh_TW
dc.contributor.authorTing Hsuen
dc.date.accessioned2025-08-21T16:28:26Z-
dc.date.available2025-08-22-
dc.date.copyright2025-08-21-
dc.date.issued2025-
dc.date.submitted2025-08-05-
dc.identifier.citation․ Adachi, K., Ichinose, T., Takizawa, N., Watanabe, K., Kitazato, K., & Kobayashi, N. (2007). Inhibition of betanodavirus infection by inhibitors of endosomal acidification. Archives of virology, 152, 2217-2224.
․ Balachandran, S., Kim, C. N., Yeh, W. C., Mak, T. W., Bhalla, K., & Barber, G. N. (1998). Activation of the dsRNA‐dependent protein kinase, PKR, induces apoptosis through FADD‐mediated death signaling. The EMBO journal, 17, 6888-6902.
․ Bandín, I., & Souto, S. (2020). Betanodavirus and VER disease: a 30-year research review. Pathogens 9: 106.
․ Bonnet, M. C., Daurat, C., Ottone, C., & Meurs, E. F. (2006). The N-terminus of PKR is responsible for the activation of the NF-κB signaling pathway by interacting with the IKK complex. Cellular signalling, 18(11), 1865-1875.
․ Cai, R., & Williams, B. R. (1998). Mutations in the double-stranded RNA-activated protein kinase insert region that uncouple catalysis from eIF2α binding. Journal of Biological Chemistry, 273(18), 11274-11280.
․ Cesaro, T., & Michiels, T. (2021). Inhibition of PKR by Viruses. Frontiers in microbiology, 12, 757238.
․ Chaumont, L., Peruzzi, M., Huetz, F., Raffy, C., Le Hir, J., Minke, J., ... & Collet, B. (2024). Salmonid Double-stranded RNA–Dependent Protein Kinase Activates Apoptosis and Inhibits Protein Synthesis. The Journal of Immunology, 213(5), 700-717.
․ Chaumont, L., Collet, B., & Boudinot, P. (2023). Double-stranded RNA-dependent protein kinase (PKR) in antiviral defence in mammals. Developmental & Comparative Immunology, 145, 104732.
․ Chen, L. J., Su, Y. C., & Hong, J. R. (2009). Betanodavirus non-structural protein B1: A novel anti-necrotic death factor that modulates cell death in early replication cycle in fish cells. Virology, 385(2), 444-454.
․ Chen, Y. M., Wang, T. Y., & Chen, T. Y. (2014). Immunity to betanodavirus infections of marine fish. Developmental & Comparative Immunology, 43(2), 174-183.
․ Chi, S. C., Lo, B. J., & Lin, S. C. (2001). Characterization of grouper nervous necrosis virus (GNNV). Journal of Fish Diseases, 24(1), 3-13.
․ Costa, J. Z., & Thompson, K. D. (2016). Understanding the interaction between Betanodavirus and its host for the development of prophylactic measures for viral encephalopathy and retinopathy. Fish & shellfish immunology, 53, 35-49.
․ De Chaumont, F., Dallongeville, S., Chenouard, N., Hervé, N., Pop, S., Provoost, T., ... & Olivo-Marin, J. C. (2012). Icy: an open bioimage informatics platform for extended reproducible research. Nature methods, 9(7), 690-696.
․ Deb, A., Zamanian‐Daryoush, M., Xu, Z., Kadereit, S., & Williams, B. R. (2001). Protein kinase PKR is required for platelet‐derived growth factor signaling of c‐fos gene expression via Erks and Stat3. The EMBO journal.
․ del Castillo, C. S., Hikima, J. I., Ohtani, M., Jung, T. S., & Aoki, T. (2012). Characterization and functional analysis of two PKR genes in fugu (Takifugu rubripes). Fish & Shellfish Immunology, 32(1), 79-88
․ Dey, M., Cao, C., Dar, A. C., Tamura, T., Ozato, K., Sicheri, F., & Dever, T. E. (2005). Mechanistic link between PKR dimerization, autophosphorylation, and eIF2α substrate recognition. Cell, 122(6), 901-913.
․ Dey, M., Cao, C., Sicheri, F., & Dever, T. E. (2007). Conserved intermolecular salt bridge required for activation of protein kinases PKR, GCN2, and PERK. Journal of Biological Chemistry, 282(9), 6653-6660.
․ Donnelly, N., Gorman, A. M., Gupta, S., & Samali, A. (2013). The eIF2α kinases: their structures and functions. Cellular and molecular life sciences, 70, 3493-3511.
․ ENDscript - https://endscript.ibcp.fr, Robert, X. and Gouet, P. (2014). Deciphering key features in protein structures with the new ENDscript server. Nucl. Acids Res. 42(W1), W320-W324.doi: 10.1093/nar/gku316
․ Fenner, B. J., Goh, W., & Kwang, J. (2006). Sequestration and protection of double-stranded RNA by the betanodavirus B2 protein. Journal of virology, 80(14), 6822-6833.
․ Gal-Ben-Ari, S., Barrera, I., Ehrlich, M., & Rosenblum, K. (2019). PKR: a kinase to remember. Frontiers in molecular neuroscience, 11, 480.
․ Gan, Z., Cheng, J., Hou, J., Chen, S., Xia, H., Xia, L., ... & Nie, P. (2021). Tilapia dsRNA-activated protein kinase R (PKR): an interferon-induced antiviral effector with translation inhibition activity. Fish & Shellfish Immunology, 112, 74-80.
․ Garcia, M. A., Meurs, E. F., & Esteban, M. (2007). The dsRNA protein kinase PKR: virus and cell control. Biochimie, 89(6-7), 799-811.
․ Goh, K. C., DeVeer, M. J., & Williams, B. R. (2000). The protein kinase PKR is required for p38 MAPK activation and the innate immune response to bacterial endotoxin. The EMBO journal, 19, 4292-4297.
․ Grotmol, S., Bergh, Ø., & Totland, G. K. (1999). Transmission of viral encephalopathy and retinopathy (VER) to yolk-sac larvae of the Atlantic halibut Hippoglossus hippoglossus: occurrence of nodavirus in various organs and a possible route of infection. Diseases of Aquatic Organisms, 36(2), 95-106.
․ Guo, Y. X., Chan, S. W., & Kwang, J. (2004). Membrane association of greasy grouper nervous necrosis virus protein A and characterization of its mitochondrial localization targeting signal. Journal of virology, 78(12), 6498-6508.
․ Guo, H., Chen, D., Yuan, H., Deng, D., Han, P., Li, Q., ... & Wei, Q. (2021). Molecular characterization and expression analysis of double‐stranded RNA‐dependent protein kinase (PKR) in Dabry’s sturgeon (Acipenser dabryanus). Journal of Applied Ichthyology, 37(2), 169-177.
․ Hu, Y. S., Li, W., Li, D. M., Liu, Y., Fan, L. H., Rao, Z. C., ... & Hu, C. Y. (2013). Cloning, expression and functional analysis of PKR from grass carp (Ctenopharyngodon idellus). Fish & Shellfish Immunology, 35(6), 1874-1881.
․ Hu, Y., Fan, L., Wu, C., Wang, B., Sun, Z., & Hu, C. (2016). Identification and function analysis of the three dsRBMs in the N terminal dsRBD of grass carp (Ctenopharyngodon idella) PKR. Fish & Shellfish Immunology, 50, 91-100.
․ Hu, Z., Du, H., Lin, G., Han, K., Cheng, X., Feng, Z., ... & Hu, C. (2020). Grass carp (Ctenopharyngodon idella) pact induces cell apoptosis and activates nf-Кb Via pkr. Fish & Shellfish Immunology, 103, 377-384.
․ Huang, R., Zhou, Q., Shi, Y., Zhang, J., He, J., & Xie, J. (2018). Protein A from orange-spotted grouper nervous necrosis virus triggers type I interferon production in fish cell. Fish & Shellfish Immunology, 79, 234-243.
․ Huang, X., Huang, Y., Cai, J., Wei, S., Ouyang, Z., & Qin, Q. (2013). Molecular cloning, expression and functional analysis of ISG15 in orange-spotted grouper, Epinephelus coioides. Fish & Shellfish Immunology, 34(5), 1094-1102.
․ Huang, Y., Zhang, Y., Liu, Z., Liu, C., Zheng, J., Qin, Q., & Huang, X. (2020). Autophagy participates in lysosomal vacuolation-mediated cell death in RGNNV-infected cells. Frontiers in Microbiology, 11, 790.
․ Jimenez, V., Paredes, R., Sosa, M. A., & Galanti, N. (2008). Natural programmed cell death in T. cruzi epimastigotes maintained in axenic cultures. Journal of cellular biochemistry, 105(3), 688-698.
․ Kalveram, B., Lihoradova, O., Indran, S. V., Lokugamage, N., Head, J. A., & Ikegami, T. (2013a). Rift Valley fever virus NSs inhibits host transcription independently of the degradation of dsRNA-dependent protein kinase PKR. Virology, 435(2), 415-424.
․ Kalveram, B., & Ikegami, T. (2013b). Toscana virus NSs protein promotes degradation of double-stranded RNA-dependent protein kinase. Journal of virology, 87(7), 3710-3718.
․ Kibenge, F. S., & Godoy, M. G. (Eds.). (2024). Aquaculture virology. Elsevier.
․ Kim, J. O., Kim, W. S., & Oh, M. J. (2019). Investigation of nervous necrosis virus (NNV) replication in vitro using RNA in situ hybridization. Virus Research, 260, 78-85.
․ Kim, J. O., Kim, S. J., Kim, J. O., Kim, W. S., & Oh, M. J. (2018). Distribution of nervous necrosis virus (NNV) in infected sevenband grouper, Hyporthodus septemfasciatus by intramuscular injection or immersion challenge. Aquaculture, 489, 1-8.
․ Klionsky, D. J., Abeliovich, H., Agostinis, P., Agrawal, D. K., Aliev, G., Askew, D. S., ... & Paglin, S. (2008). Guidelines for the use and interpretation of assays for monitoring autophagy in higher eukaryotes. Autophagy, 4(2), 151-175.
․ Korsnes, K., Karlsbakk, E., Devold, M., Nerland, A. H., & Nylund, A. (2009). Tissue tropism of nervous necrosis virus (NNV) in Atlantic cod, Gadus morhua L., after intraperitoneal challenge with a virus isolate from diseased Atlantic halibut, Hippoglossus hippoglossus (L.). Journal of fish diseases, 32(8), 655-665.
․ Krishnan, R., Kim, J. O., Qadiri, S. S. N., Kim, J. O., & Oh, M. J. (2020). Early viral uptake and host-associated immune response in the tissues of seven-band grouper following a bath challenge with nervous necrosis virus. Fish & Shellfish Immunology, 103, 454-463.
․ Lee, J. H., Park, E. J., Kim, O. S., Kim, H. Y., Joe, E. H., & Jou, I. (2005). Double‐stranded RNA–activated protein kinase is required for the LPS‐induced activation of STAT1 inflammatory signaling in rat brain glial cells. Glia, 50(1), 66-79.
․ Li, C., Liu, J., Zhang, X., Yu, Y., Huang, X., Wei, J., & Qin, Q. (2020). Red grouper nervous necrosis virus (RGNNV) induces autophagy to promote viral replication. Fish & shellfish immunology, 98, 908-916.L
․ Liu, T. K., Zhang, Y. B., Liu, Y., Sun, F., & Gui, J. F. (2011). Cooperative roles of fish protein kinase containing Z-DNA binding domains and double-stranded RNA-dependent protein kinase in interferon-mediated antiviral response. Journal of virology, 85(23), 12769-12780.
․ Lu, M. W., Ngou, F. H., Chao, Y. M., Lai, Y. S., Chen, N. Y., Lee, F. Y., & Chiou, P. P. (2012). Transcriptome characterization and gene expression of Epinephelus spp in endoplasmic reticulum stress-related pathway during betanodavirus infection in vitro. BMC genomics, 13, 1-12.
․ Meurs, E., Chong, K., Galabru, J., Thomas, N. S. B., Kerr, I. M., Williams, B. R., & Hovanessian, A. G. (1990). Molecular cloning and characterization of the human double-stranded RNA-activated protein kinase induced by interferon. Cell, 62(2), 379-390.
․ Mizushima, N. (2004). Methods for monitoring autophagy. The international journal of biochemistry & cell biology, 36(12), 2491-2502.
․ Munafó, D. B., & Colombo, M. I. (2001). A novel assay to study autophagy: regulation of autophagosome vacuole size by amino acid deprivation. Journal of cell science, 114(20), 3619-3629.
․ Mushiake, K., Nishizawa, T., Nakai, T., Furusawa, I., & Muroga, K. (1994). Control of VNN in striped jack: selection of spawners based on the detection of SJNNV gene by polymerase chain reaction (PCR). Fish Pathology, 29(3), 177-182.
․ Niemann, A., Takatsuki, A., & Elsässer, H. P. (2000). The lysosomotropic agent monodansylcadaverine also acts as a solvent polarity probe. Journal of Histochemistry & Cytochemistry, 48(2), 251-258.
․ Olveira, J. G., Soares, F., Engrola, S., Dopazo, C. P., & Bandín, I. (2008). Antemortem versus postmortem methods for detection of betanodavirus in Senegalese sole (Solea senegalensis). Journal of Veterinary Diagnostic Investigation, 20(2), 215-219.
․ Patel, R. C., Stanton, P., & Sen, G. C. (1996). Specific mutations near the amino terminus of double-stranded RNA-dependent protein kinase (PKR) differentially affect its double-stranded RNA binding and dimerization properties. Journal of Biological Chemistry, 271(41), 25657-25663
․ Rothenburg, S., Deigendesch, N., Dey, M., Dever, T. E., & Tazi, L. (2008). Double-stranded RNA-activated protein kinase PKR of fishes and amphibians: varying the number of double-stranded RNA binding domains and lineage-specific duplications. BMC biology, 6, 1-19.
․ Rothenburg, S., Chinchar, V. G., & Dever, T. E. (2011). Characterization of a ranavirus inhibitor of the antiviral protein kinase PKR. BMC microbiology, 11, 1-12.
․ Scapigliati, G., Buonocore, F., Randelli, E., Casani, D., Meloni, S., Zarletti, G., ... & Alvarez, M. C. (2010). Cellular and molecular immune responses of the sea bass (Dicentrarchus labrax) experimentally infected with betanodavirus. Fish & Shellfish Immunology, 28(2), 303-311.
․ Schümann, M., Gantke, T., & Mühlberger, E. (2009). Ebola virus VP35 antagonizes PKR activity through its C-terminal interferon inhibitory domain. Journal of virology, 83(17), 8993-8997.
․ Sharma, N. R., Majerciak, V., Kruhlak, M. J., & Zheng, Z. M. (2017). KSHV inhibits stress granule formation by viral ORF57 blocking PKR activation. PLoS pathogens, 13(10), e1006677.
․ Souto, S., Olveira, J. G., Alonso, M. C., Dopazo, C. P., & Bandín, I. (2018). Betanodavirus infection in bath‐challenged Solea senegalensis juveniles: A comparative analysis of RGNNV, SJNNV and reassortant strains. Journal of Fish Diseases, 41(10), 1571-1578.
․ Spanggord, R. J., Vuyisich, M., & Beal, P. A. (2002). Identification of binding sites for both dsRBMs of PKR on kinase-activating and kinase-inhibiting RNA ligands. Biochemistry, 41(14), 4511-4520.
․ Su, Y., Xu, H., Ma, H., Feng, J., Wen, W., & Guo, Z. (2015). Dynamic distribution and tissue tropism of nervous necrosis virus in juvenile pompano (Trachinotus ovatus) during early stages of infection. Aquaculture, 440, 25-31.
․ Valero, Y., Arizcun, M., Esteban, M. A., Bandin, I., Olveira, J. G., Patel, S., ... & Chaves-Pozo, E. (2015). Nodavirus colonizes and replicates in the testis of gilthead seabream and European sea bass modulating its immune and reproductive functions. PLoS One, 10(12), e0145131.
․ Vargas, J. N. S., Hamasaki, M., Kawabata, T., Youle, R. J., & Yoshimori, T. (2023). The mechanisms and roles of selective autophagy in mammals. Nature reviews Molecular cell biology, 24(3), 167-185.
․ Vendramin, N., Patarnello, P., Toffan, A., Panzarin, V., Cappellozza, E., Tedesco, P., ... & Cattoli, G. (2013). Viral Encephalopathy and Retinopathy in groupers (Epinephelus spp.) in southern Italy: a threat for wild endangered species ?. BMC Veterinary Research, 9, 1-7.
․ Vonaesch, P., Sansonetti, P. J., & Schnupf, P. (2017). Immunofluorescence Analysis of Stress Granule Formation After Bacterial Challenge of Mammalian Cells. Journal of Visualized Experiments: Jove, (125), 55536.
․ Wang, L., Wu, Z., Huang, Q., Huang, K., Qi, G., Wu, C., ... & Hu, C. (2018). Grass carp (Ctenopharyngodon idella) STAT3 regulates the eIF2α phosphorylation through interaction with PKR. Developmental & Comparative Immunology, 78, 26-34.
․ Wei, J., Zang, S., Li, C., Zhang, X., Gao, P., & Qin, Q. (2020). Grouper PKR activation inhibits red-spotted grouper nervous necrosis virus (RGNNV) replication in infected cells. Developmental & Comparative Immunology, 111, 103744.
․ Wu, N., Song, Y. L., Wang, B., Zhang, X. Y., Zhang, X. J., Wang, Y. L., ... & Zhang, Y. A. (2016). Fish gut-liver immunity during homeostasis or inflammation revealed by integrative transcriptome and proteome studies. Scientific reports, 6(1), 36048.
․ Wu, Y. C., & Chi, S. C. (2007). Cloning and analysis of antiviral activity of a barramundi (Lates calcarifer) Mx gene. Fish & shellfish immunology, 23(1), 97-108.
․ Yamamoto, H., & Matsui, T. (2024). Molecular mechanisms of macroautophagy, microautophagy, and chaperone-mediated autophagy. Journal of Nippon Medical School, 91(1), 2-9.
․ Yang, J. (2023). Viruses binding to host receptors interacts with autophagy. International journal of molecular sciences, 24(4), 3423.
․ Zapata, A. G. (2024). The fish spleen. Fish & Shellfish Immunology, 144, 109280.
․ Zenke, K., Nam, Y. K., & Kim, K. H. (2010). Molecular cloning and expression analysis of double-stranded RNA-dependent protein kinase (PKR) in rock bream (Oplegnathus fasciatus). Veterinary immunology and immunopathology, 133(2-4), 290-295.
․ Zhou, Z., He, Y., Wang, S., Wang, Y., Shan, P., & Li, P. (2022). Autophagy regulation in teleost fish: A double-edged sword. Aquaculture, 558, 738369
․ Zhu, R., Zhang, Y. B., Zhang, Q. Y., & Gui, J. F. (2008). Functional domains and the antiviral effect of the double-stranded RNA-dependent protein kinase PKR from Paralichthys olivaceus. Journal of virology, 82(14), 6889-6901.
․ Zou, J., & Secombes, C. J. (2011). Teleost fish interferons and their role in immunity. Developmental & Comparative Immunology, 35(12), 1376-1387.

 
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99122-
dc.description.abstract雙股RNA激活蛋白激酶 (Double-stranded RNA-activated protein kinase, PKR) 為干擾素誘導基因之一,在脊椎動物先天免疫中扮演重要角色。PKR的典型抗病毒機制,為透過磷酸化eIF2α、抑制蛋白質轉譯,在抑制病毒蛋白表現的同時,也引發細胞自噬避免病毒複製。此反應途徑已在哺乳動物及部分真骨魚類中證實;但在石斑魚中,PKR在病毒感染下的功能仍所知有限。本次自點帶石斑魚 (Epinephelus coioides) 細胞中分離出PKR同源物,並命名為GPKR;實驗旨在探討其於神經壞死病毒 (Nervous Necrosis Virus, NNV) 感染下的表現模式與功能,並進一步驗證其是否會影響細胞自噬。GPKR基因包含長度為1659 bp的ORF,對應552個胺基酸,在系統發育樹分析中,與龍膽石斑魚PKR最相近。GPKR蛋白具有N端的兩個dsRBM (Double-stranded RNA binding motif) 及C端的Serine/Threonine激酶結構域;因與其他脊椎動物PKR具有相似的結構域,因此推測GPKR可能也具有相似的功能。為探討GPKR在病毒感染下於活體中的表現,首先以107 TCID50之NNV攻毒石斑魚,並在感染前後以qPCR測定不同組織的GPKR mRNA表現量。結果顯示,GPKR廣泛存在於所有觀察的組織中,並在感染前就有基本表現量,感染後則在心臟、肝臟與脾臟中顯著上調。在細胞實驗中,以NNV感染石斑魚腦細胞 (cGB) 與鰭細胞 (GF-3),觀察到GPKR的顯著上調,證實其會受病毒感染引發。此外若在細胞中轉染poly (I:C),同樣能刺激GPKR的表現;進一步顯示其受dsRNA誘發的特性。若以siRNA敲落GPKR基因,則病毒NNV RNA2的表現量會在感染後72小時下降,顯示GPKR可能參與NNV的複製過程。為探討GPKR是否參與自噬反應,本次利用MDC染劑標記自噬小體,並觀察其數量變化。結果顯示自噬小體數量會隨病毒感染增多,但GPKR敲落並不會對自噬反應造成影響。本研究在點帶石斑魚中,首次分離並定義PKR同源蛋白:GPKR。有別於脊椎動物PKR常見的抗病毒功能,GPKR似乎參與了NNV的複製,且其作用機制與自噬反應無關。zh_TW
dc.description.abstractDouble-stranded RNA-activated protein kinase (PKR) is an interferon-stimulated gene that plays a crucial role in the innate immune response of vertebrates. Its classical antiviral mechanism involves phosphorylation of eIF2α, which inhibits protein translation, thereby suppressing viral protein synthesis and triggering autophagy to prevent viral replication. While this pathway has been well-documented in mammals and certain teleost species, the functional role of PKR during viral infection in groupers remains largely unknown. In this study, we identified and cloned a PKR homolog: GPKR from orange-spotted grouper (Epinephelus coioides) and investigated its expression pattern and potential function during nervous necrosis virus (NNV) infection. Its possible involvement in autophagy was also examined. GPKR gene contains an ORF of 1659 bp, encoding a protein of 552 amino acids. Phylogenetic analysis showed that GPKR is most closely related to giant grouper PKR. GPKR contained two N-terminal double-stranded RNA-binding motifs (dsRBMs) and a C-terminal serine/threonine kinase domain. This result indicated functional domain conservation and suggesting potential functional similarity between GPKR and other vertebrate PKRs. To evaluate the in vivo expression of GPKR, groupers were challenged with NNV at a dose of 10⁷ TCID₅₀. Tissue-specific GPKR mRNA levels were measured using qPCR before and after infection. Results showed that GPKR was found to be constitutively expressed in all examined tissues pre-infection and significantly upregulated in heart, liver, and spleen post-infection. In vitro, NNV infection of grouper brain cells (cGB) and fin cells (GF-3) resulted in upregulation of GPKR, confirming its inducibility by viral infection. Similarly, transfection with poly(I:C) also elevated GPKR levels, suggesting that its upregulation is responsive to double-stranded RNA stimulation. Knockdown of GPKR via siRNA led to a reduction in NNV RNA2 levels at 72 hours post-infection, indicating a potential role in supporting viral replication. To assess whether GPKR is involved in autophagy, MDC staining was used to monitor autophagosome formation. The results showed an increase in autophagosome number following viral infection; however, no significant difference of autophagosome number was found in GPKR knockdown cells. This is the first study to characterize a new PKR homolog: GPKR in E. coioides. Unlike the typical antiviral function of vertebrate PKRs, GPKR appears to play a role in NNV replication, possibly through mechanisms that are independent of autophagy.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-21T16:28:26Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-08-21T16:28:26Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents目次
致謝 I
中文摘要 II
英文摘要 IV
目次 VI
圖次 VIII
表次 VIII

第一章、文獻回顧 1
1. 神經壞死病毒 1
1.1 NNV基因組及基因型 1
1.2 病毒性神經壞死症 2
1.3 NNV感染後在組織中的分布 2
1.4 NNV的感染與複製 3
1.5 NNV之細胞病變效應 4
1.6 NNV感染引發的先天免疫反應 4
2. 雙股RNA激活蛋白激酶 5
2.1 PKR的結構與活化 5
2.2 PKR之抗病毒功能 6
2.3魚類的PKR 6
2.4 病毒的抗PKR機制 7
3. 細胞自噬 8
3.1細胞自噬簡介 8
3.2 細胞自噬與NNV 9
4. 點帶石斑魚 10
5. 研究動機 10

第二章、材料與方法 12
2.1 細胞株與病毒 12
2.2 GPKR序列分析 12
2.3 攻毒與病毒感染 13
2.4 RNA干擾 14
2.5 RNA萃取 14
2.6 反轉錄聚合酶連鎖反應 15
2.7 即時定量PCR 15
2.8 MDC染色和自噬小體偵測 15
2.9 統計方法 16

第三章、結果 17
3.1 GPKR之序列與系統發育樹分析 17
3.2 GPKR之保守結構域分析 18
3.3 GPKR之表現模式檢測 18
3.4 GPKR敲落對NNV複製的影響 20
3.5 GPKR敲落對細胞自噬的影響 20

第四章、討論 22
4.1 GPKR之相似度與系統發育樹分析 22
4.2 GPKR之多序列比對分析 23
4.3 GPKR與NNV在各組織間的表現模式 24
4.4 GPKR與NNV在細胞中的表現模式 26
4.5 PKR敲落效果的延遲 27
4.6自噬小體數量偵測:影像分析與螢光偵測法之比較 28
4.7 GPKR表現對NNV複製的影響 29
4.8 總結 30

第五章、參考文獻 32

表次
表1 本次研究中使用的引子 (primer) 與siRNA序列 42
表2 與GPKR全長序列比對的13種魚類與哺乳動物PKR之NCBI登錄號及相似度對照表 43

圖次
圖1. GPKR與其他13種魚類及哺乳動物PKR之系統發育樹 44
圖2. GPKR與其他7種魚類及哺乳動物PKR之保守結構域與多序列比對分析 45
圖3. 石斑魚感染前後各臟器中的GPKR與NNV RNA2表現量變化 50
圖4. NNV感染或poly (I:C) 轉染細胞中GPKR與NNV RNA2的表現量變化 52
圖5. GPKR敲落在0-72 hpi對NNV複製的影響 53
圖6. 以影像分析法與螢光偵測法檢測NNV感染下的細胞自噬反應 54
圖7. 以螢光測法觀察GPKR敲落在24 hpi對細胞自噬的影響 55
圖8. GPKR與其他13種魚類及哺乳動物PKR之 dsRBM系統發育樹分析 56
附圖1. NNV RNA2 Cq值換算複製量之對照圖表 57
-
dc.language.isozh_TW-
dc.subject雙股RNA激活蛋白激酶zh_TW
dc.subject神經壞死病毒zh_TW
dc.subject細胞自噬作用zh_TW
dc.subject點帶石斑魚zh_TW
dc.subject先天免疫zh_TW
dc.subjectautophagyen
dc.subjectPKRen
dc.subjectNNVen
dc.subjectinnate immunityen
dc.subjectorange-spotted grouperen
dc.title石斑魚雙股RNA激活蛋白激酶對野田病毒複製與細胞自噬之影響zh_TW
dc.titleThe effect of grouper double-stranded RNA-activated protein kinase on Betanodavirus replication and autophagyen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee韓玉山;蓋玉軒zh_TW
dc.contributor.oralexamcommitteeYu-Shan Han;Yu-Hsuan Kaien
dc.subject.keyword雙股RNA激活蛋白激酶,神經壞死病毒,細胞自噬作用,點帶石斑魚,先天免疫,zh_TW
dc.subject.keywordPKR,NNV,autophagy,orange-spotted grouper,innate immunity,en
dc.relation.page57-
dc.identifier.doi10.6342/NTU202503137-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2025-08-07-
dc.contributor.author-college生命科學院-
dc.contributor.author-dept漁業科學研究所-
dc.date.embargo-lift2025-08-22-
顯示於系所單位:漁業科學研究所

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
3.11 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved