Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電信工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99107
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor劉俊麟zh_TW
dc.contributor.advisorChun-Lin Liuen
dc.contributor.author賴品臻zh_TW
dc.contributor.authorPin-Jen Laien
dc.date.accessioned2025-08-21T16:24:54Z-
dc.date.available2025-08-22-
dc.date.copyright2025-08-21-
dc.date.issued2025-
dc.date.submitted2025-08-05-
dc.identifier.citation[1] H. L. Van Trees, Optimum Array Processing: Part IV of Detection, Estimation, and Modulation Theory. John Wiley & Sons, 2002.
[2] D. H. Johnson and D. E. Dudgeon, Array Signal Processing: Concepts and Techniques. Simon & Schuster, Inc., 1992.
[3] A. Aragon-Zavala, Antennas and Propagation for Wireless Communication Systems. John Wiley & Sons, 2008.
[4] B. Choudhury, O. P. Acharya, and A. Patnaik, “Bacteria foraging optimization in antenna engineering: An application to array fault finding,” International Journal of RF and Microwave Computer-Aided Engineering, vol. 23, no. 2, pp. 141–148, 2013.
[5] P. Tait, Introduction to Radar Target Recognition, vol. 18. IET, 2005.
[6] W.-D. Wirth, Radar Techniques Using Array Antennas. No. 10, IET, 2001.
[7] T. S. Rappaport, S. Sun, R. Mayzus, H. Zhao, Y. Azar, K. Wang, G. N. Wong, J. K. Schulz, M. Samimi, and F. Gutierrez, “Millimeter wave mobile communications for 5G cellular: It will work!,” IEEE Access, vol. 1, pp. 335–349, 2013.
[8] A. Goldsmith, Wireless Communications. Cambridge University Press, 2005.
[9] E. Ali, M. Ismail, R. Nordin, and N. F. Abdulah, “Beamforming techniques for massive MIMO systems in 5G: overview, classification, and trends for future research,” Frontiers of Information Technology & Electronic Engineering, vol. 18, pp. 753–772, 2017.
[10] L. C. Godara, “Application of antenna arrays to mobile communications. II. beamforming and direction-of-arrival considerations,” Proceedings of the IEEE, vol. 85, no. 8, pp. 1195–1245, 1997.
[11] S. Haykin, J. Reilly, V. Kezys, and E. Vertatschitsch, “Some aspects of array signal processing,” in IEE Proceedings F (Radar and Signal Processing), vol. 139, pp. 1–26, IET, 1992.
[12] A. Patwari, “Sparse linear antenna arrays: A review,” in Antenna Systems (H. Al-Rizzo and S. Abushamleh, eds.), ch. 6, Rijeka: IntechOpen, 2021.
[13] P. Y. Zhou and M. A. Ingram, “Pattern synthesis for arbitrary arrays using an adaptive array method,” IEEE Transactions on Antennas and Propagation, vol. 47, no. 5, pp. 862–869, 1999.
[14] H. E. Najafabadi, H. Leung, and P. W. Moo, “Designing sequences with minimized mean sidelobe level for cognitive radars,” IEEE Access, vol. 9, pp. 101643–101654, 2021.
[15] C. L. Dolph, “A current distribution for broadside arrays which optimizes the relationship between beam width and side-lobe level,” Proceedings of the IRE, vol. 34, no. 6, pp. 335–348, 1946.
[16] D. Slepian, “Prolate spheroidal wave functions, fourier analysis, and uncertainty—v: The discrete case,” Bell System Technical Journal, vol. 57, no. 5, pp. 1371–1430, 1978.
[17] S. Haykin, Adaptive Filter Theory. Pearson, 2014.
[18] J. Capon, “High-resolution frequency-wavenumber spectrum analysis,” Proceedings of the IEEE, vol. 57, no. 8, pp. 1408–1418, 1969.
[19] L. Griffiths and C. Jim, “An alternative approach to linearly constrained adaptive beamforming,” IEEE Transactions on Antennas and Propagation, vol. 30, no. 1, pp. 27–34, 1982.
[20] K. Buckley and L. Griffiths, “An adaptive generalized sidelobe canceller with derivative constraints,” IEEE Transactions on Antennas and Propagation, vol. 34, no. 3, pp. 311–319, 1986.
[21] B. D. Van Veen and K. M. Buckley, “Beamforming: A versatile approach to spatial filtering,” IEEE Acoustics, Speech, and Signal Processing magazine, vol. 5, no. 2, pp. 4–24, 1988.
[22] R. Schmidt, “Multiple emitter location and signal parameter estimation,” IEEE Transactions on Antennas and Propagation, vol. 34, no. 3, pp. 276–280, 1986.
[23] R. Roy and T. Kailath, “ESPRIT-estimation of signal parameters via rotational invariance techniques,” IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. 37, no. 7, pp. 984–995, 1989.
[24] F. B. Gross, Smart antennas with MATLAB®. McGraw-Hill Education, 2015.
[25] E. C. Marques, N. Maciel, L. Naviner, H. Cai, and J. Yang, “A review of sparse recovery algorithms,” IEEE Access, vol. 7, pp. 1300–1322, 2018.
[26] P. Pal and P. P. Vaidyanathan, “Nested arrays: A novel approach to array processing with enhanced degrees of freedom,” IEEE Transactions on Signal Processing, vol. 58, no. 8, pp. 4167–4181, 2010.
[27] P. Pal and P. P. Vaidyanathan, “Coprime sampling and the MUSIC algorithm,” in 2011 Digital signal processing and signal processing education meeting (DSP/SPE), pp. 289–294, IEEE, 2011.
[28] A. Moffet, “Minimum-redundancy linear arrays,” IEEE Transactions on Antennas and Propagation, vol. 16, no. 2, pp. 172–175, 1968.
[29] C.-L. Liu and P. P. Vaidyanathan, “Cramér–Rao bounds for coprime and other sparse arrays, which find more sources than sensors,” Digital Signal Processing, vol. 61, pp. 43–61, 2017.
[30] Z. Zheng, W.-Q. Wang, Y. Kong, and Y. D. Zhang, “MISC array: A new sparse array design achieving increased degrees of freedom and reduced mutual coupling effect,” IEEE Transactions on Signal Processing, vol. 67, no. 7, pp. 1728–1741, 2019.
[31] R. Rajamäki, M. C. Hücümenoğlu, P. Sarangi, and P. Pal, “Effect of beampattern on matrix completion with sparse arrays,” in ICASSP 2024-2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 13451–13455, IEEE, 2024.
[32] Z. Wang, W.-Q. Wang, Z. Zheng, and H. Shao, “Nested array sensor with grating lobe suppression and arbitrary transmit–receive beampattern synthesis,” IEEE Access, vol. 6, pp. 9227–9237, 2018.
[33] F. S. Rawnaque and J. R. Buck, “Comparing the effect of aperture extension on the peak sidelobe level of sparse arrays,” The Journal of the Acoustical Society of America, vol. 142, no. 5, pp. EL467–EL472, 2017.
[34] S. Nai, W. Ser, Z. Yu, and S. Rahardja, “A robust adaptive beamforming framework with beampattern shaping constraints,” IEEE Transactions on Antennas and Propagation, vol. 57, no. 7, pp. 2198–2203, 2009.
[35] Y. Fan, L. Yu, Y. Wei, and R. Xu, “A beamformer based on sparse array with various array structures,” in International Conference in Communications, Signal Processing, and Systems, pp. 2182–2189, Springer, 2017.
[36] J. Liang, X. Zhang, H. C. So, and D. Zhou, “Sparse array beampattern synthesis via alternating direction method of multipliers,” IEEE Transactions on Antennas and Propagation, vol. 66, no. 5, pp. 2333–2345, 2018.
[37] S. E. Nai, W. Ser, Z. L. Yu, and H. Chen, “Beampattern synthesis for linear and planar arrays with antenna selection by convex optimization,” IEEE Transactions on Antennas and Propagation, vol. 58, no. 12, pp. 3923–3930, 2010.
[38] Z. Zheng, Y. Fu, and W.-Q. Wang, “Sparse array beamforming design for coherently distributed sources,” IEEE Transactions on Antennas and Propagation, vol. 69, no. 5, pp. 2628–2636, 2020.
[39] S. A. Hamza and M. G. Amin, “Hybrid sparse array beamforming design for general rank signal models,” IEEE Transactions on Signal Processing, vol. 67, no. 24, pp. 6215–6226, 2019.
[40] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv preprint arXiv:1412.6980, 2014.
[41] A. Hjørungnes, Complex-Valued Matrix Derivatives: With Applications in Signal Processing and Communications. Cambridge University Press, 2011.
[42] P. P. Vaidyanathan, S.-M. Phoong, and Y.-P. Lin, Signal Processing and Optimization for Transceiver Systems. Cambridge University Press, 2010.
[43] J. Hass et al., Thomas’ Calculus. Pearson Education India, 2008.
[44] Z.-X. Su, “On the analysis of the difference coarray and the power pattern of extended Singer arrays,” Master’s thesis, Graduate Institute of Communication Engineering, National Taiwan University, 2024.
[45] D. W. Lozier, “NIST digital library of mathematical functions,” Annals of Mathematics and Artificial Intelligence, vol. 38, pp. 105–119, 2003.
[46] R. J. Stegen, “Excitation coefficients and beamwidths of Tschebyscheff arrays,” Proceedings of the IRE, vol. 41, no. 11, pp. 1671–1674, 1953.
[47] R. G. Lyons, Understanding Digital Signal Processing, 3/E. Pearson Education India, 1997.
[48] R. A. Horn and C. R. Johnson, Matrix Analysis. Cambridge university press, 2nd ed., 2012.
[49] S. Mabrouki, I. Dayoub, Q. Li, and M. Berbineau, “Codebook designs for millimeterwave communication systems in both low- and high-mobility: Achievements and challenges,” IEEE Access, vol. 10, pp. 25786–25810, 2022.
[50] Y.-N. R. Li, B. Gao, X. Zhang, and K. Huang, “Beam management in millimeterwave communications for 5G and beyond,” IEEE Access, vol. 8, pp. 13282–13293, 2020.
[51] S. Li, H. Wu, and L. Jin, “Codebook-aided DOA estimation algorithms for massive MIMO system,” Electronics, vol. 8, no. 1, p. 26, 2018.
[52] S. S. Nair and S. Bhashyam, “Non-uniform amplitude codebooks for MU-MIMO in millimeter wave systems,” in 2020 National Conference on Communications (NCC), pp. 1–6, 2020.
[53] C.-L. Liu and P. P. Vaidyanathan, “Optimizing minimum redundancy arrays for robustness,” in 2018 52nd Asilomar conference on signals, systems, and computers, pp. 79–83, IEEE, 2018.
[54] I. Goodfellow, Y. Bengio, A. Courville, and Y. Bengio, Deep learning, vol. 1. MIT press Cambridge, 2016.
[55] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning representations by back-propagating errors,” Nature, vol. 323, no. 6088, pp. 533–536, 1986.
[56] N. Qian, “On the momentum term in gradient descent learning algorithms,” Neural networks, vol. 12, no. 1, pp. 145–151, 1999.
[57] T. Tieleman and G. Hinton, “Lecture 6.5-RMSprop, coursera: Neural networks for machine learning,” University of Toronto, Technical Report, vol. 6, 2012.
[58] J. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient methods for online learning and stochastic optimization.,” Journal of machine learning research, vol. 12, no. 7, 2011.
[59] M. D. Zeiler, “Adadelta: An adaptive learning rate method,” arXiv preprint arXiv:1212.5701, 2012.
[60] A. N. Tikhonov and V. Y. Arsenin, Solutions of ill-posed problems. Washington, D.C.: John Wiley & Sons, New York: V. H. Winston & Sons, 1977. Translated from the Russian, Preface by translation editor Fritz John, Scripta Series in Mathematics.
[61] G. H. Golub and C. F. Van Loan, Matrix Computations. JHU press, 2013.
[62] B. Ghojogh, F. Karray, and M. Crowley, “Eigenvalue and generalized eigenvalue problems: Tutorial,” arXiv preprint arXiv:1903.11240, 2019.
[63] J. Benesty, J. Chen, and Y. Huang, “Conventional beamforming techniques,” Microphone array signal processing, pp. 39–65, 2008.
[64] Y. Heng, J. Mo, and J. G. Andrews, “Learning site-specific probing beams for fast mmwave beam alignment,” IEEE Transactions on Wireless Communications, vol. 21, no. 8, pp. 5785–5800, 2022.
[65] G. A. Seber, A Matrix Handbook for Statisticians. John Wiley & Sons, 2008.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99107-
dc.description.abstract近年來,稀疏陣列的設計在雷達和無線通信等各個領域受到廣泛關注。著名的稀疏陣列包括最小冗餘陣列(MRA)、嵌套陣列(NA)和互質陣列(CA),僅舉幾例。相比於擁有相同感測器數量的均勻線性陣列(ULAs),稀疏陣列能提供更大的孔徑和更高的自由度(DOF)。它們通過其結構化的差分共陣列,能實現更好的來向角(DOA)估計。然而,由於其不均勻的感測器放置,MRAs、NAs和CAs的傳統波束圖樣存在某些限制。與ULA相比,它們可能會顯示出更高的旁瓣水平或不規則的主瓣形狀。它們可能缺乏明確的零點,這使得主瓣與旁瓣區域之間的區分變得困難。此外,大多數現有的波束圖樣合成方法也未充分考慮這些稀疏陣列。
在本論文中,我們提出一種基於最小化整合旁瓣水平(ISLL)的波束成形權重設計演算法。該方法透過放置第一個零點來定義主瓣和旁瓣區域。該算法採用自適應動量估計(Adam)來迭代性地解決問題。我們的演算法不受特定陣列配置的限制。它允許靈活地放置第一個零點,以明確定義主瓣和旁瓣區域,實現更好的旁瓣抑制或更集中的主瓣能量。
模擬結果證明了所提出的演算法在不同陣列配置中的性能。對於ULAs,我們的方法在相同主瓣寬度下可達到比現有設計更低的ISLL和平均旁瓣水平(MSLL)。我們將所提出的方法應用於嵌套陣列(NA)與互質陣列(CA),並在不同的參數設定與感測器數量下評估其波束圖樣。結果顯示,旁瓣抑制效果與主瓣形狀的品質與第一零點的位置及正則化參數的選擇密切相關。此外,我們通過重建信號實驗展示了所提出的波束成形權重在不同干擾情境下的有效性。我們亦展示了所提出方法在波束碼本設計上的潛在應用。
zh_TW
dc.description.abstractIn recent years, the design of sparse arrays has received widespread attention in various fields such as radar and wireless communications. The well-known sparse arrays include the Minimum Redundancy Array (MRA), Nested Array (NA), and Coprime Array (CA), to name just a few. Compared to uniform linear arrays (ULAs) with the same number of sensors, sparse arrays provide a larger aperture and higher degrees of freedom (DOF). They enable better direction-of-arrival (DOA) estimation via their structured difference coarrays. However, due to the non-uniform sensor placement, the conventional beam patterns of MRAs, NAs, and CAs have certain limitations. Compared to ULAs, they may exhibit higher sidelobe levels or irregular mainlobe shapes. They may lack well-defined nulls, making it difficult to distinguish between the mainlobe and sidelobe regions. Moreover, most existing beam pattern synthesis methods have not sufficiently addressed these sparse arrays.
In this thesis, we propose an algorithm for designing beamforming weights based on minimizing the Integrated Sidelobe Level (ISLL). The approach involves placing the first null to define the mainlobe and sidelobe regions. The algorithm adopts the Adaptive Moment Estimation (Adam) to solve the problem iteratively. Our algorithm is not limited to a specific array configuration. It allows flexible placement of the first null to explicitly define mainlobe and sidelobe regions, enabling better sidelobe suppression or more concentrated mainlobe energy.
The simulation results demonstrate the performance of the proposed algorithm across different array configurations. For ULAs, our method achieves lower ISLL and mean sidelobe levels (MSLL) than existing designs with the same mainlobe width. We apply the proposed method to NAs and CAs, and evaluate the beam patterns under various parameter settings and sensor counts. The results show that sidelobe suppression and the quality of the mainlobe shape are closely influenced by the choice of the first null and the regularization parameter. Furthermore, we demonstrate the effectiveness of the proposed beamforming weights in different interference scenarios through signal reconstruction experiments. We also present the potential application of the proposed method in beamforming codebook design.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-21T16:24:54Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-08-21T16:24:54Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsVerification Letter from the Oral Examination Committee i
Acknowledgements iii
摘要 v
Abstract vii
Contents ix
List of Figures xiii
List of Tables xix
Chapter 1 Introduction 1
1.1 Overview and Motivation . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Outline of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Chapter 2 Preliminary 9
2.1 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Beamforming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2.1 Parameters in Beam Patterns . . . . . . . . . . . . . . . . . . . . . 18
2.2.2 Spectral Weighting . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.2.2.1 Dolph-Chebyshev . . . . . . . . . . . . . . . . . . . . 26
2.2.2.2 Discrete Prolate Spheroidal sequences . . . . . . . . . 28
2.2.3 Codebook-based Beamforming . . . . . . . . . . . . . . . . . . . . 30
2.3 Sparse Array . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.3.1 The Minimum Redundancy Array . . . . . . . . . . . . . . . . . . 37
2.3.2 The Nested Array . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.3.3 The Coprime Array . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.4 Gradient Descent . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
2.4.1 Momentum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
2.4.2 RMSProp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
2.4.3 Adaptive Moment Estimation (Adam) . . . . . . . . . . . . . . . . 49
Chapter 3 Adam-ISLL Minimization Algorithm 51
3.1 The Optimization Problem . . . . . . . . . . . . . . . . . . . . . . . 51
3.2 The Non-convexity of the Optimization Problem . . . . . . . . . . . 53
3.3 Reformulating the Problem via Lagrangian and Adam . . . . . . . . 56
3.4 Algorithm Illustration and Discussion . . . . . . . . . . . . . . . . . 60
Chapter 4 Performance Evaluation of the Algorithm Parameters 67
4.1 The Selection of the Algorithm Parameters . . . . . . . . . . . . . . 67
4.1.1 The Selection of the First Null . . . . . . . . . . . . . . . . . . . . 67
4.1.1.1 Selection Criteria and Checklist Features . . . . . . . . 68
4.1.1.2 The Case of ULA . . . . . . . . . . . . . . . . . . . . 73
4.1.1.3 The Case of NA . . . . . . . . . . . . . . . . . . . . . 77
4.1.1.4 The Case of CA . . . . . . . . . . . . . . . . . . . . . 81
4.1.2 The Selection of the Regularization Parameter . . . . . . . . . . . . 85
4.1.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
4.2 Beam Pattern Performance between the Number of Sensors and Algorithm Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
4.2.1 The Case of NA . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
4.2.2 The Case of CA . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
4.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
Chapter 5 Performance Evaluation of Beamforming for Signal Reconstruction and Codebook-Based Alignment 111
5.1 Signal Reconstruction via Beamforming under Interference from Nearby Angles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
5.1.1 Beamforming Evaluation under Near-Angle Interference . . . . . . 117
5.1.2 Scenario A: Single Desired Signal and Single Interference . . . . . 118
5.1.3 Scenario B: Single Desired Signal and Multiple Interferences . . . . 120
5.2 Codebook-Based Beamforming for Directional Alignment . . . . . . 122
5.2.1 Non-uniform Amplitude Codebook Design and Beam Alignment . . 122
5.2.2 Beam Alignment Accuracy under Various SNR . . . . . . . . . . . 127
5.2.3 Beam Alignment Accuracy under Various Codebook Size . . . . . . 127
5.2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
Chapter 6 Conclusion 131
References 133
Appendix A — Mathematical Derivations Related to the Optimization Problem (3.7) and Lemma 3.3.1 141
A.1 Proof of Lemma 3.2.1 . . . . . . . . . . . . . . . . . . . . . . . . . 141
A.2 Proof of Real-Valued Weight Solution . . . . . . . . . . . . . . . . 147
A.3 The Derivation of the Gradient Function ∇f(˜λ) in Lemma 3.3.2 . . 151
Appendix B — The Integration and Differentiation of The Beam Pattern 155
B.1 Proof of Lemma 2.2.1 . . . . . . . . . . . . . . . . . . . . . . . . . 155
B.2 Proof of Lemma 3.1.1 . . . . . . . . . . . . . . . . . . . . . . . . . 157
B.3 Proof of Lemma 4.1.1 . . . . . . . . . . . . . . . . . . . . . . . . . 159
B.4 Proof of Lemma 4.1.2 . . . . . . . . . . . . . . . . . . . . . . . . . 161
-
dc.language.isoen-
dc.subject稀疏陣列zh_TW
dc.subject波束成形zh_TW
dc.subject旁瓣水平zh_TW
dc.subject最佳化zh_TW
dc.subject自適應矩估計zh_TW
dc.subjectSide lobe levelen
dc.subjectSparse arrayen
dc.subjectAdaptive moment estimationen
dc.subjectOptimizationen
dc.subjectBeamformingen
dc.title稀疏陣列波束圖樣之整合旁瓣優化與效能評估zh_TW
dc.titleIntegrated Sidelobe Level Optimization and Performance Evaluation of Sparse Array Beam Patternsen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee張大中;陳柏志zh_TW
dc.contributor.oralexamcommitteeDah-Chung Chang;Po-Chih Chenen
dc.subject.keyword稀疏陣列,波束成形,旁瓣水平,最佳化,自適應矩估計,zh_TW
dc.subject.keywordSparse array,Beamforming,Side lobe level,Optimization,Adaptive moment estimation,en
dc.relation.page162-
dc.identifier.doi10.6342/NTU202502849-
dc.rights.note未授權-
dc.date.accepted2025-08-08-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept電信工程學研究所-
dc.date.embargo-liftN/A-
顯示於系所單位:電信工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
  未授權公開取用
5.49 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved