Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 化學工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99097
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor王勝仕zh_TW
dc.contributor.advisorSteven Sheng-Shih Wangen
dc.contributor.author張家瑜zh_TW
dc.contributor.authorChia-Yu Changen
dc.date.accessioned2025-08-21T16:22:30Z-
dc.date.available2025-08-22-
dc.date.copyright2025-08-21-
dc.date.issued2025-
dc.date.submitted2025-08-04-
dc.identifier.citation[1] Chang, C.Y., Wang, S.S.S., Lai, Y.R., Koh, W.G., Wu, J.W., & Chiang, Y.H. (2024). Ophthalmic drug effects on the amyloidogenesis of a transforming growth factor β-induced protein (TGFBIp) peptide fragment. Experimental Eye Research, 244, 109932. doi: https://doi.org/10.1016/j.exer.2024.109932.
[2] Stefani, M., & Dobson, C.M. (2003). Protein aggregation and aggregate toxicity: new insights into protein folding, misfolding diseases and biological evolution. Journal of Molecular Medicine, 81(11), 678-699. doi: https://doi.org/10.1007/s00109-003-0464-5.
[3] Iadanza, M.G., Jackson, M.P., Hewitt, E.W., Ranson, N.A., & Radford, S.E. (2018). A new era for understanding amyloid structures and disease. Nature Reviews Molecular Cell Biology, 19(12), 755-773. doi: https://doi.org/10.1038/s41580-018-0060-8.
[4] Fitzpatrick, A.W.P., Debelouchina, G.T., Bayro, M.J., Clare, D.K., Caporini, M.A., et al. (2013). Atomic structure and hierarchical assembly of a cross-β amyloid fibril. Proceedings of the National Academy of Sciences, 110(14), 5468-5473. doi: https://doi.org/doi:10.1073/pnas.1219476110.
[5] Sawaya, M.R., Hughes, M.P., Rodriguez, J.A., Riek, R., & Eisenberg, D.S. (2021). The expanding amyloid family: Structure, stability, function, and pathogenesis. Cell, 184(19), 4857-4873. doi: https://doi.org/10.1016/j.cell.2021.08.013.
[6] Chatani, E., Yuzu, K., Ohhashi, Y., & Goto, Y. (2021). Current Understanding of the Structure, Stability and Dynamic Properties of Amyloid Fibrils. International Journal of Molecular Sciences, 22(9), 4349. doi: https://doi.org/10.3390/ijms22094349.
[7] Chiti, F., & Dobson, C.M. (2017). Protein Misfolding, Amyloid Formation, and Human Disease: A Summary of Progress Over the Last Decade. Annual Review of Biochemistry, 86(Volume 86, 2017), 27-68. doi: https://doi.org/10.1146/annurev-biochem-061516-045115.
[8] Bemporad, F., & Chiti, F. (2012). Protein Misfolded Oligomers: Experimental Approaches, Mechanism of Formation, and Structure-Toxicity Relationships. Chemistry & Biology, 19(3), 315-327. doi: https://doi.org/10.1016/j.chembiol.2012.02.003.
[9] Carulla, N., Zhou, M., Arimon, M., Gairí, M., Giralt, E., Robinson, C.V., & Dobson, C.M. (2009). Experimental characterization of disordered and ordered aggregates populated during the process of amyloid fibril formation. Proceedings of the National Academy of Sciences, 106(19), 7828-7833. doi: https://doi.org/10.1073/pnas.0812227106.
[10] Nilsson, M.R. (2004). Techniques to study amyloid fibril formation in vitro. Methods, 34(1), 151-160. doi: https://doi.org/10.1016/j.ymeth.2004.03.012.
[11] Härd, T., & Lendel, C. (2012). Inhibition of Amyloid Formation. Journal of Molecular Biology, 421(4), 441-465. doi: https://doi.org/10.1016/j.jmb.2011.12.062.
[12] Sipe, J.D., D., B.M., N., B.J., Shu-ichi, I., Giampaolo, M., M., S.M.J., & and Westermark, P. (2016). Amyloid fibril proteins and amyloidosis: chemical identification and clinical classification International Society of Amyloidosis 2016 Nomenclature Guidelines. Amyloid, 23(4), 209-213. doi: https://doi.org/10.1080/13506129.2016.1257986.
[13] Sloane, P.D., Zimmerman, S., Suchindran, C., Reed, P., Wang, L., Boustani, M., & Sudha, S. (2002). The public health impact of Alzheimer's disease 2000-2050: Potential implication of treatment advances. Annual Review of Public Health, 23, 213-231. doi: https://doi.org/10.1146/annurev.publhealth.23.100901.140525.
[14] Gholami, A. (2023). Alzheimer's disease: The role of proteins in formation, mechanisms, and new therapeutic approaches. Neuroscience Letters, 817, 137532. doi: https://doi.org/10.1016/j.neulet.2023.137532.
[15] Lei, P., Ayton, S., Finkelstein, D.I., Adlard, P.A., Masters, C.L., & Bush, A.I. (2010). Tau protein: Relevance to Parkinson's disease. The International Journal of Biochemistry & Cell Biology, 42(11), 1775-1778. doi: https://doi.org/10.1016/j.biocel.2010.07.016.
[16] Poewe, W., Seppi, K., Tanner, C.M., Halliday, G.M., Brundin, P., et al. (2017). Parkinson disease. Nature Reviews Disease Primers, 3(1), 17013. doi: https://doi.org/10.1038/nrdp.2017.13.
[17] Bates, G.P., Dorsey, R., Gusella, J.F., Hayden, M.R., Kay, C., et al. (2015). Huntington disease. Nature Reviews Disease Primers, 1(1), 15005. doi: https://doi.org/10.1038/nrdp.2015.5.
[18] Berdyński, M., Miszta, P., Safranow, K., Andersen, P.M., Morita, M., et al. (2022). SOD1 mutations associated with amyotrophic lateral sclerosis analysis of variant severity. Scientific Reports, 12(1), 103. doi: https://doi.org/10.1038/s41598-021-03891-8.
[19] Zerr, I., Ladogana, A., Mead, S., Hermann, P., Forloni, G., & Appleby, B.S. (2024). Creutzfeldt–Jakob disease and other prion diseases. Nature Reviews Disease Primers, 10(1), 14. doi: https://doi.org/10.1038/s41572-024-00497-y.
[20] Wilkinson, M., Gallardo, R.U., Martinez, R.M., Guthertz, N., So, M., et al. (2023). Disease-relevant β2-microglobulin variants share a common amyloid fold. Nature Communications, 14(1), 1190. doi: https://doi.org/10.1038/s41467-023-36791-8.
[21] Ruberg, F.L., Grogan, M., Hanna, M., Kelly, J.W., & Maurer, M.S. (2019). Transthyretin Amyloid Cardiomyopathy: JACC State-of-the-Art Review. Journal of the American College of Cardiology, 73(22), 2872-2891. doi: https://doi.org/10.1016/j.jacc.2019.04.003.
[22] Sagawa, T., Kogiso, T., Ito, T., Yasuda, H., Katoh, N., et al. (2021). Hereditary Apolipoprotein A-1 Amyloidosis With Glu34Lys Mutation Treated by Liver Transplantation: A Case Report. Transplantation Proceedings, 53(4), 1327-1332. doi: https://doi.org/10.1016/j.transproceed.2020.11.012.
[23] Eriksson, M., Schönland, S., Yumlu, S., Hegenbart, U., von Hutten, H., et al. (2009). Hereditary Apolipoprotein AI-Associated Amyloidosis in Surgical Pathology Specimens: Identification of Three Novel Mutations in the APOA1 Gene. The Journal of Molecular Diagnostics, 11(3), 257-262. doi: https://doi.org/10.2353/jmoldx.2009.080161.
[24] Haltia, M., Prelli, F., Ghiso, J., Kiuru, S., Somer, H., Palo, J., & Frangione, B. (1990). Amyloid protein in familial amyloidosis (Finnish type) is homologous to gelsolin, an actin-binding protein. Biochemical and Biophysical Research Communications, 167(3), 927-932. doi: https://doi.org/10.1016/0006-291X(90)90612-Q.
[25] Merlini, G., Dispenzieri, A., Sanchorawala, V., Schönland, S.O., Palladini, G., Hawkins, P.N., & Gertz, M.A. (2018). Systemic immunoglobulin light chain amyloidosis. Nature Reviews Disease Primers, 4(1), 38. doi: https://doi.org/10.1038/s41572-018-0034-3.
[26] Lachmann, H.J., Goodman, H.J.B., Gilbertson, J.A., Gallimore, J.R., Sabin, C.A., Gillmore, J.D., & Hawkins, P.N. (2007). Natural history and outcome in systemic AA amyloidosis. New England Journal of Medicine, 356(23), 2361-2371. doi: https://doi.org/10.1056/NEJMoa070265.
[27] Sattianayagam, P.T., Gibbs, S.D.J., Rowczenio, D., Pinney, J.H., Wechalekar, A.D., et al. (2012). Hereditary lysozyme amyloidosis – phenotypic heterogeneity and the role of solid organ transplantation. Journal of Internal Medicine, 272(1), 36-44. doi: https://doi.org/10.1111/j.1365-2796.2011.02470.x.
[28] Jin, S., Shen, Z., Li, J., Lin, P., Xu, X., Ding, X., & Liu, H. (2021). Fibrinogen A Alpha-Chain Amyloidosis Associated With a Novel Variant in a Chinese Family. Kidney International Reports, 6(10), 2726-2730. doi: https://doi.org/10.1016/j.ekir.2021.07.014.
[29] Pillay, K., & Govender, P. (2013). Amylin Uncovered: A Review on the Polypeptide Responsible for Type II Diabetes. BioMed Research International, 2013(1), 826706. doi: https://doi.org/10.1155/2013/826706.
[30] Miura, Y., Harumiya, S., Ono, K., Fujimoto, E., Akiyama, M., et al. (2013). Galectin-7 and actin are components of amyloid deposit of localized cutaneous amyloidosis. Experimental Dermatology, 22(1), 36-40. doi: https://doi.org/10.1111/exd.12065.
[31] Samlaska, C., Reber, S., & Murry, T. (2020). Insulin-derived amyloidosis: The insulin ball, amyloidoma. JAAD Case Reports, 6(4), 351-353. doi: https://doi.org/10.1016/j.jdcr.2020.02.011.
[32] Sandilands, A., Hutcheson, A.M., Long, H.A., Prescott, A.R., Vrensen, G., et al. (2002). Altered aggregation properties of mutant γ‐crystallins cause inherited cataract. The EMBO Journal, 21(22), 6005-6014-6014. doi: https://doi.org/10.1093/emboj/cdf609.
[33] Milovanova, E., Gomon, S., & Rocha, G. (2024). Classic lattice corneal dystrophy: a brief review and summary of treatment modalities. Graefe's Archive for Clinical and Experimental Ophthalmology, 262(6), 1667-1681. doi: https://doi.org/10.1007/s00417-023-06297-6.
[34] Vergaro, G., Aimo, A., Rapezzi, C., Castiglione, V., Fabiani, I., et al. (2022). Atrial amyloidosis: mechanisms and clinical manifestations. European Journal of Heart Failure, 24(11), 2019-2028. doi: https://doi.org/10.1002/ejhf.2650.
[35] Nasr, S.H., Dogan, A., & Larsen, C.P. (2015). Leukocyte Cell–Derived Chemotaxin 2–Associated Amyloidosis: A Recently Recognized Disease with Distinct Clinicopathologic Characteristics. Clinical Journal of the American Society of Nephrology, 10(11), 2084-2093. doi: https://doi.org/10.2215/CJN.12551214.
[36] Stenvang, M., Andreasen, M., Enghild, J.J., & Otzen, D.E. (2014). Chapter 16 - The Molecular Basis For TGFBIp-Related Corneal Dystrophies. In Bio-nanoimaging (pp. 179-188) V. N. Uversky & Y. L. Lyubchenko (Eds.). Academic Press. doi: https://doi.org/10.1016/B978-0-12-394431-3.00016-X
[37] Nielsen, N.S., Poulsen, E.T., Lukassen, M.V., Chao Shern, C., Mogensen, E.H., et al. (2020). Biochemical mechanisms of aggregation in TGFBI-linked corneal dystrophies. Progress in Retinal and Eye Research, 77, 100843. doi: https://doi.org/10.1016/j.preteyeres.2020.100843.
[38] Munier, F.L., Frueh, B.E., Othenin-Girard, P., Uffer, S., Cousin, P., et al. (2002). BIGH3 Mutation Spectrum in Corneal Dystrophies. Investigative Ophthalmology & Visual Science, 43(4), 949-954.
[39] LeBaron, R.G., Bezverkov, K.I., Zimber, M.P., Pavelec, R., Skonier, J., & Purchio, A.F. (1995). βIG-H3, a Novel Secretory Protein Inducible by Transforming Growth Factor-β, Is Present in Normal Skin and Promotes the Adhesion and Spreading of Dermal Fibroblasts In Vitro. Journal of Investigative Dermatology, 104(5), 844-849. doi: https://doi.org/10.1111/1523-1747.ep12607024.
[40] García-Castellanos, R., Nielsen, N.S., Runager, K., Thøgersen, I.B., Lukassen, M.V., et al. (2017). Structural and Functional Implications of Human Transforming Growth Factor β-Induced Protein, TGFBIp, in Corneal Dystrophies. Structure, 25(11), 1740-1750.e1742. doi: https://doi.org/10.1016/j.str.2017.09.001.
[41] Lukassen, M.V., Scavenius, C., Thøgersen, I.B., & Enghild, J.J. (2016). Disulfide Bond Pattern of Transforming Growth Factor β-Induced Protein. Biochemistry, 55(39), 5610-5621. doi: https://doi.org/10.1021/acs.biochem.6b00694.
[42] Moody, R.G., & Williamson, M.P. (2013). Structure and function of a bacterial Fasciclin I Domain Protein elucidates function of related cell adhesion proteins such as TGFBIp and periostin. FEBS Open Bio, 3, 71-77. doi: https://doi.org/10.1016/j.fob.2013.01.001.
[43] Seifert, G.J. (2018). Fascinating Fasciclins: A Surprisingly Widespread Family of Proteins that Mediate Interactions between the Cell Exterior and the Cell Surface. International Journal of Molecular Sciences, 19(6), 1628. doi: https://doi.org/10.3390/ijms19061628.
[44] Thapa, N., Lee, B.-H., & Kim, I.-S. (2007). TGFBIp/βig-h3 protein: A versatile matrix molecule induced by TGF-β. The International Journal of Biochemistry & Cell Biology, 39(12), 2183-2194. doi: https://doi.org/10.1016/j.biocel.2007.06.004.
[45] Arnaout, M.A., Goodman, S.L., & Xiong, J.-P. (2002). Coming to grips with integrin binding to ligands. Current Opinion in Cell Biology, 14(5), 641-652. doi: https://doi.org/10.1016/S0955-0674(02)00371-X.
[46] Andersen, R.B., Karring, H., Møller-Pedersen, T., Valnickova, Z., Thøgersen, I.B., et al. (2004). Purification and Structural Characterization of Transforming Growth Factor Beta Induced Protein (TGFBIp) from Porcine and Human Corneas. Biochemistry, 43(51), 16374-16384. doi: https://doi.org/10.1021/bi048589s.
[47] Han, K.E., Choi, S.-I., Kim, T.-I., Maeng, Y.-S., Stulting, R.D., Ji, Y.W., & Kim, E.K. (2016). Pathogenesis and treatments of TGFBI corneal dystrophies. Progress in Retinal and Eye Research, 50, 67-88. doi: https://doi.org/10.1016/j.preteyeres.2015.11.002.
[48] Skonier, J., Neubauer, M., Madisen, L., Bennett, K., Plowman, G.D., & Purchio, A.F. (1992). cDNA Cloning and Sequence Analysis of βig-h3, a Novel Gene Induced in a Human Adenocarcinoma Cell Line after Treatment with Transforming Growth Factor-β. DNA and Cell Biology, 11(7), 511-522. doi: https://doi.org/10.1089/dna.1992.11.511.
[49] Runager, K., Klintworth, G.K., Karring, H., & Enghild, J.J. (2013). The Insoluble TGFBIp Fraction of the Cornea Is Covalently Linked via a Disulfide Bond to Type XII Collagen. Biochemistry, 52(16), 2821-2827. doi: https://doi.org/10.1021/bi400212m.
[50] Kim, J.-E., Kim, E.-H., Han, E.-H., Park, R.-W., Park, I.-H., et al. (2000). A TGF-β-inducible cell adhesion molecule, βig-h3, is downregulated in melorheostosis and involved in osteogenesis. Journal of Cellular Biochemistry, 77(2), 169-178. doi: https://doi.org/10.1002/(SICI)1097-4644(20000501)77:2<169::AID-JCB1>3.0.CO;2-L.
[51] Billings, P.C., Whitbeck, J.C., Adams, C.S., Abrams, W.R., Cohen, A.J., et al. (2002). The Transforming Growth Factor-β-inducible Matrix Protein βig-h3 Interacts with Fibronectin. Journal of Biological Chemistry, 277(31), 28003-28009. doi: https://doi.org/10.1074/jbc.M106837200.
[52] Lakshminarayanan, R., Chaurasia, S.S., Murugan, E., Venkatraman, A., Chai, S.-M., et al. (2015). Biochemical Properties and Aggregation Propensity of Transforming Growth Factor-Induced Protein (TGFBIp) and the Amyloid Forming Mutants. The Ocular Surface, 13(1), 9-25. doi: https://doi.org/10.1016/j.jtos.2014.04.003.
[53] Maeng, Y.-S., Lee, G.-H., Lee, B., Choi, S.-I., Kim, T.-I., & Kim, E.K. (2017). Role of TGFBIp in Wound Healing and Mucin Expression in Corneal Epithelial Cells. Yonsei Medical Journal, 58(2), 423-431. doi: https://doi.org/10.3349/ymj.2017.58.2.423.
[54] Hanssen, E., Reinboth, B., & Gibson, M.A. (2003). Covalent and non-covalent interactions of βig-h3 with collagen VI -: βig-h3 is covalently attached to the amino-terminal region of collagen VI in tissue microfibrils. Journal of Biological Chemistry, 278(27), 24334-24341. doi: https://doi.org/10.1074/jbc.M303455200.
[55] Lindsley, A., Li, W., Wang, J., Maeda, N., Rogers, R., & Conway, S.J. (2005). Comparison of the four mouse fasciclin-containing genes expression patterns during valvuloseptal morphogenesis. Gene Expression Patterns, 5(5), 593-600. doi: https://doi.org/10.1016/j.modgep.2005.03.005.
[56] Lü, J., Qian, J., Izvolsky, K.I., & Cardoso, W.V. (2004). Global analysis of genes differentially expressed in branching and non-branching regions of the mouse embryonic lung. Developmental Biology, 273(2), 418-435. doi: https://doi.org/10.1016/j.ydbio.2004.05.035.
[57] Norris, R.A., Kern, C.B., Wessels, A., Wirrig, E.E., Markwald, R.R., & Mjaatvedt, C.H. (2005). Detection of βig-H3, a TGFβ induced gene, during cardiac development and its complementary pattern with periostin. Anatomy and Embryology, 210(1), 13-23. doi: https://doi.org/10.1007/s00429-005-0010-z.
[58] Rawe, I.M., Zhan, Q., Burrows, R., Bennett, K., & Cintron, C. (1997). Beta-ig. Molecular cloning and in situ hybridization in corneal tissues. Investigative Ophthalmology & Visual Science, 38(5), 893-900.
[59] Schorderet, D.F., Menasche, M., Morand, S., Bonnel, S., Büchillier, V., et al. (2000). Genomic Characterization and Embryonic Expression of the Mouse Bigh3 (Tgfbi) Gene. Biochemical and Biophysical Research Communications, 274(2), 267-274. doi: https://doi.org/10.1006/bbrc.2000.3116.
[60] Karring, H., Runager, K., Valnickova, Z., Thøgersen, I.B., Møller-Pedersen, T., Klintworth, G.K., & Enghild, J.J. (2010). Differential expression and processing of transforming growth factor beta induced protein (TGFBIp) in the normal human cornea during postnatal development and aging. Experimental Eye Research, 90(1), 57-62. doi: https://doi.org/10.1016/j.exer.2009.09.011.
[61] Kim, H.-J., Kim, P.-K., Bae, S.M., Son, H.-N., Thoudam, D.S., et al. (2009). Transforming growth factor-β–induced protein (TGFBIp/β ig-h3) activates platelets and promotes thrombogenesis. Blood, 114(25), 5206-5215. doi: https://doi.org/10.1182/blood-2009-03-212415.
[62] Yun, S.-J., Kim, M.-O., Kim, S.O., Park, J., Kwon, Y.K., Kim, I.-S., & Lee, E.H. (2002). Induction of TGF-β-inducible gene-h3 (βig-h3) by TGF-β1 in astrocytes: implications for astrocyte response to brain injury. Molecular Brain Research, 107(1), 57-64. doi: https://doi.org/10.1016/S0169-328X(02)00447-3.
[63] Son, H.-N., Nam, J.-O., Kim, S., & Kim, I.-S. (2013). Multiple FAS1 domains and the RGD motif of TGFBI act cooperatively to bind αvβ3 integrin, leading to anti-angiogenic and anti-tumor effects. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, 1833(10), 2378-2388. doi: https://doi.org/10.1016/j.bbamcr.2013.06.012.
[64] Nam, E.J., Sa, K.H., You, D.W., Cho, J.H., Seo, J.S., et al. (2006). Up-regulated transforming growth factor β–inducible gene h3 in rheumatoid arthritis mediates adhesion and migration of synoviocytes through αvβ3 integrin: Regulation by cytokines. Arthritis & Rheumatism, 54(9), 2734-2744. doi: https://doi.org/10.1002/art.22076.
[65] Corona, A., & Blobe, G.C. (2021). The role of the extracellular matrix protein TGFBI in cancer. Cellular Signalling, 84, 110028. doi: https://doi.org/10.1016/j.cellsig.2021.110028.
[66] Chen, Z., Liu, X., You, J., Song, Y., Tomaskovic-Crook, E., et al. (2020). Biomimetic corneal stroma using electro-compacted collagen. Acta Biomaterialia, 113, 360-371. doi: https://doi.org/https://doi.org/10.1016/j.actbio.2020.07.004.
[67] Sridhar, M.S. (2018). Anatomy of cornea and ocular surface. Indian Journal of Ophthalmology, 66(2), 190-194. doi: https://doi.org/10.4103/ijo.IJO_646_17.
[68] Barrientez, B., Nicholas, S.E., Whelchel, A., Sharif, R., Hjortdal, J., & Karamichos, D. (2019). Corneal injury: Clinical and molecular aspects. Experimental Eye Research, 186, 107709. doi: https://doi.org/10.1016/j.exer.2019.107709.
[69] Mohan, R.R., Kempuraj, D., D'Souza, S., & Ghosh, A. (2022). Corneal stromal repair and regeneration. Progress in Retinal and Eye Research, 91, 101090. doi: https://doi.org/10.1016/j.preteyeres.2022.101090.
[70] Poulsen, E.T., Nielsen, N.S., & Enghild, J.J. (2024). The Role of the Extracellular Matrix in TGFBI-Related Corneal Dystrophy Development. In TGFBI-related Corneal Dystrophies: Clinical Findings, Cell Biology, and Genetics (pp. 77-94) E. K. Kim & R. D. Stulting (Eds.). Springer Nature Singapore. doi: https://doi.org/10.1007/978-981-96-0131-8_9
[71] Klintworth, G., Enghild, J., & Valnickova, Z. (1994). Discovery of a novel protein (beta-Ig-H3) in normal human cornea. Investigative Ophthalmology & Visual Science. 35(4), 1938.
[72] Dyrlund, T.F., Poulsen, E.T., Scavenius, C., Nikolajsen, C.L., Thøgersen, I.B., Vorum, H., & Enghild, J.J. (2012). Human Cornea Proteome: Identification and Quantitation of the Proteins of the Three Main Layers Including Epithelium, Stroma, and Endothelium. Journal of Proteome Research, 11(8), 4231-4239. doi: https://doi.org/10.1021/pr300358k.
[73] Klintworth, G.K., Bao, W., & Afshari, N.A. (2004). Two Mutations in the TGFBI (BIGH3) Gene Associated with Lattice Corneal Dystrophy in an Extensively Studied Family. Investigative Ophthalmology & Visual Science, 45(5), 1382-1388. doi: https://doi.org/10.1167/iovs.03-1228.
[74] Escribano, J., Hernando, N., Ghosh, S., Coca-Prados, M., & Crabb, J. (1994). cDNA from human ocular ciliary epithelium homologous to βig-h3 is preferentially expressed as an extracellular protein in the corneal epithelium. Journal of Cellular Physiology, 160(3), 511-521. doi: https://doi.org/10.1002/jcp.1041600314.
[75] Weiss, J.S., Rapuano, C.J., Seitz, B., Busin, M., Kivelä, T.T., et al. (2024). IC3D Classification of Corneal Dystrophies—Edition 3. Cornea, 43(4), 466-527. doi: https://doi.org/10.1097/ICO.0000000000003420.
[76] Korvatska, E., Henry, H., Mashima, Y., Yamada, M., Bachmann, C., Munier, F.L., & Schorderet, D.F. (2000). Amyloid and Non-amyloid Forms of 5q31-linked Corneal Dystrophy Resulting from Kerato-epithelin Mutations at Arg-124 Are Associated with Abnormal Turnover of the Protein. Journal of Biological Chemistry, 275(15), 11465-11469. doi: https://doi.org/10.1074/jbc.275.15.11465.
[77] Weiss, J.S., & Group, t.F.A.P.O.R.I.C.W. (2010). Corneal Dystrophies: Molecular Genetics to Therapeutic Intervention—Fifth ARVO/Pfizer Ophthalmics Research Institute Conference. Investigative Ophthalmology & Visual Science, 51(11), 5391-5402. doi: https://doi.org/10.1167/iovs.09-4746.
[78] Surguchev, A., & Surguchov, A. (2010). Conformational diseases: Looking into the eyes. Brain Research Bulletin, 81(1), 12-24. doi: https://doi.org/10.1016/j.brainresbull.2009.09.015.
[79] Kheir, V., Cortes-Gonzalez, V., Zenteno, J.C., & Schorderet, D.F. (2019). Mutation update: TGFBI pathogenic and likely pathogenic variants in corneal dystrophies. Human Mutation, 40(6), 675-693. doi: https://doi.org/10.1002/humu.23737.
[80] Lakshminarayanan, R., Chaurasia, S.S., Anandalakshmi, V., Chai, S.-M., Murugan, E., et al. (2014). Clinical and Genetic Aspects of the TGFBI-associated Corneal Dystrophies. The Ocular Surface, 12(4), 234-251. doi: https://doi.org/10.1016/j.jtos.2013.12.002.
[81] Anandalakshmi, V., Murugan, E., Leng, E.G.T., Ting, L.W., Chaurasia, S.S., et al. (2017). Effect of position-specific single-point mutations and biophysical characterization of amyloidogenic peptide fragments identified from lattice corneal dystrophy patients. Biochemical Journal, 474(10), 1705-1725. doi: https://doi.org/10.1042/BCJ20170125.
[82] Kannabiran, C., & Klintworth, G.K. (2006). TGFBI gene mutations in corneal dystrophies. Human Mutation, 27(7), 615-625. doi: https://doi.org/10.1002/humu.20334.
[83] Runager, K., Enghild, J.J., & Klintworth, G.K. (2008). Focus on molecules: Transforming growth factor beta induced protein (TGFBIp). Experimental Eye Research, 87(4), 298-299. doi: https://doi.org/10.1016/j.exer.2007.12.001.
[84] Chao-Shern, C., DeDionisio, L.A., Jang, J.-H., Chan, C.C., Thompson, V., et al. (2019). Evaluation of TGFBI corneal dystrophy and molecular diagnostic testing. Eye, 33(6), 874-881. doi: https://doi.org/10.1038/s41433-019-0346-x.
[85] Karring, H., Runager, K., Thøgersen, I.B., Klintworth, G.K., Højrup, P., & Enghild, J.J. (2012). Composition and proteolytic processing of corneal deposits associated with mutations in the TGFBI gene. Experimental Eye Research, 96(1), 163-170. doi: https://doi.org/10.1016/j.exer.2011.11.014.
[86] Venkatraman, A., Dutta, B., Murugan, E., Piliang, H., Lakshminaryanan, R., et al. (2017). Proteomic Analysis of Amyloid Corneal Aggregates from TGFBI-H626R Lattice Corneal Dystrophy Patient Implicates Serine-Protease HTRA1 in Mutation-Specific Pathogenesis of TGFBIp. Journal of Proteome Research, 16(8), 2899-2913. doi: https://doi.org/10.1021/acs.jproteome.7b00188.
[87] Poulsen, E.T., Runager, K., Risør, M.W., Dyrlund, T.F., Scavenius, C., et al. (2014). Comparison of two phenotypically distinct lattice corneal dystrophies caused by mutations in the transforming growth factor beta induced (TGFBI) gene. Proteomics - Clinical Applications, 8(3-4), 168-177. doi: https://doi.org/10.1002/prca.201300058.
[88] Karring, H., Poulsen, E.T., Runager, K., Thøgersen, I.B., Klintworth, G.K., Højrup, P., & Enghild, J.J. (2013). Serine protease HtrA1 accumulates in corneal transforming growth factor beta induced protein (TGFBIp) amyloid deposits. Molecular Vision, 19, 861-876.
[89] Eigenbrot, C., Ultsch, M., Lipari, Michael T., Moran, P., Lin, S.J., et al. (2012). Structural and Functional Analysis of HtrA1 and Its Subdomains. Structure, 20(6), 1040-1050. doi: https://doi.org/10.1016/j.str.2012.03.021.
[90] Poepsel, S., Sprengel, A., Sacca, B., Kaschani, F., Kaiser, M., et al. (2015). Determinants of amyloid fibril degradation by the PDZ protease HTRA1. Nature Chemical Biology, 11(11), 862-869. doi: https://doi.org/10.1038/nchembio.1931.
[91] Low, K.J.Y., Venkatraman, A., Mehta, J.S., & Pervushin, K. (2022). Molecular mechanisms of amyloid disaggregation. Journal of Advanced Research, 36, 113-132. doi: https://doi.org/10.1016/j.jare.2021.05.007.
[92] Courtney, D.G., Toftgaard Poulsen, E., Kennedy, S., Moore, J.E., Atkinson, S.D., et al. (2015). Protein Composition of TGFBI-R124C- and TGFBI-R555W- Associated Aggregates Suggests Multiple Mechanisms Leading to Lattice and Granular Corneal Dystrophy. Investigative Ophthalmology & Visual Science, 56(8), 4653-4661. doi: https://doi.org/10.1167/iovs.15-16922.
[93] Underhaug, J., Koldsø, H., Runager, K., Nielsen, J.T., Sørensen, C.S., et al. (2013). Mutation in transforming growth factor beta induced protein associated with granular corneal dystrophy type 1 reduces the proteolytic susceptibility through local structural stabilization. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics, 1834(12), 2812-2822. doi: https://doi.org/10.1016/j.bbapap.2013.10.008.
[94] Stenvang, M., Schafer, N.P., Malmos, K.G., Perez, A.M.W., Niembro, O., et al. (2018). Corneal Dystrophy Mutations Drive Pathogenesis by Targeting TGFBIp Stability and Solubility in a Latent Amyloid-forming Domain. Journal of Molecular Biology, 430(8), 1116-1140. doi: https://doi.org/10.1016/j.jmb.2018.03.001.
[95] Venkatraman, A., Duong-Thi, M.-D., Pervushin, K., Ohlson, S., & Mehta, J.S. (2020). Pharmaceutical modulation of the proteolytic profile of Transforming Growth Factor Beta induced protein (TGFBIp) offers a new avenue for treatment of TGFBI-corneal dystrophy. Journal of Advanced Research, 24, 529-543. doi: https://doi.org/10.1016/j.jare.2020.05.012.
[96] Runager, K., Basaiawmoit, R.V., Deva, T., Andreasen, M., Valnickova, Z., et al. (2011). Human Phenotypically Distinct TGFBI Corneal Dystrophies Are Linked to the Stability of the Fourth FAS1 Domain of TGFBIp. Journal of Biological Chemistry, 286(7), 4951-4958. doi: https://doi.org/10.1074/jbc.M110.181099.
[97] Schmitt-Bernard, C.-F., Chavanieu, A., Derancourt, J., Arnaud, B., Demaille, J.G., Calas, B., & Argiles, À. (2000). In Vitro Creation of Amyloid Fibrils from Native and Arg124Cys Mutated βIGH3(110–131) Peptides, and Its Relevance for Lattice Corneal Amyloid Dystrophy Type I. Biochemical and Biophysical Research Communications, 273(2), 649-653. doi: https://doi.org/10.1006/bbrc.2000.2955.
[98] Jun, I., Choi, S.-i., Kim, T.-i., Lee, H.K., & Kim, E.K. (2024). Molecular Pathogenesis of Granular Corneal Dystrophy Type 2 (GCD2) and TGFBI-Related Corneal Dystrophies. In TGFBI-related Corneal Dystrophies: Clinical Findings, Cell Biology, and Genetics (pp. 57-75) E. K. Kim & R. D. Stulting (Eds.). Springer Nature Singapore. doi: https://doi.org/10.1007/978-981-96-0131-8_8
[99] Kim, T.-i., Kim, H., Lee, D.J., Choi, S.-I., Kang, S.W., & Kim, E.K. (2011). Altered Mitochondrial Function in Type 2 Granular Corneal Dystrophy. The American Journal of Pathology, 179(2), 684-692. doi: https://doi.org/10.1016/j.ajpath.2011.04.005.
[100] Choi, S.-i., Kim, T.-i., Kim, K.S., Kim, B.-Y., Ahn, S.-y., et al. (2009). Decreased Catalase Expression and Increased Susceptibility to Oxidative Stress in Primary Cultured Corneal Fibroblasts from Patients with Granular Corneal Dystrophy Type II. The American Journal of Pathology, 175(1), 248-261. doi: https://doi.org/10.2353/ajpath.2009.081001.
[101] Choi, S.-i., Lee, E., Jeong, J.B., Akuzum, B., Maeng, Y.-S., Kim, T.-i., & Kim, E.K. (2016). 4-Phenylbutyric acid reduces mutant-TGFBIp levels and ER stress through activation of ERAD pathway in corneal fibroblasts of granular corneal dystrophy type 2. Biochemical and Biophysical Research Communications, 477(4), 841-846. doi: https://doi.org/10.1016/j.bbrc.2016.06.146.
[102] Choi, S.-i., Maeng, Y.-S., Kim, T.-i., Lee, Y., Kim, Y.-S., & Kim, E.K. (2015). Lysosomal Trafficking of TGFBIp via Caveolae-Mediated Endocytosis. PLoS ONE, 10(4), e0119561. doi: https://doi.org/10.1371/journal.pone.0119561.
[103] Choi, S.-I., & Kim, E.K. (2016). Autophagy in granular corneal dystrophy type 2. Experimental Eye Research, 144, 14-21. doi: https://doi.org/10.1016/j.exer.2015.09.008.
[104] Poulsen, E.T., Nielsen, N.S., Scavenius, C., Mogensen, E.H., Risør, M.W., et al. (2019). The serine protease HtrA1 cleaves misfolded transforming growth factor beta-induced protein (TGFBIp) and induces amyloid formation. Journal of Biological Chemistry, 294(31), 11817-11828. doi: https://doi.org/10.1074/jbc.RA119.009050.
[105] Elavazhagan, M., Lakshminarayanan, R., Zhou, L., Ting, L.W., Tong, L., et al. (2012). Expression, purification and characterization of fourth FAS1 domain of TGFβIp-associated corneal dystrophic mutants. Protein Expression and Purification, 84(1), 108-115. doi: https://doi.org/10.1016/j.pep.2012.04.018.
[106] Lakshminarayanan, R., Vithana, E.N., Chai, S.-M., Chaurasia, S.S., Saraswathi, P., et al. (2011). A novel mutation in transforming growth factor-beta induced protein (TGFβIp) reveals secondary structure perturbation in lattice corneal dystrophy. British Journal of Ophthalmology, 95(10), 1457. doi: https://doi.org/10.1136/bjophthalmol-2011-300651.
[107] Venkatraman, A., Murugan, E., Lin, S.J., Peh, G.S.L., Rajamani, L., & Mehta, J.S. (2020). Effect of osmolytes on in-vitro aggregation properties of peptides derived from TGFBIp. Scientific Reports, 10(1), 12. doi: https://doi.org/10.1038/s41598-020-60944-0.
[108] Nikbakht, M.R., Ashrafi-Kooshk, M.R., Jaafari, M., Ghasemi, M., & Khodarahmi, R. (2014). Does Long-Term Administration of a Beta-Blocker (Timolol) Induce Fibril-Based Cataract Formation In-vivo? Iranian Journal of Pharmaceutical Research, 13(2), 599-611. doi: https://doi.org/10.22037/ijpr.2014.1520.
[109] Martı́nez, V., Maguregui, M.I., Jiménez, R.M., & Alonso, R.M. (2000). Determination of the pKa values of β-blockers by automated potentiometric titrations. Journal of Pharmaceutical and Biomedical Analysis, 23(2), 459-468. doi: https://doi.org/10.1016/S0731-7085(00)00324-1.
[110] Patton, G.N., & Lee, H.J. (2024). Chemical Insights into Topical Agents in Intraocular Pressure Management: From Glaucoma Etiopathology to Therapeutic Approaches. Pharmaceutics, 16(2), 274. doi: https://doi.org/10.3390/pharmaceutics16020274.
[111] Gunaydin, B., & Cok, O.Y. (2011). Hazards of topical ophthalmic drug administration. Trends in Anaesthesia and Critical Care, 1(1), 31-34. doi: https://doi.org/10.1016/j.cacc.2010.07.001.
[112] Casson, R.J. (2022). Medical therapy for glaucoma: A review. Clinical & Experimental Ophthalmology, 50(2), 198-212. doi: https://doi.org/10.1111/ceo.13989.
[113] Negri, L., Ferreras, A., & Iester, M. (2019). Timolol 0.1% in Glaucomatous Patients: Efficacy, Tolerance, and Quality of Life. Journal of Ophthalmology, 2019(1), 4146124. doi: https://doi.org/10.1155/2019/4146124.
[114] Rathore, K.S., Nema, R.K., Sisodia, S.S., & Girls, B.N. (2010). Timolol maleate a gold standard drug in glaucoma used as ocular films and inserts: an overview. International Journal of Pharmaceutical Sciences Review and Research, 3(1), 23-29.
[115] Hori, Y., Takeda, S., Cho, H., Wegmann, S., Shoup, T.M., et al. (2015). A Food and Drug Administration-approved asthma therapeutic agent impacts amyloid beta in the brain in a transgenic model of Alzheimer disease. Journal of Biological Chemistry, 290(4), 1966-1978. doi: https://doi.org/10.1074/jbc.M114.586602.
[116] Minutello, K., & Gupta, V. (2024). Cromolyn sodium. In StatPearls [Internet] StatPearls Publishing.
[117] Murphy, S., & Kelly, H.W. (1987). Cromolyn Sodium: A Review of Mechanisms and Clinical Use in Asthma. Drug Intelligence & Clinical Pharmacy, 21(1), 22-35. doi: https://doi.org/10.1177/10600280870211p102.
[118] Murphy, S. (1988). Cromolyn Sodium: Basic Mechanisms and Clinical Usage. Pediatric Asthma, Allergy & Immunology, 2(4), 237-254. doi: https://doi.org/10.1089/pai.1988.2.237.
[119] Rakesh, R., & Anoop, K. (2012). Formulation and optimization of nano-sized ethosomes for enhanced transdermal delivery of cromolyn sodium. Journal of Pharmacy and Bioallied Sciences, 4(4), 333-340. doi: https://doi.org/10.4103/0975-7406.103274.
[120] Drugs.com. (2023) Cromolyn Ophthalmic Dosage. (Accessed October 30, 2023), from https://www.drugs.com/dosage/cromolyn-ophthalmic.html
[121] Marchitto, M.C., & Chien, A.L. (2021). Mast Cell Stabilizers in the Treatment of Rosacea: A Review of Existing and Emerging Therapies. Dermatology and Therapy, 11(5), 1541-1549. doi: https://doi.org/10.1007/s13555-021-00597-7.
[122] Ball, D.R., & McGuire, B.E. (2013). Airway Pharmacology. In Benumof and Hagberg's Airway Management (Third Edition) (pp. 159-183.e159) C. A. Hagberg (Ed.), Saunders Elsevier. doi: https://doi.org/10.1016/B978-1-4377-2764-7.00006-3
[123] Pathak, S., Parkar, H., Tripathi, S., & Kale, A. (2020). Ofloxacin as a Disruptor of Actin Aggresome "Hirano Bodies": A Potential Repurposed Drug for the Treatment of Neurodegenerative Diseases. Frontiers in Aging Neuroscience, 12, 591579. doi: https://doi.org/10.3389/fnagi.2020.591579.
[124] Muthu, S.A., Mothi, N., Shiriskar, S.M., Pissurlenkar, R.R., Kumar, A., & Ahmad, B. (2016). Physical basis for the ofloxacin-induced acceleration of lysozyme aggregation and polymorphism in amyloid fibrils. Archives of Biochemistry and Biophysics, 592, 10-19. doi: https://doi.org/10.1016/j.abb.2016.01.005.
[125] Endoh, M., Kunishita, T., & Tabira, T. (1999). No effect of anti-leprosy drugs in the prevention of Alzheimer’s disease and β-amyloid neurotoxicity. Journal of the Neurological Sciences, 165(1), 28-30. doi: https://doi.org/10.1016/S0022-510X(99)00057-X.
[126] Graham, D.B., & Tripp, J. (2023). Ofloxacin. In StatPearls [Internet] StatPearls Publishing.
[127] Bhatt, S., & Chatterjee, S. (2022). Fluoroquinolone antibiotics: Occurrence, mode of action, resistance, environmental detection, and remediation – A comprehensive review. Environmental Pollution, 315, 120440. doi: https://doi.org/10.1016/j.envpol.2022.120440.
[128] Hooper, D.C. (2001). Mechanisms of Action of Antimicrobials: Focus on Fluoroquinolones. Clinical Infectious Diseases, 32(Supplement_1), S9-S15. doi: https://doi.org/10.1086/319370.
[129] Gervasoni, S., Malloci, G., Bosin, A., Vargiu, A., Zgurskaya, H., & Ruggerone, P. (2022). Recognition of quinolone antibiotics by the multidrug efflux transporter MexB of Pseudomonas aeruginosa. Physical Chemistry Chemical Physics, 24(27), 16566-16575. doi: https://doi.org/10.1039/D2CP00951J.
[130] Mimouni, F., Belboukhari, N., Sеkkoum, K., & Abdelkrim, C. (2018). A Comparison between Experimental and Theoretical Spectroscopic Data of Ofloxacin. Der Pharma Chemica, 10(5), 31-35.
[131] Yamazaki, Y., Matsunaga, T., Syohji, K., Arakawa, T., & Sato, T. (2013). Effect of anionic/siloxy groups on the release of ofloxacin from soft contact lenses. Journal of Applied Polymer Science, 127(6), 5022-5027. doi: https://doi.org/10.1002/app.38114.
[132] Xiao, D., Dramou, P., Xiong, N., He, H., Yuan, D., et al. (2013). Preparation of molecularly imprinted polymers on the surface of magnetic carbon nanotubes with a pseudo template for rapid simultaneous extraction of four fluoroquinolones in egg samples. Analyst, 138(11), 3287-3296. doi: https://doi.org/10.1039/C3AN36755J.
[133] Van Wieren, E.M., Seymour, M.D., & Peterson, J.W. (2012). Interaction of the fluoroquinolone antibiotic, ofloxacin, with titanium oxide nanoparticles in water: Adsorption and breakdown. Science of The Total Environment, 441, 1-9. doi: https://doi.org/10.1016/j.scitotenv.2012.09.067.
[134] Loredana Elena, V. (2009). UV-Vis adsorption study of ofloxacin-DNA interaction. Optoelectronics and Advanced Materials, Rapid Communications, 3(1), 60-64.
[135] Hwang, D.G. (2004). Fluoroquinolone resistance in ophthalmology and the potential role for newer ophthalmic fluoroquinolones. Survey of Ophthalmology, 49(2, Supplement 2), S79-S83. doi: https://doi.org/10.1016/j.survophthal.2004.01.004.
[136] Stenholm, Å., Hedeland, M., & Pettersson, C.E. (2022). Investigation of neomycin biodegradation conditions using ericoid mycorrhizal and white rot fungal species. BMC Biotechnology, 22(1), 29. doi: https://doi.org/10.1186/s12896-022-00759-1.
[137] Veirup, N., & Kyriakopoulos, C. (2023). Neomycin. In StatPearls [Internet] StatPearls Publishing.
[138] Alkhzem, A.H., Woodman, T.J., & Blagbrough, I.S. (2021). Multinuclear Nuclear Magnetic Resonance Spectroscopy Is Used to Determine Rapidly and Accurately the Individual pKa Values of 2-Deoxystreptamine, Neamine, Neomycin, Paromomycin, and Streptomycin. ACS Omega, 6(4), 2824-2835. doi: https://doi.org/10.1021/acsomega.0c05138.
[139] Hermann, T., & Westhof, E. (1998). Aminoglycoside binding to the hammerhead ribozyme: a general model for the interaction of cationic antibiotics with RNA. Journal of Molecular Biology, 276(5), 903-912. doi: https://doi.org/10.1006/jmbi.1997.1590.
[140] Wright, E., & Serpersu, E. (2011). Effects of Proton Linkage on Thermodynamic Properties of Enzyme– Antibiotic Complexes of the Aminoglycoside Nucleotidyltransferase (2″)-Ia. Journal of Thermodynamics & Catalysis, 02. doi: https://doi.org/10.4172/2157-7544.1000105.
[141] Clouet-d'Orval, B., Stage, T.K., & Uhlenbeck, O.C. (1995). Neomycin Inhibition of the Hammerhead Ribozyme Involves Ionic Interactions. Biochemistry, 34(35), 11186-11190. doi: https://doi.org/10.1021/bi00035a025.
[142] Mikkelsen, N.E., Brännvall, M., Virtanen, A., & Kirsebom, L.A. (1999). Inhibition of RNase P RNA cleavage by aminoglycosides. Proceedings of the National Academy of Sciences of the United States of America, 96(11), 6155-6160. doi: https://doi.org/10.1073/pnas.96.11.6155.
[143] Alam, J., Jaiswal, V., & Sharma, L. (2021). Screening of Antibiotics Against beta-amyloid as Anti-amyloidogenic Agents: A Drug Repurposing Approach. Current Computer-Aided Drug Design, 17(5), 647-654. doi: https://doi.org/10.2174/1573409916666200703171732.
[144] Satrijo, A., & Swager, T.M. (2007). Anthryl-Doped Conjugated Polyelectrolytes as Aggregation-Based Sensors for Nonquenching Multicationic Analytes. Journal of the American Chemical Society, 129(51), 16020-16028. doi: https://doi.org/10.1021/ja075573r.
[145] Jana, S., & Deb, J.K. (2006). Molecular understanding of aminoglycoside action and resistance. Applied Microbiology and Biotechnology, 70(2), 140-150. doi: https://doi.org/10.1007/s00253-005-0279-0.
[146] Drugs.com. (2023) Dexamethasone / Neomycin / Polymyxin B Ophthalmic Dosage. (Accessed October 31, 2023), from https://www.drugs.com/dosage/dexamethasone-neomycin-polymyxin-b-ophthalmic.html
[147] Kanfer, I., Skinner, M.F., & Walker, R.B. (1998). Analysis of macrolide antibiotics. Journal of Chromatography A, 812(1), 255-286. doi: https://doi.org/10.1016/S0021-9673(98)00276-3.
[148] Jelić, D., & Antolović, R. (2016). From Erythromycin to Azithromycin and New Potential Ribosome-Binding Antimicrobials. Antibiotics, 5(3). doi: https://doi.org/10.3390/antibiotics5030029.
[149] Deng, X., Jiang, Y., Zhang, M.a., Nan, Z., Liang, X., & Wang, G. (2022). Sorption properties and mechanisms of erythromycin and ampicillin in loess soil: Roles of pH, ionic strength, and temperature. Chemical Engineering Journal, 434, 134694. doi: https://doi.org/10.1016/j.cej.2022.134694.
[150] Phonsiri, V., Choi, S., Nguyen, C., Tsai, Y.-L., Coss, R., & Kurwadkar, S. (2019). Monitoring occurrence and removal of selected pharmaceuticals in two different wastewater treatment plants. SN Applied Sciences, 1(7), 798. doi: https://doi.org/10.1007/s42452-019-0774-z.
[151] Tucker, S., Ahl, M., Bush, A., Westaway, D., Huang, X., & Rogers, J.T. (2005). Pilot study of the reducing effect on amyloidosis in vivo by three FDA pre-approved drugs via the Alzheimer's APP 5' untranslated region. Current Alzheimer research, 2(2), 249-254. doi: https://doi.org/10.2174/1567205053585855.
[152] Tucker, S., Ahl, M., Cho, H.-H., Bandyopadhyay, S., Cuny, D.G., et al. (2006). RNA Therapeutics Directed to the Non Coding Regions of APP mRNA, In Vivo Anti-Amyloid Efficacy of Paroxetine, Erythromycin, and N-acetyl cysteine. Current Alzheimer research, 3(3), 221-227. doi: https://doi.org/10.2174/156720506777632835.
[153] Appleby, B.S., Nacopoulos, D., Milano, N., Zhong, K., & Cummings, J.L. (2013). A Review: Treatment of Alzheimer’s Disease Discovered in Repurposed Agents. Dementia and Geriatric Cognitive Disorders, 35(1-2), 1-22. doi: https://doi.org/10.1159/000345791.
[154] Zhang, H., Sawashita, J., Fu, X., Korenaga, T., Yan, J., Mori, M., & Higuchi, K. (2006). Transmissibility of mouse AApoAII amyloid fibrils: inactivation by physical and chemical methods. FASEB Journal, 20(7), 1012-1014. doi: https://doi.org/10.1096/fj.05-4890fje.
[155] Nor Amdan, N.A., Shahrulzamri, N.A., Hashim, R., & Mohamad Jamil, N. (2024). Understanding the evolution of macrolides resistance: A mini review. Journal of Global Antimicrobial Resistance, 38, 368-375. doi: https://doi.org/10.1016/j.jgar.2024.07.016.
[156] Farzam, K., Nessel, T.A., & Quick, J. (2023). Erythromycin. In StatPearls [Internet] StatPearls Publishing.
[157] Vázquez-Laslop, N., & Mankin, A.S. (2018). How Macrolide Antibiotics Work. Trends in Biochemical Sciences, 43(9), 668-684. doi: https://doi.org/10.1016/j.tibs.2018.06.011.
[158] Drugs.com. (2024) ilotycin Dosage. (Accessed October 31, 2024), from https://www.drugs.com/dosage/ilotycin.html
[159] Gade Malmos, K., Blancas-Mejia, L.M., Weber, B., Buchner, J., Ramirez-Alvarado, M., Naiki, H., & Otzen, D. (2017). ThT 101: a primer on the use of thioflavin T to investigate amyloid formation. Amyloid, 24(1), 1-16. doi: https://doi.org/10.1080/13506129.2017.1304905.
[160] Murugan, E., Venkatraman, A., Lei, Z., Mouvet, V., Rui Yi Lim, R., et al. (2016). pH Induced Conformational Transitions in the Transforming Growth Factor β-Induced Protein (TGFβIp) Associated Corneal Dystrophy Mutants. Scientific Reports, 6(1), 23836. doi: https://doi.org/10.1038/srep23836.
[161] Melton, R., Thomas, R., & Vollmer, P. (2019). 2019 Clinical Guide to Ophthalmic Drugs, Review of Optometry Retrieved from https://www.reviewofoptometry.com/publications/2019-ophthalmic-drug-guide
[162] Drugs.com. (Accessed February 15, 2024), from https://www.drugs.com/
[163] Chen, S., Berthelier, V., Hamilton, J.B., O'Nuallai, B., & Wetzel, R. (2002). Amyloid-like Features of Polyglutamine Aggregates and Their Assembly Kinetics. Biochemistry, 41(23), 7391-7399. doi: https://doi.org/10.1021/bi011772q.
[164] Chen, Y.-H., Tseng, C.-P., How, S.-C., Lo, C.-H., Chou, W.-L., & Wang, S.S.S. (2016). Amyloid fibrillogenesis of lysozyme is suppressed by a food additive brilliant blue FCF. Colloids and Surfaces B: Biointerfaces, 142, 351-359. doi: https://doi.org/10.1016/j.colsurfb.2016.02.064.
[165] How, S.-C., Hsin, A., Chen, G.-Y., Hsu, W.-T., Yang, S.-M., et al. (2019). Exploring the influence of brilliant blue G on amyloid fibril formation of lysozyme. International Journal of Biological Macromolecules, 138, 37-48. doi: https://doi.org/10.1016/j.ijbiomac.2019.07.055.
[166] Thakur, A.K., & Rao, C.M. (2008). UV-Light Exposed Prion Protein Fails to Form Amyloid Fibrils. PLoS ONE, 3(7), e2688. doi: https://doi.org/10.1371/journal.pone.0002688.
[167] Biancalana, M., & Koide, S. (2010). Molecular mechanism of Thioflavin-T binding to amyloid fibrils. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics, 1804(7), 1405-1412. doi: https://doi.org/10.1016/j.bbapap.2010.04.001.
[168] Xue, C., Lin, T.Y.W., Chang, D., & Guo, Z.F. (2017). Thioflavin T as an amyloid dye: fibril quantification, optimal concentration and effect on aggregation. Royal Society Open Science, 4(1), 12. doi: https://doi.org/10.1098/rsos.160696.
[169] Grasso, G., Di Gregorio, A., Mavkov, B., Piga, D., Labate, G.F.D., Danani, A., & Deriu, M.A. (2022). Fragmented blind docking: a novel protein-ligand binding prediction protocol. Journal of Biomolecular Structure & Dynamics, 40(24), 13472-13481. doi: https://doi.org/10.1080/07391102.2021.1988709.
[170] Hassan, N.M., Alhossary, A.A., Mu, Y.G., & Kwoh, C.K. (2017). Protein-Ligand Blind Docking Using QuickVina-W With Inter-Process Spatio-Temporal Integration. Scientific Reports, 7. doi: https://doi.org/10.1038/s41598-017-15571-7.
[171] Nocedal, J., & Wright, S.J. (1999). Numerical optimization: Springer New York, NY. doi: https://doi.org/10.1007/b98874
[172] Eberhardt, J., Santos-Martins, D., Tillack, A.F., & Forli, S. (2021). AutoDock Vina 1.2.0: New Docking Methods, Expanded Force Field, and Python Bindings. Journal of Chemical Information and Modeling, 61(8), 3891-3898. doi: https://doi.org/10.1021/acs.jcim.1c00203.
[173] Trott, O., & Olson, A.J. (2010). AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 31(2), 455-461. doi: https://doi.org/10.1002/jcc.21334.
[174] Lindahl, Abraham, Hess, & der Spoel, V. (2020). GROMACS 2020.3 Manual. Zenodo. doi: https://doi.org/10.5281/zenodo.3923644.
[175] Lindahl, Abraham, Hess, & der Spoel, V. (2020). GROMACS 2020.3 Source code. Zenodo. doi: https://doi.org/10.5281/zenodo.3923645.
[176] Mackerell Jr., A.D., Feig, M., & Brooks III, C.L. (2004). Extending the treatment of backbone energetics in protein force fields: Limitations of gas-phase quantum mechanics in reproducing protein conformational distributions in molecular dynamics simulations. Journal of Computational Chemistry, 25(11), 1400-1415. doi: https://doi.org/10.1002/jcc.20065.
[177] Teleman, O., Jonsson, B., & Engstrom, S. (1987). A molecular dynamics simulation of a water model with intramolecular degrees of freedom. Molecular Physics, 60(1), 193-203. doi: https://doi.org/10.1080/00268978700100141.
[178] Hanwell, M.D., Curtis, D.E., Lonie, D.C., Vandermeersch, T., Zurek, E., & Hutchison, G.R. (2012). Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. Journal of Cheminformatics, 4(1), 17. doi: https://doi.org/10.1186/1758-2946-4-17.
[179] Hornak, V., Abel, R., Okur, A., Strockbine, B., Roitberg, A., & Simmerling, C. (2006). Comparison of multiple Amber force fields and development of improved protein backbone parameters. Proteins: Structure, FUnction, and Bioinformatics, 65(3), 712-725. doi: https://doi.org/10.1002/prot.21123.
[180] Gowers, R.J., Linke, M., Barnoud, J., Reddy, T.J.E., Melo, M.N., et al. (2016). MDAnalysis: A Python Package for the Rapid Analysis of Molecular Dynamics Simulations. Paper presented at the Proceedings of the 15th Python in Science Conference. http://dx.doi.org/10.25080/Majora-629e541a-00e
[181] Michaud-Agrawal, N., Denning, E.J., Woolf, T.B., & Beckstein, O. (2011). MDAnalysis: A toolkit for the analysis of molecular dynamics simulations. Journal of Computational Chemistry, 32(10), 2319-2327. doi: https://doi.org/10.1002/jcc.21787.
[182] Antosova, A., Gancar, M., Bednarikova, Z., Marek, J., Bystrenova, E., & Gazova, Z. (2022). The influence of cations on α-lactalbumin amyloid aggregation. Journal of Biological Inorganic Chemistry, 27(7), 679-689. doi: https://doi.org/10.1007/s00775-022-01962-3.
[183] Buell, A.K., Hung, P., Salvatella, X., Welland, M.E., Dobson, C.M., & Knowles, T.P. (2013). Electrostatic effects in filamentous protein aggregation. Biophysical journal, 104(5), 1116-1126. doi: https://doi.org/10.1016/j.bpj.2013.01.031.
[184] Kato, Y., Yagi, H., Kaji, Y., Oshika, T., & Goto, Y. (2013). Benzalkonium Chloride Accelerates the Formation of the Amyloid Fibrils of Corneal Dystrophy-associated Peptides. Journal of Biological Chemistry, 288(35), 25109-25118. doi: https://doi.org/10.1074/jbc.M113.477695.
[185] Levine III, H. (1993). Thioflavine T interaction with synthetic Alzheimer's disease β-amyloid peptides: Detection of amyloid aggregation in solution. Protein Science, 2(3), 404-410. doi: https://doi.org/10.1002/pro.5560020312.
[186] Shukla, R., & Tripathi, T. (2020). Molecular Dynamics Simulation of Protein and Protein–Ligand Complexes. In Computer-Aided Drug Design (pp. 133-161) D. B. Singh (Ed.), Springer Singapore. doi: https://doi.org/10.1007/978-981-15-6815-2_7
[187] Katelaris, C.H., Ciprandi, G., Missotten, L., Turner, F.D., Bertin, D., & Berdeaux, G. (2002). A comparison of the efficacy and tolerability of olopatadine hydrochloride 0.1% ophthalmic solution and cromolyn sodium 2% ophthalmic solution in seasonal allergic conjunctivitis. Clinical Therapeutics, 24(10), 1561-1575. doi: https://doi.org/10.1016/S0149-2918(02)80060-1.
[188] Doytchinova, I., Atanasova, M., Salamanova, E., Ivanov, S., & Dimitrov, I. (2020). Curcumin Inhibits the Primary Nucleation of Amyloid-Beta Peptide: A Molecular Dynamics Study. Biomolecules, 10(9), 14. doi: https://doi.org/10.3390/biom10091323.
[189] Windsor, P.K., Plassmeyer, S.P., Mattock, D.S., Bradfield, J.C., Choi, E.Y., Miller, B.R., & Han, B.H. (2021). Biflavonoid-Induced Disruption of Hydrogen Bonds Leads to Amyloid-beta Disaggregation. International Journal of Molecular Sciences, 22(6), 17. doi: https://doi.org/10.3390/ijms22062888.
[190] Chi, E.Y., Krishnan, S., Randolph, T.W., & Carpenter, J.F. (2003). Physical stability of proteins in aqueous solution: Mechanism and driving forces in nonnative protein aggregation. Pharmaceutical Research, 20(9), 1325-1336. doi: https://doi.org/10.1023/a:1025771421906.
[191] Dobson, C.M. (2003). Protein folding and misfolding. Nature, 426(6968), 884-890. doi: https://doi.org/10.1038/nature02261.
[192] Santos, J., Iglesias, V., Santos-Suarez, J., Mangiagalli, M., Brocca, S., Pallares, I., & Ventura, S. (2020). pH-Dependent Aggregation in Intrinsically Disordered Proteins Is Determined by Charge and Lipophilicity. Cells, 9(1), 14. doi: https://doi.org/10.3390/cells9010145.
[193] Carrwik, C., & Stenevi, U. (2009). Lattice corneal dystrophy, gelsolin type (Meretoja’s syndrome). Acta Ophthalmologica, 87(8), 813-819. doi: https://doi.org/10.1111/j.1755-3768.2009.01686.x.
[194] Huerva, V., Soldevila, J., & Matías-Guiu, X. (2014). Recurrent Amyloid Material in Grafts Used in Patients with Lattice Corneal Dystrophy 2 (Meretoja’s Syndrome). Medical Hypothesis, Discovery, and Innovation in Ophthalmology, 3(3), 99 - 100.
[195] Kirkpatrick, C.A., Shah, S., Goins, K.M., & Allen, R.C. (2013) Lattice Corneal Dystrophy Type II – Meretoja's Syndrome. A 68-year-old female presents with progressive decline in vision and glare. EyeRounds. (Accessed 29 March, 2024), from https://webeye.ophth.uiowa.edu/eyeforum/cases/176-meretoja.htm
[196] Solomon, J.P., Yonemoto, I.T., Murray, A.N., Price, J.L., Powers, E.T., Balch, W.E., & Kelly, J.W. (2009). The 8 and 5 kDa Fragments of Plasma Gelsolin Form Amyloid Fibrils by a Nucleated Polymerization Mechanism, while the 68 kDa Fragment Is Not Amyloidogenic. Biochemistry, 48(48), 11370-11380. doi: https://doi.org/10.1021/bi901368e.
[197] Kazmirski, S.L., Howard, M.J., Isaacson, R.L., & Fersht, A.R. (2000). Elucidating the mechanism of familial amyloidosis– Finnish type: NMR studies of human gelsolin domain 2. Proceedings of the National Academy of Sciences, 97(20), 10706-10711. doi: https://doi.org/10.1073/pnas.180310097.
[198] Srivastava, A., Arya, P., Goel, S., Kundu, B., Mishra, P., & Fnu, A. (2015). Gelsolin Amyloidogenesis Is Effectively Modulated by Curcumin and Emetine Conjugated PLGA Nanoparticles. PLoS ONE, 10(5), e0127011. doi: https://doi.org/10.1371/journal.pone.0127011.
[199] Rodrigues, M.M., Rajagopalan, S., Jones, K., Nirankari, V., Wisniewski, T., Frangione, B., & Gorevic, P.D. (1993). Gelsolin Immunoreactivity in Corneal Amyloid, Wound Healing, and Macular and Granular Dystrophies. American Journal of Ophthalmology, 115(5), 644-652. doi: https://doi.org/10.1016/S0002-9394(14)71464-3.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99097-
dc.description.abstract乙型轉化生長因子誘導蛋白(TGFBIp)是一種廣泛存在於多種組織中的細胞外蛋白質,也是角膜基質層中含量第二高的蛋白質,其突變可引發晶狀角膜失養症(Lattice corneal dystrophy,LCD)和粒狀角膜失養症(Granular corneal dystrophy,GCD)等角膜退行性疾病。然而,目前尚無有效的治療方法來預防、阻止或逆轉因TGFBIp聚集所導致的角膜失養症之進展。由於藥物可能具有交叉作用,治療某種疾病的藥物可能對另一種疾病產生有害或有利的影響,因此在選擇治療患有多重疾病之患者的藥物時需十分謹慎,以避免因藥物的負面作用而導致病情加重。
本研究旨在探討多種常見眼科藥物對TGFBIp多肽片段的類澱粉纖維生成之影響。研究中以TGFBIp第4個FAS1結構域中具有23個氨基酸之長肽片段(TGFBIp611-633)作為體外多肽聚合模型,分析了5種常用眼科藥物成分/小分子—梯莫洛縮蘋酸鹽(Timolol maleate,Tim)、色甘酸鈉(Cromolyn sodium,Crm)、歐弗洒欣(Ofloxacin,Ofx)、新絲菌素硫酸鹽(Neomycin sulfate,Neo)及紅絲菌素(Erythromycin,Ery)——對其纖維化聚集行為的影響。
研究結果顯示,部分原本用於治療其他眼科疾病的藥物,可能具有促進或抑制TGFBIp611-633多肽的纖維化聚集的能力,進而影響LCD的疾病進程。本研究中,我們發現Crm和Ofx對TGFBIp611-633多肽的纖維化聚集無明顯影響;相對的,Tim和Neo則顯示出促進纖維化聚集之效果,而Ery則發現具有抑制聚集的能力。本研究結果不僅可為眼科醫師在為LCD患者選擇適當眼科藥物時提供參考,分析本研究探討的眼藥小分子的不同特性,為未來開發 LCD 的非侵入性藥物治療提供潛在的研究方向與設計指引。
zh_TW
dc.description.abstractTransforming growth factor β-induced protein (TGFBIp) is a widely expressed extracellular protein and the second most abundant protein in the corneal stroma. Mutations in TGFBIp are associated with corneal degenerative diseases such as lattice corneal dystrophy (LCD) and granular corneal dystrophy (GCD). However, there is currently no effective treatment to prevent, stop, or reverse the progression of TGFBIp aggregation-related corneal dystrophies. Due to potential drug cross-interactions, medications used to treat one condition may inadvertently benefit or aggravate another. Therefore, careful selection is crucial to ensure effective treatment and to prevent adverse effects in patients with multiple diseases.
This study aimed to investigate the effects of common ophthalmic drugs on the amyloidogenesis of TGFBIp peptide fragments. An in vitro TGFBIp peptide aggregation system was employed, using a 23-amino acid peptide (TGFBIp611-633) from the fourth FAS1 domain of TGFBIp as a model, to examine the effects of five commonly used ophthalmic drug ingredients/molecules—timolol maleate (Tim), cromolyn sodium (Crm), ofloxacin (Ofx), neomycin sulfate (Neo), and erythromycin (Ery)—on the peptide’s aggregation behavior.
The results provide supporting evidence that certain drugs used for some eye diseases may either promote, inhibit or have no effect on the fibrillar aggregation of TGFBIp611-633 peptide. Those that have an effect may potentially influence the progression of LCD by aggravating or alleviating the disease. Specifically, Crm and Ofx showed no significant effect on the fibrillar aggregation of TGFBIp611-633, whereas Tim and Neo exhibited aggregation-promoting effects. In contrast, Ery demonstrated an inhibitory effect on aggregation. These findings offer valuable insights for ophthalmologists in selecting appropriate medications for patients with LCD. Additionally, understanding the distinct properties of the ophthalmic compounds examined in this study may provide some guidance for future development of LCD therapeutics.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-21T16:22:30Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-08-21T16:22:30Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書 i
前言與謝辭 ii
摘要 iii
ABSTRACT iv
目次 v
圖次 viii
表次 ix
第一章 研究動機 1
1.1 研究背景 1
1.2 研究動機 1
1.3 研究目的 1
第二章 文獻回顧 3
2.1 蛋白質類澱粉纖維聚集體(Amyloid fibril) 3
2.1.1 類澱粉纖維之結構與特性 3
2.1.2 類澱粉沉積症(Amyloidosis) 6
2.2 乙型轉化生長因子誘導蛋白(TGFBIp) 9
2.2.1 TGFBIp的生理功能 11
2.2.2 眼角膜中的TGFBIp 11
2.2.3 TGFBIp相關之角膜失養症(Corneal dystrophy) 14
2.2.3.1 TGFBIp-角膜失養症類型 14
2.2.3.2 TGFBIp-角膜失養症形成機制 16
2.2.3.3 TGFBIp相關角膜失養症治療手段 20
2.2.3.4 TGFBIp611-633多肽 20
2.3 眼科藥物成分於蛋白質聚集相關之研究 21
2.3.1 梯莫洛縮蘋酸鹽(梯莫洛) (Timolol maleate,Tim) 21
2.3.2 色甘酸鈉 (Cromolyn sodium,Crm) 22
2.3.3 歐弗洒欣(Ofloxacin,Ofx) 22
2.3.4 新絲菌素硫酸鹽(Neomycin Sulfate,Neo) 23
2.3.5 紅絲菌素(Erythromycin,Ery) 23
第三章 實驗材料與方法 24
3.1 實驗材料與儀器 24
3.2 實驗方法 26
3.2.1 實驗溶液與試劑配製 26
3.2.1.1 緩衝溶液 26
3.2.1.2 TGFBIp611-633胜肽儲備溶液配製 26
3.2.1.3 眼藥小分子儲備溶液配製 26
3.2.1.4 硫代磺素T(Thioflavin T, ThT)試劑儲備液配製 26
3.2.1.5 TGFBIp611-633纖維化聚集體外試驗樣品溶液配製 27
3.2.2 TGFBIp611-633纖維化聚集體外試驗與檢測 28
3.2.2.1 直角光散射(Right-angle (RA) light scattering) 28
3.2.2.2 ThT螢光試劑檢測 28
3.2.2.3 ThT螢光增加度百分比 29
3.2.2.4 穿透式電子顯微鏡(Transmission electron microscopy, TEM) 29
3.2.2.5 統計分析(Statistical analysis) 29
3.3 電腦模擬 30
3.3.1 蛋白質結構與眼藥小分子結構 30
3.3.2 分子對接模擬(Molecular docking simulation) 32
3.3.2.1 蛋白質結構預處理 32
3.3.2.2 模擬結構檔案準備 33
3.3.2.3 盲對接模擬 33
3.3.3 分子動力學模擬(Molecular dynamic (MD) simulation) 34
第四章 結果與討論 35
4.1 眼藥小分子對TGFBIp611-633聚集之影響 35
4.1.1 直角光散射 35
4.1.2 硫代磺素T(Thioflavin T, ThT)螢光試劑分析 40
4.1.3 穿透式電子顯微鏡(TEM) 43
4.2 分子對接/分子動力學模擬 46
4.3 討論 57
第五章 結論 62
參考文獻 63
附錄 86
SI-1 空白樣品背景干擾試驗 86
SI-2 TGFBIp611-633多肽與5種眼藥分子之帶電情形 88
SI-2(a) TGFBIp611-633多肽 88
SI-2(b) 梯莫洛縮蘋酸鹽(Timolol maleate,Tim) 89
SI-2(c) 色甘酸鈉鹽(Cromolyn sodium,Crm) 90
SI-2(d) 歐弗洒欣(Ofloxacin,Ofx) 91
SI-2(e) 新絲菌素硫酸鹽(Neomycin sulfate,Neo) 92
SI-2(f) 紅絲菌素(Erythromycin,Ery) 93
SI-3 臨床常見之眼科藥物成分/小分子 97
SI-4 期刊版權與作者權限證明 112
SI-5 期刊版權權限證明 114
SI-5(a) 圖2.1版權許可證明 114
SI-5(b) 圖2.2版權許可證明 117
SI-5(c) 圖2.3版權許可證明 120
SI-7 著作目錄 123
SI-8 論文原創性比對結果 125
-
dc.language.isozh_TW-
dc.subject乙型轉化生長因子誘導蛋白(TGFBIp)zh_TW
dc.subject晶格狀角膜失養症(LCD)zh_TW
dc.subject類澱粉纖維zh_TW
dc.subject眼科藥物zh_TW
dc.subjectLattice corneal dystrophy (LCD)en
dc.subjectTransforming growth factor β-induced protein (TGFBIp)en
dc.subjectOphthalmic drugen
dc.subjectAmyloidogenesisen
dc.title眼科藥物對乙型轉化生長因子誘導蛋白(TGFBIp)多肽之類澱粉纖維形成之影響zh_TW
dc.titleEffects of Ophthalmic Drugs on Amyloidogenesis of Transforming Growth Factor β-Induced Protein Peptideen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree博士-
dc.contributor.coadvisor吳宛儒zh_TW
dc.contributor.coadvisorJosephine Wan-Ru Wuen
dc.contributor.oralexamcommittee游佳欣;蔡伸隆;侯素君;林達顯;蔡雅慧;蔡景耀;蕭哲志zh_TW
dc.contributor.oralexamcommitteeJiashing Yu;Shen-Long Tsai;Su-Chun How;Ta-Hsien Lin;Ya-Hui Tsai;Ching-Yao Tsai;George Hsiaoen
dc.subject.keyword乙型轉化生長因子誘導蛋白(TGFBIp),晶格狀角膜失養症(LCD),類澱粉纖維,眼科藥物,zh_TW
dc.subject.keywordTransforming growth factor β-induced protein (TGFBIp),Lattice corneal dystrophy (LCD),Amyloidogenesis,Ophthalmic drug,en
dc.relation.page126-
dc.identifier.doi10.6342/NTU202502435-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2025-08-07-
dc.contributor.author-college工學院-
dc.contributor.author-dept化學工程學系-
dc.date.embargo-lift2025-08-22-
顯示於系所單位:化學工程學系

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
12.56 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved