請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99092完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 劉志文 | zh_TW |
| dc.contributor.advisor | Chih-Wen Liu | en |
| dc.contributor.author | 蘇宥禎 | zh_TW |
| dc.contributor.author | Yu-Chen Su | en |
| dc.date.accessioned | 2025-08-21T16:21:17Z | - |
| dc.date.available | 2025-08-22 | - |
| dc.date.copyright | 2025-08-21 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-08-04 | - |
| dc.identifier.citation | [1] United Nations Framework Convention on Climate Change (UNFCCC), "Glasgow Climate Pact," United Nation, 2022. [Online]. Available: https://unfccc.int/. [Accessed: January 20, 2025].
[2] 國家發展委員會 行政院環境保護署 經濟部 科技部 交通部 內政部 行政院 農業委員會、金融監督管理委員會, "臺灣2050 淨零排放路徑及策略總說明," National Council For Sustainable Development, March 30, 2022. [Online]. Available: https://ncsd.ndc.gov.tw/Fore/nsdn/about0/introduction. [Accessed: June 23, 2025]. [3] U.S. DOE Office of Electricity, "Solid State Power Substation Technology Roadmap," June 2020. [Online]. Available: https://www.energy.gov/sites/prod/files/2020/06/f75/2020%20Solid%20State%20Power%20Substation%20Technology%20Roadmap.pdf. [Accessed: July, 20, 2025]. [4] B. A. Avdeev and A. V. Vyngra, "The Use Of Solid-State Transformers As Part Of Smart Grids," 2021 4th International Youth Scientific and Technical Conference on Relay Protection and Automation (RPA), Moscow, Russian Federation, 2021, pp. 1-10, doi: 10.1109/RPA53216.2021.9628424. [5] M. A. Hannan et al., "State of the Art of Solid-State Transformers: Advanced Topologies, Implementation Issues, Recent Progress and Improvements," in IEEE Access, vol. 8, pp. 19113–19132, 2020, doi: 10.1109/ACCESS.2020.2967345. [6] X. She, X. Yu, F. Wang, and A. Q. Huang, "Design and Demonstration of a 3.6-kV-120-V/10-kVA Solid-State Transformer for Smart Grid Application," in IEEE Transactions on Power Electronics, vol. 29, no. 8, pp. 3982–3996, Aug. 2014, doi: 10.1109/TPEL.2013.2293471. [7] T. Zhao, J. Zeng, S. Bhattacharya, M. E. Baran, and A. Q. Huang, "An average model of solid state transformer for dynamic system simulation," 2009 IEEE Power & Energy Society General Meeting, Calgary, AB, Canada, 2009, pp. 1–8, doi: 10.1109/PES.2009.5275542. [8] M. Parimi, M. Monika, M. Rane, S. Wagh, and A. Stankovic, "Dynamic phasor based small-signal stability analysis and control of solid state transformer," 2016 IEEE 6th International Conference on Power Systems (ICPS), New Delhi, India, 2016, pp. 1–6, doi: 10.1109/ICPES.2016.7584183. [9] L. Zheng et al., "Solid-State Transformer and Hybrid Transformer With Integrated Energy Storage in Active Distribution Grids: Technical and Economic Comparison, Dispatch, and Control," in IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 10, no. 4, pp. 3771–3787, Aug. 2022, doi: 10.1109/JESTPE.2022.3144361. [10] S. A. M. Saleh et al., "Solid-State Transformers for Distribution Systems–Part I: Technology and Construction," in IEEE Transactions on Industry Applications, vol. 55, no. 5, pp. 4524–4535, Sept.–Oct. 2019, doi: 10.1109/TIA.2019.2923163. [11] K. Meena, K. Jayaswal, and D. K. Palwalia, "Analysis of Dual Active Bridge Converter for Solid State Transformer Application using Single-Phase Shift Control Technique," 2020 International Conference on Inventive Computation Technologies (ICICT), Coimbatore, India, 2020, pp. 1–6, doi:10.1109/ICICT48043.2020.9112398. [12] W.-J. Kao, "以磁性元件整合為基礎的高效率高功率密度直流/直流轉換器之研究," M.S. thesis, Electrical and Control Engineering, National Chiao Tung Univ., Hsinchu, Taiwan, 2004. [Online]. Available: https://hdl.handle.net/11296/5xqax6 [13] H. Wen and W. Xiao, "Bidirectional dual-active-bridge DC-DC converter with triple-phase-shift control," 2013 Twenty-Eighth Annual IEEE Applied Power Electronics Conference and Exposition (APEC), Long Beach, CA, USA, 2013, pp. 1972–1978, doi: 10.1109/APEC.2013.6520565. [14] R. P. Londero, A. P. C. d. Mello, and G. S. da Silva, "Comparison between conventional and solid state transformers in smart distribution grids," 2019 IEEE PES Innovative Smart Grid Technologies Conference - Latin America (ISGT Latin America), Gramado, Brazil, 2019, pp. 1–6, doi: 10.1109/ISGT-LA.2019.8895327. [15] O. Rabiaa, B. H. Mouna, S. Lassaad, F. Aymen, and A. Aicha, "Cascade Control Loop of DC-DC Boost Converter Using PI Controller," 2018 International Symposium on Advanced Electrical and Communication Technologies (ISAECT), Rabat, Morocco, 2018, pp. 1–5, doi: 10.1109/ISAECT.2018.8618859. [16] Peng Li, Wei Wang, Xilei Yang, Shuai Wang, Hongfen Cui, and Changzheng Gao, "A droop control method of microsources based on divided self-adjusting slope coefficient," 2010 International Conference on Power System Technology, Hangzhou, 2010, pp. 1–6, doi: 10.1109/POWERCON.2010.5666148. [17] MathWorks, "Park Transform," The MathWorks, Inc., 2025. [Online]. Available: https://www.mathworks.com/help/sps/ref/parktransform.html. [Accessed: June 27, 2025]. [18] National Geographic, "ENCYCLOPEDIC ENTRY Nonrenewable Resources," [Online]. Available: https://education.nationalgeographic.org/resource/nonrenewable-resources/ [Accessed: June 27, 2025]. [19] Abdelhay A. Sallam and Om P. Malik, "Distribution System Structure," Electric Distribution Systems, IEEE, 2019, pp. 9–22, doi: 10.1002/9781119509332.ch2. [20] Taiwan Power Company, "Introduction to Taiwan Power System," January 3, 2019. [Online]. Available: https://www.taipower.com.tw/2764/2826/2829/2833/25095/normalPost. [Accessed: June 27, 2025]. [21] The European Technology Platform Smart Grids, "Strategic Deployment Document for Europe's Electricity Networks of the Future," April 2010. [Online]. Available: https://kigeit.org.pl/FTP/PRCIP/Literatura/020_SmartGrids_ETP_SDD_FINAL_A PRIL2010.pdf. [Accessed: June 27, 2025]. [22] European Regulators Group for Electricity and Gas (ERGEG), "Position Paper on Smart Grids – AN ERGEG Conclusions Paper," 10 June 2010. [Online]. Available: https://www.ceer.eu/wp-content/uploads/2024/04/E10-EQS-3805_SmartGrids_Conclusions_10-Jun-2010_Corrigendum.pdf [Accessed: June 27, 2025]. [23] Jukka Paatero, "TOWARDS SUSTAINABLE INTEGRATED ENERGY SYSTEMS- DISTRIBUTED LOW EMISSION PRODUCTION, STORAGE AND SMART GRID," SlidePlayer, May 8, 2015. [Online]. Available: https://slideplayer.com/slide/16944753/. [Accessed: June 29, 2025]. [24] ENVIROMENTAL DEFENSE FUND (EDF), "What is demand response?," [Online]. Available: https://www.edf.org/sites/default/files/demand_response__july_2014.pdf?utm_source. [Accessed: June 29, 2025]. [25] U.S. Department of Energy, "BENEFITS OF DEMAND RESPONSE IN ELECTRICITY MARKETS AND RECOMMENDATIONS FOR ACHIEVING THEM," February 2006. [Online]. Available: https://www.energy.gov/oe/articles/benefits-demand-response-electricity-markets and-recommendations-achieving-them-report ([Accessed: June 29, 2025]. [26] MathWorks, "PV Array," The MathWorks, Inc, 2025. [Online]. Available: https://www.mathworks.com/help/sps/powersys/ref/pvarray.html. [Accessed: June 29, 2025]. [27] M. A. G. de Brito, L. Galotto, L. P. Sampaio, G. d. A. e Melo, and C. A. Canesin, "Evaluation of the Main MPPT Techniques for Photovoltaic Applications," in IEEE Transactions on Industrial Electronics, vol. 60, no. 3, pp. 1156–1167, March 2013, doi: 10.1109/TIE.2012.2198036. [28] Delta, "PV Solutions," [Online]. Available: https://www.deltaww.com/enUS/Solutions/pv-solutions/ALL/. [Accessed: June 30, 2025]. [29] Taiwan Power Company, "台灣電力股份有限公司再生能源發電系統併聯技術要點," December 31, 2009. [Online]. Available: https://www.taipower.com.tw/media/vz4ngcan/%E5%86%8D%E7%94%9F%E8%83%BD%E6%BA%90%E7%99%BC%E9%9B%BB%E7%B3%BB%E7%B5%B1%E4%BD%B5%EF%A6%97%E6%8A%80%E8%A1%93%E8%A6%81%E9%BB%9E.pdf [Accessed: June 30, 2025]. [30] Naki GÜLER, "MPPT Control of Grid Connected PV inverter," YouTube, November 27,2019. [Online]. Available: https://www.youtube.com/watch?v=WKw8DMMjGp0. [Accessed: June 30, 2025]. [31] Naki GÜLER, "Integration of PV and Battery," YouTube, June 7, 2020. [Online]. Available: https://www.youtube.com/watch?v=jPtTNRGBO8E&t=817s. [Accessed: June 30, 2025]. [32] Ahmad Arabkoohsar, Mechanical Energy Storage Technologies. (in English), 2020. [33] 陳靖惠, "綠能引擎加速 儲能系統的種類與原理," 台電月刊, [Online]. Available: https://service.taipower.com.tw/tpcjournal/article/3447. [Accessed: July 1, 2025]. [34] Danfoss, "Thermal energy storage," [Online]. https://www.danfoss.com/en/about-danfoss/insights/integrated-energysystems/thermal-energy-storage/ [Accessed: July 1, 2025]. [35] Tech Simulator, "MATLAB Simulation of a Bidirectional Battery Circuit Using Buck/Boost Converter.," Youtube, October 18,2021. [Online]. Available: https://www.youtube.com/watch?v=u8OEjHWARpI. [Accessed: July 1, 2025]. [36] MathWorks, "Algebraic Loop Concepts," 2025. [Online]. Available: https://www.mathworks.com/help/simulink/ug/algebraic-loops.html. [Accessed:July 5, 2025]. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99092 | - |
| dc.description.abstract | 根據格拉斯哥氣候公約,多數成員國承諾要在2050年實現淨零碳排。為了應對此項這個公約,所有部門需要做出相對應的調整——電力部門綠色化,其他部門電力化。新型態的能源應用對傳統電網產生巨大的影響,加上科技的發展,越來越多新型設備投入電網,固態變壓器(Solid State Transformer, SST)正是其中之一。
固態變壓器不僅僅是一個變壓器,它具備多項功能,例如:功率因素校正、電壓控制、虛功控制、諧波抑制以及平衡功率流動等功能。因此,固態變壓器又可以被稱為電網控制器(Grid Controller). 本研究著重在固態變壓器的平均模型的建立與驗證。平均模型將快速的開關動態行為在一個開關週期內進行平均,形成線性模型,這在控制器設計上是一項優勢。多數的控制理論是以線性系統為基礎發展而成,使其能夠引導使用者設計以及優化控制器。相反的,詳細模型屬於非線性模型,因為非線性系統較難分析,所以沒有一套設計準則是根據非線性系統而提出的,這使得設計詳細模型的控制器較為困難。為了驗證平均模型的結果,要先對詳細模型進行設計,當確認詳細模型正確後,將詳細模型進行化簡得到平均模型後,對其進行驗證。本論文簡化模型的準確度高,數值的誤差不超過5%,因此可以表明該簡化模型是正確的。除了確認簡化模型與詳細模型之間的準確度外,本研究也對平均模型進行功能驗證,包含電壓控制以及虛功控制。虛功控制的部分可以完全實現,而電壓控制會稍微偏移標稱電壓。最後,固態變壓器也嘗試與分散式能源(distributed energy resources, DER)連接在直流微電網中,結果也表明了固態變壓器的平均模型可以應用於直流微電網中,且可以經由轉換器提供/接收功率,以供給負載或是儲存電能。 | zh_TW |
| dc.description.abstract | According to the Glasgow Climate Campact, most of members promised that they will achieve net-zero emission in 2050. In order to fulfill the compact, all sectors have to make corresponding adjustment: the power sector should adopt renewable energy resource, while other sectors should advance toward electrification. The applications of new type energy resource have an impact on the traditional power grid. As the development of the technology, more and more new devices integrate into the power grid, where solid state transformer (SST) is one of them.
An SST is more than a transformer because it has a lot of functions, such as power factor correction, voltage control, reactive power control, harmonic mitigation, and balanced power flow control among others. Therefore, The SST may be referred to as a grid controller. In this thesis, it focuses on the development and verification of the solid state transformer average model. An average model averages the fast switching dynamics over a switching period, resulting in a linear model, which is considered an advantage in control design. Most control theories are developed based on linear models, and it is able to guide users to design and optimize controllers. In contrast, a detailed model is a nonlinear model and there are no design guidelines for controller design based on nonlinear models. To verify the results of the average model, the design of the detailed model is required. The average model is obtained after validating the detailed model and performing simplification. The accuracy of the average model is high, and the errors are below 5% in each result. Therefore, the average model is valid. Besides verifying the accuracy of the average model, the functions of the average model is been tested, including voltage control and reactive power control. The reactive power control function is fully realized, while the voltage control function slightly deviates from the nominal voltage. Finally, the SST is also interconnected to the DC microgrid along with the solar system and the energy storage system. The result also indicates that the average model of the SST is able to apply in DC micro grids and the SSTs deliver and receive power via the converters to provide loads or store energy. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-21T16:21:17Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-08-21T16:21:17Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書 ........................................................................ i
Acknowledgements ...................................................................... ii 中文摘要 .............................................................................. iii ABSTRACT ................................................................................v CONTENTS ..............................................................................vii LIST OF FIGURES ....................................................................... xi LIST OF TABLES .......................................................................xvii Chapter 1 Introduction ..................................................................1 1.1 Motivation ......................................................................1 1.2 Literature Review ...............................................................2 1.3 Research Objective ..............................................................3 1.4 Organization of The Thesis.......................................................5 Chapter 2 Solid Stater Transformer Introduction .........................................7 2.1 Preface .........................................................................7 2.2 Solid State Transformer Categories ..............................................7 2.3 Three-Stage Solid State Transformer Topology ....................................9 2.3.1 Rectifier ................................................................12 2.3.2 Dual Active Bridge (DAB) .................................................13 2.3.3 Inverter..................................................................14 2.4 Reduced models..................................................................16 2.4.1 Generalized Averaging Method (GAM) .......................................17 2.4.2 Average Model ............................................................17 2.4.3 Dynamic Phasor Model .....................................................18 2.5 Solid State Transformer Average Model...........................................19 2.6 The Functions of Solid State Transformer .......................................21 2.7 Control Functions of Solid State Transformer....................................23 2.7.1 Voltage Control ..........................................................23 2.7.2 Reactive Power Control ...................................................24 Chapter 3 Power System and Renewable Energy Introduction ...............................30 3.1 Preface ........................................................................30 3.2 Power Systems...................................................................30 3.2.1 Generation System.........................................................31 3.2.2 Transmission System ......................................................31 3.2.3 Distribution System ......................................................32 3.2.4 Taiwan’s Power System ....................................................33 3.3 Smart Grids ....................................................................34 3.3.1 The Transition of Power Grid Architecture ................................35 3.3.2 Bi-directional Power Flow.................................................36 3.3.3 Demand Response ..........................................................36 3.3.4 Energy Storage Systems ...................................................37 3.4 Solar Power.....................................................................37 3.4.1 Solar Cells Parameters ...................................................38 3.4.2 The Characteristic Curve of Solar Cells ..................................40 3.4.3 Types of Photovoltaic (PV) System by Installation ........................42 3.4.4 Grid Code for Power Generation Facilities ................................43 3.4.5 PV Generation Simulation .................................................44 3.5 Energy Storage System (ESS) ....................................................50 3.5.1 Classification of Energy Storage Systems .................................50 3.5.2 Energy Storage Simulation ................................................53 Chapter 4 Design and Verification of Solid State Transformer ...........................58 4.1 Preface ........................................................................58 4.2 Rectifier ......................................................................59 4.3 Dual Active Bridge (DAB) .......................................................63 4.4 Inverter........................................................................69 4.5 Integrated Models and Verification .............................................76 4.6 The Validation of Execution Time in Detailed and Average Model. ................82 Chapter 5 Functions and Applications of Solid State Transformer ........................88 5.1 Three Phase Solid State Transformer ............................................88 5.2 Steady State Operation .........................................................90 5.3 Voltage Control ................................................................96 5.4 Reactive Power Control ........................................................105 5.5 Application of SST in DC Microgrids ...........................................109 Chapter 6 Conclusion and Further Work ................................................ 116 6.1 Conclusion ....................................................................116 6.2 Further Work ..................................................................116 REFERENCES ........................................................................... 119 | - |
| dc.language.iso | en | - |
| dc.subject | 固態變壓器 | zh_TW |
| dc.subject | 平均模型 | zh_TW |
| dc.subject | 電壓控制 | zh_TW |
| dc.subject | 虛功控制 | zh_TW |
| dc.subject | 直流微電網 | zh_TW |
| dc.subject | Solid State Transformer (SST) | en |
| dc.subject | Voltage Control | en |
| dc.subject | Reactive Power Control | en |
| dc.subject | DC Microgrids | en |
| dc.subject | Average Model | en |
| dc.title | 固態變壓器平均模型建立與驗證 | zh_TW |
| dc.title | Development and Verification of an Average Model for Solid State Transformer | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 林子喬;蘇恆毅 | zh_TW |
| dc.contributor.oralexamcommittee | Tzu-Chiao Lin;Heng-YI Su | en |
| dc.subject.keyword | 固態變壓器,平均模型,電壓控制,虛功控制,直流微電網, | zh_TW |
| dc.subject.keyword | Solid State Transformer (SST),Average Model,Voltage Control,Reactive Power Control,DC Microgrids, | en |
| dc.relation.page | 126 | - |
| dc.identifier.doi | 10.6342/NTU202503172 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2025-08-07 | - |
| dc.contributor.author-college | 電機資訊學院 | - |
| dc.contributor.author-dept | 電機工程學系 | - |
| dc.date.embargo-lift | 2025-08-22 | - |
| 顯示於系所單位: | 電機工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf | 6.47 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
