請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99090完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 楊國鑫 | zh_TW |
| dc.contributor.advisor | Kuo-Hsin Yang | en |
| dc.contributor.author | 林彥翔 | zh_TW |
| dc.contributor.author | Yan-Xiang Lin | en |
| dc.date.accessioned | 2025-08-21T16:20:48Z | - |
| dc.date.available | 2025-08-22 | - |
| dc.date.copyright | 2025-08-21 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-08-01 | - |
| dc.identifier.citation | 李維平、周賢明、林劭旻 (2023)。「一個調整不平衡資料以提升分類正確率的新方法」,先進工程學刊,18(1),25-32。
魏倫瑋、黃春銘、黃韋凱、李璟芳、紀宗吉 (2018)。「降雨引發山崩預警資訊系統之開發與應用」,中興工程,第141期,第57-67頁 林彥廷、顏筱穎、張乃軒、林宏明、韓仁毓、楊國鑫、陳俊杉、鄭宏逵、徐若 堯 (2021)。「結合時空因子與InSAR觀測資料之地表崩塌變位預測分析」,中國土木水利工程學刊,33(2),93-104。 張乃軒 (2021)。「運用永久散射體雷達干涉技術建立崩塌潛勢評估模型及邊坡 變位門檻值-以布唐布納斯溪沿岸邊坡地區為例」,國立臺灣大學土木工程學 系碩士論文。 行政院農業部農村發展及水土保持署 (2021)。110年盧碧颱風重大土石災例速報。https://246.ardswc.gov.tw/Achievement/DisastersContent?EventID=607 呂鴻廷、洪耀明 (2013)。「應用克利金法於山區集水區雨量推估之研究」,水保技術,8(2),68-78。 穆婧、林昭遠 (2013)。「集水區崩塌地環境指標分析與崩塌潛感推估」。中華水土保持學報,44(2),121-130。 行政院農業部農村發展及水土保持署 (2009)。98年莫拉克颱風重大土石災例速報。https://246.ardswc.gov.tw/Achievement/DisastersContent?EventID=181 李明熹 (2006)。「土石流發生降雨警戒分析及其應用」,國立成功大學水利及海洋工程學系博士論文。 Achu, A. L., Aju, C. D., Di Napoli, M., Prakash, P., Gopinath, G., Shaji, E., & Chandra, V. (2023). Machine-learning based landslide susceptibility modelling with emphasis on uncertainty analysis. Geoscience Frontiers, 14(6), 101657. Akinci, H. (2022). Assessment of rainfall-induced landslide susceptibility in Artvin, Turkey using machine learning techniques. Journal of African Earth Sciences, 191, 104535. Bischl, B., Binder, M., Lang, M., Pielok, T., Richter, J., Coors, S., ... & Lindauer, M. (2021). Hyperparameter optimization: Foundations, algorithms, best practices and open challenges. arXiv. arXiv preprint arXiv:2107.05847. Guo, Z., Zeng, T., Zhang, Y., Yu, W., Wang, L., Guo, Z., & Glade, T. (2025). A novel hybrid model integrating high resolution remote sensing and stacking ensemble techniques for landslide susceptibility mapping: Application to event-based landslide inventory. Geomorphology, 109886. Guo, R., Zhao, Z., Wang, T., Liu, G., Zhao, J., & Gao, D. (2020). Degradation state recognition of piston pump based on ICEEMDAN and XGBoost. Applied Sciences, 10(18), 6593. Guzzetti, F., Carrara, A., Cardinali, M., & Reichenbach, P. (1999). Landslide hazard evaluation: a review of current techniques and their application in a multi-scale study, Central Italy. Geomorphology, 31(1-4), 181-216. Huang, F., Chen, J., Liu, W., Huang, J., Hong, H., & Chen, W. (2022). Regional rainfall-induced landslide hazard warning based on landslide susceptibility mapping and a critical rainfall threshold. Geomorphology, 408, 108236. Kuo, H. L., Lin, G. W., Chen, C. W., Saito, H., Lin, C. W., Chen, H., & Chao, W. A. (2018). Evaluating critical rainfall conditions for large-scale landslides by detecting event times from seismic records. Natural Hazards and Earth System Sciences, 18(11), 2877-2891. Lin, Y. T., Chen, Y. K., Yang, K. H., Chen, C. S., & Han, J. Y. (2021). Integrating InSAR observables and multiple geological factors for landslide susceptibility assessment. Applied Sciences, 11(16), 7289. Ma, X., Chen, Z., Chen, P., Zheng, H., Gao, X., Xiang, J., ... & Huang, Y. (2023). Predicting the utilization factor of blasthole in rock roadways by random forest. Underground Space, 11, 232-245. Timilsina, M., Bhandary, N. P., Dahal, R. K., & Yatabe, R. (2014). Distribution probability of large-scale landslides in central Nepal. Geomorphology, 226, 236-248. Xie, M., Esaki, T., & Zhou, G. (2004). GIS-based probabilistic mapping of landslide hazard using a three-dimensional deterministic model. Natural Hazards, 33, 265-282. Zhang, A., Zhao, X. W., Zhao, X. Y., Zheng, X. Z., Zeng, M., Huang, X., ... & Li, Y. Y. (2024). Comparative study of different machine learning models in landslide susceptibility assessment: A case study of Conghua District, Guangzhou, China. China Geology, 7(1), 104-115. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99090 | - |
| dc.description.abstract | 由於位處板塊交界處與副熱帶季風氣候區,造就臺灣具有複雜多變的地質條件與變化劇烈的氣候。基於這樣的自然環境條件之下,導致山坡地區成為崩塌與地滑災害頻發的高風險區域,因此從中可得知完善的災前預警機制,對於臺灣山區具有極為重要的意義。因此本研究旨在建立一套機器學習模型,用於評估山坡崩塌潛勢,並且依據歷年崩塌災害事件的降雨資訊,創建區域內降雨門檻值曲線,用於降雨崩塌災害早期預警。
本研究以高屏溪集水區作為研究區域,藉由統整歷年崩塌目錄,劃設崩塌地區周圍之斜坡單元,並蒐集各單元共17項崩塌潛勢因子,作為建立機器學習模型所需的訓練與測試資料。研究中分別採用隨機森林、極限梯度提升以及集成學習三種機器學習模型,建構崩塌潛勢評估模型,並以混淆矩陣針對測試資料集進行模型準確度驗證。最終以預測表現最佳者,針對歷年災害事件進行潛勢分析,進而劃設50%、75%與90%崩塌潛勢下的臨界降雨門檻值曲線,建立具風險分級特性且可應用於實際災害預警的降雨門檻值判定模式。除此之外,本研究也以莫拉克與凱米颱風案例驗證崩塌潛勢模型,並且以發生於莫拉克颱風以及盧碧颱風的崩塌地滑案例佐證降雨門檻值曲線於實際應用上之可行性。 根據研究結果顯示,三種機器學習模型在測試資料的混淆矩陣驗證中,皆可達到高於85%的整體準確率,其中以集成學習模型表現最佳,並且三者皆採取保守評估策略,使其在真實應用中降低漏報情況發生的風險。另一方面,在莫拉克颱風案例的降雨預警分析中,本研究所擬定的具風險分級之降雨門檻值曲線,可於災害事件發生前的十小時內發出預警訊號。至於在盧碧颱風事件中,則觀察到門檻值曲線易受到降雨型態的影響,因此可令平均降雨強度與累積降雨之臨界門檻值互為雙重驗證,以此降低誤報風險。 | zh_TW |
| dc.description.abstract | Taiwan's position at the intersection of tectonic plates and within a subtropical monsoon climate zone results in highly complex geological conditions and frequent extreme rainfall events. These environmental factors render mountainous regions particularly vulnerable to landslides. To reduce disaster risk, establishing an effective pre-disaster warning system is essential. This study aims to develop a machine learning model for assessing landslide susceptibility and to construct regional rainfall threshold curves for early warning of rainfall-induced landslides.
The Kaoping River watershed was selected as the study area. A historical landslide inventory was compiled, and slope units surrounding the landslide sites were delineated. For each unit, 17 landslide influential factors were collected to form the dataset for model training and testing. Three machine learning algorithms—Random Forest, Extreme Gradient Boosting, and ensemble learning—were applied to develop susceptibility models. Model performance was evaluated using confusion matrix analysis on the testing dataset, and the ensemble model demonstrated the highest overall accuracy. Based on the best-performing model, critical rainfall threshold curves corresponding to 50%, 75%, and 90% levels of landslide susceptibility were established. This approach resulted in a risk-based threshold framework suitable for practical early warning applications. According to the results, all models achieved an overall accuracy exceeding 85%, and all adopted conservative classification strategies, reducing the risk of false negatives in real-world scenarios. In the case of Typhoon Morakot, the proposed rainfall thresholds successfully issued warning signals up to ten hours before the onset of landslides. For Typhoon Lupit, it was observed that the rainfall pattern easily influences the threshold curve. Therefore, using the average rainfall intensity and cumulative rainfall threshold values to cross-validate each other can help reduce the risk of false alarms. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-21T16:20:48Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-08-21T16:20:48Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 致謝 I
摘要 II ABSTRACT III 目次 IV 圖次 VII 表次 XI 第1章 緒論 1 1.1 研究動機與目的 1 1.2 研究方法 2 1.3 研究架構與流程 3 第2章 文獻回顧 5 2.1 測繪單元種類與比較 5 2.2 崩塌潛勢因子類別 7 2.2.1 地貌因子統整 8 2.2.2 區位因子統整 9 2.2.3 地質因子統整 9 2.2.4 動態因子統整 10 2.3 機器學習模型於崩塌潛勢應用 11 2.4 山崩降雨門檻值曲線 14 第3章 崩塌潛勢因子建立 19 3.1 研究區域概述 19 3.2 斜坡單元劃設 20 3.3 崩塌潛勢因子分析 25 3.3.1 地貌因子 29 3.3.2 區位因子 39 3.3.3 地質因子 42 3.3.4 雨量因子 48 第4章 機器學習崩塌潛勢分析 54 4.1 分析流程與資料建立 54 4.2 機器學習模型分析 56 4.2.1 資料前處理 56 4.2.2 機器學習模型 59 4.2.3 模型超參數調整 66 4.2.4 潛勢因子重要程度 68 4.3 模型泛用性評估 71 第5章 山崩降雨門檻值建立 78 5.1 降雨門檻值分析流程 78 5.2 門檻值曲線擬合成果 82 5.3 蘇迪勒颱風案例分析 86 第6章 真實案例分析與驗證 90 6.1 崩塌潛勢模型驗證 90 6.1.1 崩塌驗證分析區域 91 6.1.2 莫拉克颱風崩塌驗證成果 92 6.1.3 凱米颱風崩塌驗證成果 98 6.1.4 崩塌潛勢精度驗證討論 103 6.2 降雨門檻值曲線驗證 105 6.2.1 莫拉克颱風地滑降雨門檻值驗證 105 6.2.2 盧碧颱風地滑降雨門檻值驗證 110 6.2.3 降雨門檻值分析討論 114 第7章 結論與建議 116 7.1 結論 116 7.2 建議 118 參考文獻 119 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 降雨門檻值曲線 | zh_TW |
| dc.subject | 機器學習模型 | zh_TW |
| dc.subject | 災前預警 | zh_TW |
| dc.subject | 潛勢因子 | zh_TW |
| dc.subject | 崩塌潛勢評估 | zh_TW |
| dc.subject | Landslide susceptibility assessment | en |
| dc.subject | Machine learning model | en |
| dc.subject | Influential factors | en |
| dc.subject | Early warning system | en |
| dc.subject | Rainfall threshold curve | en |
| dc.title | 以機器學習建立邊坡滑動敏感性與降雨閥值模型用於崩塌災害早期預警系統 | zh_TW |
| dc.title | Establishing a Landslide Susceptibility and Rainfall Threshold Model Using Machine Learning for an Early Warning System of Landslide Disasters | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 李璟芳;陳麒文;劉芷妤 | zh_TW |
| dc.contributor.oralexamcommittee | Ching-Fang Lee;Chi-Wen Chen;Chih-Yu Liu | en |
| dc.subject.keyword | 機器學習模型,降雨門檻值曲線,潛勢因子,災前預警,崩塌潛勢評估, | zh_TW |
| dc.subject.keyword | Influential factors,Machine learning model,Rainfall threshold curve,Landslide susceptibility assessment,Early warning system, | en |
| dc.relation.page | 121 | - |
| dc.identifier.doi | 10.6342/NTU202502831 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2025-08-05 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 土木工程學系 | - |
| dc.date.embargo-lift | 2025-08-22 | - |
| 顯示於系所單位: | 土木工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf | 10.76 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
