Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99085Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 鍾國芳 | zh_TW |
| dc.contributor.advisor | Kuo-Fang Chung | en |
| dc.contributor.author | 王彥喬 | zh_TW |
| dc.contributor.author | Yen-Chiao Wang | en |
| dc.date.accessioned | 2025-08-21T16:19:37Z | - |
| dc.date.available | 2025-08-22 | - |
| dc.date.copyright | 2025-08-21 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-08-02 | - |
| dc.identifier.citation | Alexander DH, Novembre J, Lange K. 2009. Fast model-based estimation of ancestry in unrelated individuals. Genome Research 19(9): 1655–1664.
Bolger AM, Lohse M, Usadel B. 2014. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30(15): 2114–2120. Charbonneau A, Tack D, Lale A, Goldston J, Caple M, Conner E, Barazani O, Ziffer-Berger J, Dworkin I, Conner JK. 2018. Weed evolution: Genetic differentiation among wild, weedy, and crop radish. Evolutionary Applications 11(10): 1964–1974. Chien C-C, Seiko T, Muto C, Ariga H, Wang Y-C, Chang C-H, Sakai H, Naito K, Lee C-R. 2025. A single domestication origin of adzuki bean in Japan and the evolution of domestication genes. Science 388(6750): eads2871. Danecek P, Auton A, Abecasis G, Albers CA, Banks E, DePristo MA, Handsaker RE, Lunter G, Marth GT, Sherry ST, et al. 2011. The variant call format and VCFtools. Bioinformatics 27(15): 2156–2158. Danecek P, Bonfield JK, Liddle J, Marshall J, Ohan V, Pollard MO, Whitwham A, Keane T, McCarthy SA, Davies RM, et al. 2021. Twelve years of SAMtools and BCFtools. GigaScience 10(2): giab008. Dray S, Dufour A-B. 2007. The ade4 Package: Implementing the Duality Diagram for Ecologists. Journal of Statistical Software 22(4): 1–20. Esri. 2023. ArcGIS Pro v.3.1.12. Redlands, CA, USA: Environmental Systems Research Institute, Inc. Esri. 2024. Light Gray Canvas. Redlands, CA, USA: Environmental Systems Research Institute, Inc. Fick SE, Hijmans RJ. 2017. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. International Journal of Climatology 37(12): 4302–4315. Fitak RR. 2021. OptM: estimating the optimal number of migration edges on population trees using Treemix. Biology Methods and Protocols 6(1): bpab017. Hijmans RJ. 2018. raster: Geographic data analysis and modeling. R package version 2: 8. Hijmans RJ, Williams E, Vennes C, Hijmans MRJ. 2017. Package ‘geosphere’. Spherical trigonometry 1(7): 1–45. Huang K, Andrew RL, Owens GL, Ostevik KL, Rieseberg LH. 2020. Multiple chromosomal inversions contribute to adaptive divergence of a dune sunflower ecotype. Molecular Ecology 29(14): 2535–2549. Huang K, Rieseberg LH. 2020. Frequency, Origins, and Evolutionary Role of Chromosomal Inversions in Plants. Frontiers in Plant Science 11: 296. Kaga A, Isemura T, Tomooka N, Vaughan DA. 2008. The Genetics of Domestication of the Azuki Bean (Vigna angularis). Genetics 178(2): 1013–1036. Kirkpatrick M. 2010. How and Why Chromosome Inversions Evolve. PLOS Biology 8(9): e1000501. Lee G-A. 2013. Archaeological perspectives on the origins of azuki (Vigna angularis). The Holocene 23(3): 453–459. Letunic I, Bork P. 2024. Interactive Tree of Life (iTOL) v6: recent updates to the phylogenetic tree display and annotation tool. Nucleic Acids Research 52(W1): W78–W82. Li H. 2013. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv preprint arXiv:1303.3997. Mérot C, Oomen RA, Tigano A, Wellenreuther M. 2020. A Roadmap for Understanding the Evolutionary Significance of Structural Genomic Variation. Trends in Ecology & Evolution 35(7): 561–572. Meyer RS, Purugganan MD. 2013. Evolution of crop species: genetics of domestication and diversification. Nature Reviews Genetics 14(12): 840–852. Molina J, Sikora M, Garud N, Flowers JM, Rubinstein S, Reynolds A, Huang P, Jackson S, Schaal BA, Bustamante CD, et al. 2011. Molecular evidence for a single evolutionary origin of domesticated rice. Proceedings of the National Academy of Sciences 108(20): 8351–8356. Nakayama S. 2015. Utilization of domesticated plants and secondary vegetation in the central highlands of the Japanese archipelago in the Jomon period. The Quaternary Research (Daiyonki-Kenkyu) 54(5): 285–298. Nasu H. 2018. Domestication of plants during the Jomon period. The Quaternary Research (Daiyonki-Kenkyu). 57(4): 109–126. Neik TX, Chai J-Y, Tan S-Y, Sudo MPS, Cui Y, Jayaraj J, Teo S-S, Olsen KM, Song B-K. 2019. When West Meets East: The Origins and Spread of Weedy Rice Between Continental and Island Southeast Asia. G3 Genes|Genomes|Genetics 9(9): 2941–2950. Paradis E, Schliep K. 2018. ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 35(3): 526–528. Pickrell JK, Pritchard JK. 2012. Inference of Population Splits and Mixtures from Genome-Wide Allele Frequency Data. PLOS Genetics 8(11): e1002967. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR, Bender D, Maller J, Sklar P, de Bakker PIW, Daly MJ, et al. 2007. PLINK: A Tool Set for Whole-Genome Association and Population-Based Linkage Analyses. The American Journal of Human Genetics 81(3): 559–575. Sakai H, Naito K, Ogiso-Tanaka E, Takahashi Y, Iseki K, Muto C, Satou K, Teruya K, Shiroma A, Shimoji M, et al. 2015. The power of single molecule real-time sequencing technology in the de novo assembly of a eukaryotic genome. Scientific Reports 5(1): 16780. Smit A, Hubley R, Green P 2013-2015. RepeatMasker Open-4.0. Song B-K, Chuah T-S, Tam SM, Olsen KM. 2014. Malaysian weedy rice shows its true stripes: wild Oryza and elite rice cultivars shape agricultural weed evolution in Southeast Asia. Molecular Ecology 23(20): 5003–5017. Takahashi Y, Nasu H, Nakayama S, Tomooka N. 2023. Domestication of azuki bean and soybean in Japan: From the insight of archeological and molecular evidence. Breeding Science 73(2): 117–131. Terhorst J, Kamm JA, Song YS. 2017. Robust and scalable inference of population history from hundreds of unphased whole genomes. Nature Genetics 49(2): 303–309. Tomooka N, Vaughan D, Moss H. 2002. The Asian Vigna: genus Vigna subgenus ceratotropis genetic resources: Springer Science & Business Media. Tomooka N, Vaughan D, Xu R-Q, Kashiwaba K, Kaga A. 2001. Japanese Native Vigna Genetic Resources. Japan Agricultural Research Quarterly: JARQ 35(1): 1–9. Van der Auwera GA, O'Connor BD. 2020. Genomics in the cloud: using Docker, GATK, and WDL in Terra: O'Reilly Media. Verma SK, Singh CK, Taunk J, Gayacharan, Chandra Joshi D, Kalia S, Dey N, Singh AK. 2022. Vignette of Vigna domestication: From archives to genomics. Frontiers in Genetics 13: 960200. Wang L, Kikuchi S, Muto C, Naito K, Isemura T, Ishimoto M, Cheng X, Kaga A, Tomooka N. 2015. Reciprocal translocation identified in Vigna angularis dominates the wild population in East Japan. Journal of Plant Research 128(4): 653–663. Wang W, Chen L, Wang X, Duan J, Flynn RD, Wang Y, Clark CB, Sun L, Zhang D, Wang DR, et al. 2021. A transposon-mediated reciprocal translocation promotes environmental adaptation but compromises domesticability of wild soybeans. New Phytologist 232(4): 1765–1777. Xu HX, Jing T, Tomooka N, Kaga A, Isemura T, Vaughan DA. 2008. Genetic diversity of the azuki bean (Vigna angularis (Willd.) Ohwi & Ohashi) gene pool as assessed by SSR markers. Genome 51(9): 728–738. Xu R-Q, Tomooka N, Vaughan DA, Doi K. 2000. The Vigna angularis complex: Genetic variation and relationships revealed by RAPD analysis, and their implications for in situ conservation and domestication. Genetic Resources and Crop Evolution 47(2): 123–134. Yamaguchi H. 1992. Wild and Weed Azuki Beans in Japan. Economic Botany 46(4): 384–394. Yang K, Tian Z, Chen C, Luo L, Zhao B, Wang Z, Yu L, Li Y, Sun Y, Li W, et al. 2015. Genome sequencing of adzuki bean (Vigna angularis) provides insight into high starch and low fat accumulation and domestication. Proceedings of the National Academy of Sciences 112(43): 13213–13218. Zhang C, Dong S-S, Xu J-Y, He W-M, Yang T-L. 2018. PopLDdecay: a fast and effective tool for linkage disequilibrium decay analysis based on variant call format files. Bioinformatics 35(10): 1786–1788. Zheng X, Wang T, Cheng T, Zhao L, Zheng X, Zhu F, Dong C, Xu J, Xie K, Hu Z, et al. 2022. Genomic variation reveals demographic history and biological adaptation of the ancient relictual, lotus (Nelumbo Adans.). Horticulture Research 9: uhac029. Zhou X, Stephens M. 2012. Genome-wide efficient mixed-model analysis for association studies. Nature Genetics 44(7): 821–824. Ziyi Y, Zhijian X, Qingwen Y, Weihua Q. 2022. Conservation and Utilization of Genetic Resources of Wild Rice in China. Rice Science 29(3): 216–224. Zong XX, Kaga A, Tomooka N, Wang XW, Han OK, Vaughan D. 2003. The genetic diversity of the Vigna angularis complex in Asia. Genome 46(4): 647–658. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99085 | - |
| dc.description.abstract | 染色體倒位可能藉由抑制局部適應等位基因之間的重組,以促進地區性適應。然而,少有研究探討染色體易位在地區性適應中的重組抑制機制。生長在日本的紅豆包含具有染色體易位的野生種紅豆、不具有染色體易位的野生種紅豆、雜草型紅豆和栽培種紅豆,其族群遺傳歷史仍有待釐清。在本研究中,我們發現雜草型紅豆起源於栽培種族群與南邊野生種族群間的雜交。在北邊野生種族群擴張至日本北部後,染色體易位才出現並向北擴張。此外,重組抑制保留從著絲粒到斷點的高度連鎖之適應性等位基因,有助於帶有染色體易位的野生種紅豆適應日本北部的環境。總結來說,我們的研究結果顯示,具有染色體易位的野生種紅豆能夠部分限制野生種紅豆和栽培種紅豆之間的基因交流,從而防止雜草型紅豆的產生。另外,我們提出的模型假設,當適應性等位基因位於染色體易位的斷點周圍,受到重組抑制和高度連鎖的等位基因將被保留於其中。而我們的結果亦支持此一模型解釋。 | zh_TW |
| dc.description.abstract | Chromosomal inversions may contribute to local adaptation by suppressing recombination between locally adapted alleles. However, few studies focus on mechanisms of recombination suppression of chromosomal translocations in local adaptation. Population genetic history of Japanese adzuki beans, including normal wild, translocated wild, weedy, and landrace forms, remains unclear. Here, we reveal that weedy adzuki beans (JP_WD) originated through the hybridization between the landrace genetic group (JP_LR) and the wild genetic group in South Japan (JP_WLsouth). After the wild genetic group in North Japan (JP_WLnorth) had established across northern Japan, the translocations might have originated and spread. Recombination suppression preserved highly linked adapted alleles from centromeres to breakpoints, facilitating the wild adzuki beans with the translocations adapt to North Japan. In summary, our findings show that chromosomal translocations partially prevent the wild-cultigen gene flow, thereby preventing creation of weedy adzuki beans. Our proposed models assume that when suppressed recombination occurs among locally adapted alleles near translocation breakpoints, the highly linked adapted alleles would be retained. The models are supported by our results. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-21T16:19:37Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-08-21T16:19:37Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 摘要 i
Abstract ii Contents iii List of Figures v List of Tables vii 1. Introduction 1 2. Materials and Methods 6 2.1 Read mapping and reciprocal translocation identification 6 2.2 Single-nucleotide polymorphisms (SNPs) calling 8 2.3 Population genetics analyses 8 2.4 Environmental principal components analysis (PCA) 11 2.5 Climatic genome-wide association studies (GWAS) 13 2.6 Estimation of recombination suppression 13 3. Results 15 3.1 Frequency and geographic distribution of reciprocal chromosomal translocation 15 3.2 Population genetic history of Japanese adzuki beans 16 3.3 Spatial anti-correlation between chromosomal translocation and weedy adzuki 16 3.4 The origin of chromosomal translocation 17 3.5 Reciprocal translocation in North Japan attributed to local adaptation 19 4. Discussion 23 4.1 Origin of weedy adzuki through hybridization between wild and cultivated adzuki 23 4.2 Limited geographic distribution of weedy adzuki and chromosomal translocation 23 4.3 Recombination suppression in translocation heterozygotes for local adaptation 24 Figures 26 Tables 55 References 79 | - |
| dc.language.iso | en | - |
| dc.subject | 雜草型 | zh_TW |
| dc.subject | 染色體易位 | zh_TW |
| dc.subject | 異型合子 | zh_TW |
| dc.subject | 重組抑制 | zh_TW |
| dc.subject | 地區性適應 | zh_TW |
| dc.subject | local adaptation | en |
| dc.subject | weedy types | en |
| dc.subject | reciprocal translocation | en |
| dc.subject | heterozygotes | en |
| dc.subject | recombination suppression | en |
| dc.title | 野生種紅豆染色體易位的演化 | zh_TW |
| dc.title | Evolution of a chromosomal translocation in wild adzuki beans | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.coadvisor | 李承叡 | zh_TW |
| dc.contributor.coadvisor | Cheng-Ruei Lee | en |
| dc.contributor.oralexamcommittee | 廖培鈞;王弘毅 | zh_TW |
| dc.contributor.oralexamcommittee | Pei-Chun Liao;Hurng-Yi Wang | en |
| dc.subject.keyword | 雜草型,染色體易位,異型合子,重組抑制,地區性適應, | zh_TW |
| dc.subject.keyword | weedy types,reciprocal translocation,heterozygotes,recombination suppression,local adaptation, | en |
| dc.relation.page | 84 | - |
| dc.identifier.doi | 10.6342/NTU202503360 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2025-08-06 | - |
| dc.contributor.author-college | 生物資源暨農學院 | - |
| dc.contributor.author-dept | 森林環境暨資源學系 | - |
| dc.date.embargo-lift | N/A | - |
| Appears in Collections: | 森林環境暨資源學系 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| ntu-113-2.pdf Restricted Access | 8.56 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
