Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生態學與演化生物學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99084
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李承叡zh_TW
dc.contributor.advisorCheng-Ruei Leeen
dc.contributor.author李佳鎮zh_TW
dc.contributor.authorKai Chun Leeen
dc.date.accessioned2025-08-21T16:19:23Z-
dc.date.available2025-09-18-
dc.date.copyright2025-08-21-
dc.date.issued2025-
dc.date.submitted2025-07-31-
dc.identifier.citationReferences
1. Abbo S, Rachamim E, Zehavi Y, Zezak I, Lev-Yadun S, Gopher A. 2011. Experimental growing of wild pea in Israel and its bearing on Near Eastern plant domestication. Annals of Botany 107: 1399–1404.
2. Alam O, Purugganan MD. 2024. Domestication and the evolution of crops: variable syndromes, complex genetic architectures, and ecological entanglements. The Plant Cell 36: 1227–1241.
3. Alenazi AS, Pereira L, Christin P, Osborne CP, Dunning LT. 2024. Identifying genomic regions associated with C4 photosynthetic activity and leaf anatomy in Alloteropsis semialata. New Phytologist 243: 1698–1710.
4. Alexander DH, Novembre J, Lange K. 2009. Fast model-based estimation of ancestry in unrelated individuals. Genome Research 19: 1655–1664.
5. Allaby RG, Stevens CJ, Kistler L, Fuller DQ. 2022. Emerging evidence of plant domestication as a landscape-level process. Trends in Ecology & Evolution 37: 268–279.
6. Boyle EA, Li YI, Pritchard JK. 2017. An expanded view of complex traits: From polygenic to omnigenic. Cell 169: 1177–1186.
7. Browning BL, Tian X, Zhou Y, Browning SR. 2021. Fast two-stage phasing of large-scale sequence data. The American Journal of Human Genetics 108: 1880–1890.
8. Browning BL, Zhou Y, Browning SR. 2018. A one-penny imputed genome from next-generation reference panels. The American Journal of Human Genetics 103: 338–348.
9. Bünning E. 1936. 51. Erwin Bünning: Die endonome Tagesrhythmik als Grundlage der photoperiodischen Reaktion. Berichte der Deutschen Botanischen Gesellschaft 54: 590–607.
10. Burgie ES, Li H, Gannam ZTK, McLoughlin KE, Vierstra RD, Li H. 2023. The structure of Arabidopsis Phytochrome A reveals topological and functional diversification among the plant photoreceptor isoforms. Nature Plants 9: 1116–1129.
11. Central Weather Administration. 2025. Mean Temperature in Taiwan. CWA, https://www.cwa.gov.tw/V8/E/C/Statistics/monthlymean.html
12. Chang CC, Chow CC, Tellier LC, Vattikuti S, Purcell SM, Lee JJ. 2015. Second-generation PLINK: Rising to the challenge of larger and richer datasets. Gigascience 4: s13742-015-0047–8.
13. Chen S. 2023. Ultrafast one‐pass FASTQ data preprocessing, quality control, and deduplication using fastp. iMeta 2: e107.
14. Chen H-W, Chien C-C, Lee C-R. 2024. Distinct types of selection and genetic architecture shape molecular variation during the domestication of vegetable crops. Plant Physiology: kiae245.
15. Chen M, Sidore C, Akiyama M, Ishigaki K, Kamatani Y, Schlessinger D, Cucca F, Okada Y, Chiang CWK. 2020. Evidence of polygenic adaptation in Sardinia at height-associated loci ascertained from the BioBank Japan. The American Journal of Human Genetics 107: 60–71.
16. Chien C-C, Seiko T, Muto C, Ariga H, Wang Y-C, Chang C-H, Sakai H, Naito K, Lee C-R. 2025. A single domestication origin of adzuki bean in Japan and the evolution of domestication genes. Science 388: eads2871.
17. Chu L, Yang K, Chen C, Zhao B, Hou Y, Wang W, Zhao P, Wang K, Wang B, Xiao Y, et al. 2024. Chromosome-level reference genome and resequencing of 322 accessions reveal evolution, genomic imprint and key agronomic traits in adzuki bean. Plant Biotechnology Journal 22: 2173–2185.
18. Clauw P, Ellis TJ, Liu H-J, Sasaki E. 2025. Beyond the standard GWAS—a guide for plant biologists. Plant And Cell Physiology 66: 431–443.
19. Collard BCY, Jahufer MZZ, Brouwer JB, Pang ECK. 2005. An introduction to markers, quantitative trait loci (QTL) mapping and marker-assisted selection for crop improvement: The basic concepts. Euphytica 142: 169–196.
20. Colleoni PE, Van Es SW, Winkelmolen T, Immink RGH, Van Esse GW. 2024. Flowering time genes branching out. Journal of Experimental Botany 75: 4195–4209.
21. Danecek P, Auton A, Abecasis G, Albers CA, Banks E, DePristo MA, Handsaker RE, Lunter G, Marth GT, Sherry ST, et al. 2011. The variant call format and VCFtools. Bioinformatics 27: 2156–2158.
22. Danecek P, Bonfield JK, Liddle J, Marshall J, Ohan V, Pollard MO, Whitwham A, Keane T, McCarthy SA, Davies RM, et al. 2021. Twelve years of SAMtools and BCFtools. GigaScience 10: giab008.
23. Darwin C. 2010. The Variation of Animals and Plants under Domestication. Cambridge University Press.
24. Dong S-S, He W-M, Ji J-J, Zhang C, Guo Y, Yang T-L. 2021. LDBlockShow: a fast and convenient tool for visualizing linkage disequilibrium and haplotype blocks based on variant call format files. Briefings in Bioinformatics 22: bbaa227.
25. Dong W, Li D, Zhang L, Tao P, Zhang Y. 2024. Flowering-associated gene expression and metabolic characteristics in adzuki bean (Vigna angularis L.) with different short-day induction periods. PeerJ 12: e17716.
26. Dong W, Li D, Zhang L, Yin B, Zhang Y. 2022. Transcriptome analysis of short-day photoperiod inducement in adzuki bean (Vigna angularis L.) based on RNA-seq. Frontiers in Plant Science 13.
27. Doyle JJ, Doyle JL. 1987. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochemical Bulletin 19: 11-15.
28. den Dunnen JT, Dalgleish R, Maglott DR, Hart RK, Greenblatt MS, McGowan-Jordan J, Roux A-F, Smith T, Antonarakis SE, Taschner PEM. 2016. HGVS recommendations for the description of sequence variants: 2016 update. Human Mutation 37: 564–569.
29. Edge MD, Coop G. 2019. Reconstructing the history of polygenic scores using coalescent trees. Genetics 211: 235–262.
30. Flint-Garcia S, Feldmann MJ, Dempewolf H, Morrell PL, Ross-Ibarra J. 2023. Diamonds in the not-so-rough: Wild relative diversity hidden in crop genomes. PLOS Biology 21: e3002235.
31. Garner WW, Allard HA. 1922. Photoperiodism, the response of the plant to relative length of day and night. Science 55: 582–583.
32. Gaudinier A, Blackman BK. 2020. Evolutionary processes from the perspective of flowering time diversity. New Phytologist 225: 1883–1898.
33. Gremme G, Brendel V, Sparks ME, Kurtz S. 2005. Engineering a software tool for gene structure prediction in higher organisms. Information and Software Technology 47: 965–978.
34. Haas BJ, Salzberg SL, Zhu W, Pertea M, Allen JE, Orvis J, White O, Buell CR, Wortman JR. 2008. Automated eukaryotic gene structure annotation using EVidenceModeler and the Program to Assemble Spliced Alignments. Genome Biology 9: R7.
35. Hamner KC, Bonner J. 1938. Photoperiodism in relation to hormones as factors in floral initiation and development. Botanical Gazette 100: 388–431.
36. Hart RK, Fokkema IFAC, DiStefano M, Hastings R, Laros JFJ, Taylor R, Wagner AH, den Dunnen JT. 2024. HGVS Nomenclature 2024: improvements to community engagement, usability, and computability. Genome Medicine 16: 149.
37. Horton DM, Feleke Y, Pasquet RS, Javadi F, Melville KA, Delgado-Salinas A, Thulin M, Mithen RF, Gepts P, Egan AN. 2024. Phylogenetic systematics of Vigna sensu stricto in the context of Physostigma and allies. American Journal of Botany 111: e16381.
38. Imoto Y, Yoshikawa S, Horiuchi Y, Iida T, Oka T, Matsuda S, Tokuji Y, Mori M, Kato K. 2022. Flowering Date1, a major photoperiod sensitivity gene in adzuki bean, is a soybean floral repressor E1 ortholog. Breeding Science 72: 132–140.
39. Inoue T. 2016. A historical study of the development of food colouring and its regulation in Japan. 51: 75–85. (in Japanese)
40. Isemura T, Kaga A, Konishi S, Ando T, Tomooka N, Han OK, Vaughan DA. 2007. Genome dissection of traits related to domestication in azuki bean (Vigna angularis) and comparison with other warm-season legumes. Annals of Botany 100: 1053–1071.
41. Jaudal M, Wen J, Mysore KS, Putterill J. 2020. Medicago PHYA promotes flowering, primary stem elongation and expression of flowering time genes in long days. BMC Plant Biology 20: 329.
42. Jiang B, Nan H, Gao Y, Tang L, Yue Y, Lu S, Ma L, Cao D, Sun S, Wang J, et al. 2014. Allelic combinations of soybean maturity loci E1, E2, E3 and E4 result in diversity of maturity and adaptation to different latitudes. PLOS ONE 9: e106042.
43. Kaga A, Isemura T, Tomooka N, Vaughan DA. 2008. The genetics of domestication of the azuki bean (Vigna angularis). Genetics 178: 1013–1036.
44. Kaga A, Ohnishi M, Ishii T, Kamijima O. 1996. A genetic linkage map of azuki bean constructed with molecular and morphological markers using an interspecific population (Vigna angularis x V. nakashimae). Theoretical and Applied Genetics 93: 658–663.
45. Katoh K. 2002. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Research 30: 3059–3066.
46. Katoh K, Standley DM. 2013. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Molecular Biology and Evolution 30: 772–780.
47. Kim MY, Kang YJ, Lee T, Lee S-H. 2014. Circadian clock and photoperiodic flowering genes in adzuki bean (Vigna angularis [Willd.] Ohwi & H. Ohashi). Plant Genetic Resources 12: S49–S53.
48. Kim D, Paggi JM, Park C, Bennett C, Salzberg SL. 2019. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nature Biotechnology 37: 907–915.
49. Klein RJ, Zeiss C, Chew EY, Tsai J-Y, Sackler RS, Haynes C, Henning AK, SanGiovanni JP, Mane SM, Mayne ST, et al. 2005. Complement factor H polymorphism in age-related macular degeneration. Science 308: 385–389.
50. Kovaka S, Zimin AV, Pertea GM, Razaghi R, Salzberg SL, Pertea M. 2019. Transcriptome assembly from long-read RNA-seq alignments with StringTie2. Genome Biology 20: 278.
51. Leigh JW, Bryant D. 2015. POPART: Full-feature software for haplotype network construction. Methods in Ecology and Evolution 6: 1110–1116.
52. Li H. 2013. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv 1303.3997. https://doi.org/10.48550/arXiv.1303.3997
53. Li Y, Yang K, Yang W, Chu L, Chen C, Zhao B, Li Y, Jian J, Yin Z, Wang T, et al. 2017. Identification of QTL and qualitative trait loci for agronomic traits using SNP markers in the adzuki bean. Frontiers in Plant Science 8.
54. Li F, Zhang X, Hu R, Wu F, Ma J, Meng Y, Fu Y. 2013. Identification and molecular characterization of FKF1 and GI homologous genes in soybean. PLoS ONE 8: e79036.
55. Lin X, Dong L, Tang Y, Li H, Cheng Q, Li H, Zhang T, Ma L, Xiang H, Chen L, et al. 2022. Novel and multifaceted regulations of photoperiodic flowering by Phytochrome A in soybean. Proceedings of the National Academy of Sciences 119: e2208708119.
56. Lin X, Liu B, Weller JL, Abe J, Kong F. 2021. Molecular mechanisms for the photoperiodic regulation of flowering in soybean. Journal of Integrative Plant Biology 63: 981–994.
57. Liu L, Song W, Wang L, Sun X, Qi Y, Wu T, Sun S, Jiang B, Wu C, Hou W, et al. 2020. Allele combinations of maturity genes E1-E4 affect adaptation of soybean to diverse geographic regions and farming systems in China. PLOS ONE 15: e0235397.
58. Liu X, Tian D, Li C, Tang B, Wang Z, Zhang R, Pan Y, Wang Y, Zou D, Zhang Z, et al. 2023. GWAS Atlas: an updated knowledgebase integrating more curated associations in plants and animals. Nucleic Acids Research 51: D969–D976.
59. Lu S, Dong L, Fang C, Liu S, Kong L, Cheng Q, Chen L, Su T, Nan H, Zhang D, et al. 2020. Stepwise selection on homeologous PRR genes controlling flowering and maturity during soybean domestication. Nature Genetics 52: 428–436.
60. Lu S, Zhao X, Hu Y, Liu S, Nan H, Li X, Fang C, Cao D, Shi X, Kong L, et al. 2017. Natural variation at the soybean J locus improves adaptation to the tropics and enhances yield. Nature Genetics 49: 773–779.
61. Luo W-G. 2017. The current status of cultivated adzuki bean in Taiwan. Kaohsiung District Agricultural News: 16–17. (in Chinese)
62. Maeda O, Lucas L, Silva F, Tanno K-I, Fuller DQ. 2016. Narrowing the harvest: Increasing sickle investment and the rise of domesticated cereal agriculture in the Fertile Crescent. Quaternary Science Reviews 145: 226–237.
63. Maeda AE, Nakamichi N. 2022. Plant clock modifications for adapting flowering time to local environments. Plant Physiology 190: 952–967.
64. Maple R, Zhu P, Hepworth J, Wang J-W, Dean C. 2024. Flowering time: From physiology, through genetics to mechanism. Plant Physiology 195: 190–212.
65. Matsumoto N, Habu J, Matsui A. 2017. Subsistence, sedentism, and social complexity among Jomon hunter-gatherers of the Japanese archipelago. In: Handbook of East and Southeast Asian Archaeology. Springer New York, NY, 437–450.
66. McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel S, Daly M, et al. 2010. The genome analysis toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data. Genome Research 20: 1297–1303.
67. Meyer RS, Purugganan MD. 2013. Evolution of crop species: genetics of domestication and diversification. Nature Reviews Genetics 14: 840–852.
68. Mizoguchi K. 2017. The Yayoi and Kofun Periods of Japan. In: Handbook of East and Southeast Asian Archaeology. Springer New York, NY, 561–602.
69. Nasu H. 2018. Domestication of plants during the Jomon period. The Quaternary Research (Daiyonki-Kenkyu) 57: 109–126. (in Japanese)
70. Oide M, Nakasako M. 2021. Red light-induced structure changes in Phytochrome A from Pisum sativum. Scientific Reports 11: 2827.
71. Peng D, Mulder OJ, Edge MD. 2025. Evaluating ARG-estimation methods in the context of estimating population-mean polygenic score histories. Genetics 229.
72. Pittendrigh CS. 1993. Temporal organization: Reflections of a Darwinian clock-watcher. Annual Review of Physiology 55: 17–54.
73. Pittendrigh CS, Minis DH. 1964. The entrainment of circadian oscillations by light and their role as photoperiodic clocks. The American Naturalist 98: 261–294.
74. Rozas J, Ferrer-Mata A, Sánchez-DelBarrio JC, Guirao-Rico S, Librado P, Ramos-Onsins SE, Sánchez-Gracia A. 2017. DnaSP 6: DNA sequence polymorphism analysis of large data sets. Molecular Biology and Evolution 34: 3299–3302.
75. Sakai H, Naito K, Ogiso-Tanaka E, Takahashi Y, Iseki K, Muto C, Satou K, Teruya K, Shiroma A, Shimoji M, et al. 2015. The power of single molecule real-time sequencing technology in the de novo assembly of a eukaryotic genome. Scientific Reports 5.
76. Sakai H, Naito K, Takahashi Y, Sato T, Yamamoto T, Muto I, Itoh T, Tomooka N. 2016. The Vigna Genome Server, ‘ Vig GS’: A genomic knowledge base of the genus Vigna based on high-quality, annotated genome sequence of the azuki bean, Vigna angularis (Willd.) Ohwi & Ohashi. Plant and Cell Physiology 57: e2–e2.
77. Sasaki Y, Kudo Y, Momohara A. 2007. The utilization of plant resources in the Late Jomon period as seen from the large plant remains at the Takarabe site in the Tama region of Tokyo. Japanese Journal of Historical Botany 15: 35–50. (in Japanese)
78. Servin B, Stephens M. 2007. Imputation-based analysis of association studies: Candidate regions and quantitative traits. PLOS Genetics 3: e114.
79. Song YH, Ito S, Imaizumi T. 2013. Flowering time regulation: photoperiod- and temperature-sensing in leaves. Trends in Plant Science 18: 575–583.
80. Speidel L, Forest M, Shi S, Myers SR. 2019. A method for genome-wide genealogy estimation for thousands of samples. Nature Genetics 51: 1321–1329.
81. Stanke M, Diekhans M, Baertsch R, Haussler D. 2008. Using native and syntenically mapped cDNA alignments to improve de novo gene finding. Bioinformatics 24: 637–644.
82. Stern AJ, Wilton PR, Nielsen R. 2019. An approximate full-likelihood method for inferring selection and allele frequency trajectories from DNA sequence data. PLOS Genetics 15: e1008384.
83. Takahashi Y, Kongjaimun A, Muto C, Kobayashi Y, Kumagai M, Sakai H, Satou K, Teruya K, Shiroma A, Shimoji M, et al. 2020. Same locus for non-shattering seed pod in two independently domesticated legumes, Vigna angularis and Vigna unguiculata. Frontiers in Genetics 11.
84. Takahashi Y, Nasu H, Nakayama S, Tomooka N. 2023. Domestication of azuki bean and soybean in Japan: From the insight of archeological and molecular evidence. Breeding Science 73: 117–131.
85. Takahashi Y, Tomooka N. 2024. Taxonomic history, morphology, evolution, gene pool and stress tolerances of azuki bean and its related wild Vigna genetic resources. Breeding Science 74: 295–310.
86. Tamura K, Stecher G, Kumar S. 2021. MEGA11: Molecular evolutionary genetics analysis version 11. Molecular Biology and Evolution 38: 3022–3027.
87. Time and Date AS. 2025. Climate & weather averages in Hokkaido, Japan. timeanddate, https://www.timeanddate.com/weather/@11257417/climate
88. Tomooka N, Vaughan DA, Moss H, Maxted N. 2002. The Asian Vigna. Dordrecht: Springer Netherlands.
89. Tsubokura Y, Watanabe S, Xia Z, Kanamori H, Yamagata H, Kaga A, Katayose Y, Abe J, Ishimoto M, Harada K. 2014. Natural variation in the genes responsible for maturity loci E1, E2, E3 and E4 in soybean. Annals of Botany 113: 429–441.
90. Vaughn AH, Nielsen R. 2024. Fast and accurate estimation of selection coefficients and allele histories from ancient and modern DNA. Molecular Biology and Evolution 41: msae156.
91. Wang F, Han T, Jeffrey Chen Z. 2024. Circadian and photoperiodic regulation of the vegetative to reproductive transition in plants. Communications Biology 7: 1–11.
92. Wang L, Kikuchi S, Muto C, Naito K, Isemura T, Ishimoto M, Cheng X, Kaga A, Tomooka N. 2015. Reciprocal translocation identified in Vigna angularis dominates the wild population in East Japan. Journal of Plant Research 128: 653–663.
93. Wang Y-C, Lee C-R. 2025. Evolution of a chromosomal translocation in wild adzuki beans. Unpublished master dissertation, National Taiwan University, Taipei.
94. Wang L, Li H, He M, Dong L, Huang Z, Chen L, Nan H, Kong F, Liu B, Zhao X. 2023. GIGANTEA orthologs, E2 members, redundantly determine photoperiodic flowering and yield in soybean. Journal of Integrative Plant Biology 65: 188–202.
95. Wang L, Wang J, Luo G, Yuan X, Gong D, Hu L, Wang S, Chen H, Chen X, Cheng X. 2021. Construction of a high-density adzuki bean genetic map and evaluation of its utility based on a QTL analysis of seed size. Journal of Integrative Agriculture 20: 1753–1761.
96. Weller JL, Liew LC, Hecht VFG, Rajandran V, Laurie RE, Ridge S, Wenden B, Vander Schoor JK, Jaminon O, Blassiau C, et al. 2012. A conserved molecular basis for photoperiod adaptation in two temperate legumes. Proceedings of the National Academy of Sciences 109: 21158–21163.
97. Weller JL, Ortega R. 2015. Genetic control of flowering time in legumes. Frontiers in Plant Science 6.
98. Weller JL, Vander Schoor JK, Perez-Wright EC, Hecht V, González AM, Capel C, Yuste-Lisbona FJ, Lozano R, Santalla M. 2019. Parallel origins of photoperiod adaptation following dual domestications of common bean. Journal of Experimental Botany 70: 1209–1219.
99. Xu HX, Jing T, Tomooka N, Kaga A, Isemura T, Vaughan DA. 2008. Genetic diversity of the azuki bean (Vigna angularis (Willd.) Ohwi & Ohashi) gene pool as assessed by SSR markers. Genome 51: 728–738.
100. Xu M, Xu Z, Liu B, Kong F, Tsubokura Y, Watanabe S, Xia Z, Harada K, Kanazawa A, Yamada T, et al. 2013. Genetic variation in four maturity genes affects photoperiod insensitivity and PHYA-regulated post-flowering responses of soybean. BMC Plant Biology 13: 91.
101. Yadav U, Singh N, Kaur A, Thakur S. 2018. Physico-chemical, hydration, cooking, textural and pasting properties of different adzuki bean (Vigna angularis) accessions. Journal of Food Science and Technology 55: 802–810.
102. Yamamoto H, Horiuchi Y, Ogura R, Sakai H, Sato H, Kato K. 2016. Identification and molecular mapping of Flowering Date1 (FD1), a major photoperiod insensitivity gene in the adzuki bean (Vigna angularis). Plant Breeding 135: 714–720.
103. Yang J, Kim Y-B, Hong K-H, Yoon S-T. 2022. Optimization of a wheat small red bean double cropping system in South Korea. Scientific Reports 12: 13367.
104. Yang M, Lin W, Xu Y, Xie B, Yu B, Chen L, Huang W. 2024. Flowering-time regulation by the circadian clock: From Arabidopsis to crops. The Crop Journal 12: 17–27.
105. Yang K, Tian Z, Chen C, Luo L, Zhao B, Wang Z, Yu L, Li Y, Sun Y, Li W, et al. 2015. Genome sequencing of adzuki bean (Vigna angularis) provides insight into high starch and low fat accumulation and domestication. Proceedings of the National Academy of Sciences of the United States of America 112: 13213–13218.
106. Yang N, Wang Y, Liu X, Jin M, Vallebueno-Estrada M, Calfee E, Chen L, Dilkes BP, Gui S, Fan X, et al. 2023. Two teosintes made modern maize. Science 382: eadg8940.
107. Yin Z, Guo W, Liang J, Xiao H, Hao X, Hou A, Zong X, Leng T, Wang Y, Wang Q, et al. 2019. Effects of multiple N, P, and K fertilizer combinations on adzuki bean (Vigna angularis) yield in a semi-arid region of northeastern China. Scientific Reports 9: 19408.
108. You T-R. 1998. Adzuki bean cultivation techniques in the Yunlin–Chiayi–Tainan region. Tainan District Agricultural News 87–8 (No. 80). (in Chinese)
109. Zhao X, Li H, Wang L, Wang J, Huang Z, Du H, Li Y, Yang J, He M, Cheng Q, et al. 2024. A critical suppression feedback loop determines soybean photoperiod sensitivity. Developmental Cell 59: 1750-1763.e4.
110. Zhou X, Stephens M. 2012. Genome-wide efficient mixed-model analysis for association studies. Nature Genetics 44: 821–824.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99084-
dc.description.abstract紅豆(Vigna angularis [Willd.] Ohwi and Ohashi,2n = 22)是東亞及南亞地區的重要豆科作物,其農業與文化價值不可忽視。相較於野生型紅豆(V. angularis var. nipponensis),現今的栽培品系已經拓展至中國北方與日本北海道等高緯度地區。作為短日照植物,紅豆對光週期十分敏感,在短日照條件下促進開花,而在長日照環境中則開花延遲。為能在夏季長日照下完成開花與結實、避免冬季低溫所致的損失,栽培紅豆必須演化出對光週期反應較低的特性。然而,開花時間作為能影響適應性與產量的重要性狀,其在紅豆中的遺傳機制仍未明朗。本研究針對來自東亞及南亞地區的454個地方品系與野生紅豆進行全基因體定序,共鑑定出約 100 萬個高品質單核苷酸多態性(SNP)。透過全基因體關聯分析(GWAS),我們辨識出兩個與開花時間有高度相關的候選基因:Vigan.04G378650.01(VaPHYA3)和Vigan.11G142800.01(VaGI2)。兩者皆為與豆科關鍵的開花基因存在同源關係,且都帶有非同義突變,其衍生型等位基因亦明顯集中在緯度比較高的品系,我們推測這些突變可能有助於降低光週期敏感性並促進紅豆在長日照條件下開花。此外,我們利用等位基因頻率變化軌跡進行建模,發現這些關鍵變異可能遠在一萬年前就出現了,並於約兩千年前迅速擴散,這個時間點剛好對應上日本的古墳時代。為進一步探討開花時間的演化過程,本研究首度將多基因風險分數應用至作物,重建族群層級的開花性狀演化動態。結果顯示,開花時間從數萬年前持續受到定向選汰的影響。綜合而言,本研究揭示了紅豆開花時間的遺傳結構與演化歷史,成果將有助於未來育種與作物適應性等相關研究上的應用。zh_TW
dc.description.abstractAdzuki bean (Vigna angularis [Willd.] Ohwi and Ohashi, diploid, 2n = 22) is a traditional legume crop widely grown in East Asia and South Asia, celebrated for its nutrient-rich seeds, culinary versatility and appealing seed coat colouration. Today, its cultivation extends far beyond the natural distribution of its wild progenitor (V. angularis var. nipponensis), reaching higher latitude regions in China and Japan. As a short-day plant, adzuki bean is highly sensitive to photoperiod, typically flowers earlier under short-day conditions and delays flowering under long-day conditions. At higher latitudes, however, cultivated adzuki bean has to flower during long-day summers to complete the life cycle in time and avoid damages from freezing winters. While flowering time is a key trait for local adaptation and stable crop yield, its genetic architecture in aduki bean remains poorly understood. In this study, we conducted whole-genome sequencing on a geographically diverse panel of 454 cultivated and wild adzuki bean accessions across East Asia and northern South Asia, identifying about 1 million high-quality single nucleotide polymorphisms (SNPs). A genome-wide association study (GWAS) successfully revealed two novel candidate genes, Vigan.04G378650.01 (VaPHYA3) and Vigan.11G142800.01 (VaGI2), each harbouring nonsynonymous SNPs significantly associated with flowering time. Both genes are homologous to core flowering genes in legume. These nonsynonymous changes were enriched in accessions from higher latitude regions, likely contributing to their reduced photoperiod sensitivity and earlier flowering under long-day conditions. Allele trajectory modelling further suggests that the derived alleles may have been originated more than 10 thousand years ago (kya), with their frequencies increasing sharply in the past ~2 kya, during the Kofun period in Japan. Given that the complex genetic nature of flowering time and the challenges of tracing its history archaeologically, we further investigated the population-level evolution of flowering-time polygenic score, an unprecedented application in crops. This analysis captured long-term directional selection for earlier flowering over thousands of years. Altogether, these findings provide a new insight into the genetic basis and evolutionary history of flowering time in adzuki bean, offering potential resources for future breeding efforts and crop adaptation studies.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-21T16:19:23Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-08-21T16:19:23Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents論文口試委員會審定書 i
誌謝 ii
摘要 iii
Abstract v
Contents vii
Contents of Figures ix
Contents of Tables xii
Introduction 1
Molecular regulation of flowering time 3
Reduction of photoperiod sensitivity in crop expansion 4
Adzuki bean and its flowering 5
Methods 12
DNA extraction, library preparation and sequencing 12
Variant calling 14
Population structure estimation 15
GWAS 16
Phylogenetic analysis 17
Gene reannotation for the Miyagi genome 18
Haplotype network analyses 21
Historical trajectory of candidate genes and population polygenic score evolution 22
Results 25
Sequencing data 25
Population structure 25
Mutant alleles at SNPs in Vigan.04G378650.01 and Vigan.11G142800.01 associated with earlier flowering in adzuki bean in higher latitudes 29
Putative roles of VAPHYA3 (Vigan.04G378650.01) and VaGI2 (Vigan.11G142800.01) in adzuki bean 31
Reannotated VaPHYA3 and VaGI2 revealed structural variations in Shumari and Miyagi genomes 32
Haplotype diversity of VaPHYA3 and VaGI2 33
The cumulative effects of VaPHYA3 and VaGI2 and their effects on flowering time 36
The historical trajectory of VaPHYA3 and VaGI2 38
The history of polygenic selection on flowering time 38
Discussion 40
A member of legume family 40
VaPHYA3 41
VaGI2 43
The additive effect of VaPHYA3 and VaGI2 in adzuki bean flowering 45
The variations of VaPHYA3 and VaGI2 drove the diversification of adzuki bean 45
Domestication is a landscape-level process 48
The selection of flowering time throughout the history 50
Conclusion 52
References 54
-
dc.language.isoen-
dc.subject紅豆zh_TW
dc.subject開花時間zh_TW
dc.subject全基因體關聯分析zh_TW
dc.subject地區性適應zh_TW
dc.subject族群層級基因風險分數zh_TW
dc.subjectAdzuki beanen
dc.subjectPopulation-mean polygenic-scoreen
dc.subjectLocal adaptationen
dc.subjectGWASen
dc.subjectFlowering timeen
dc.title地區適應演化的關鍵:全基因體關聯分析揭示紅豆開花時間的遺傳結構zh_TW
dc.titleKeys to Local Adaptation: Genome-Wide Association Study Unveils the Genetic Architecture of Flowering Time in Adzuki Beanen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee蔡怡陞;李金美;王弘毅zh_TW
dc.contributor.oralexamcommitteeIsheng Jason Tsai;Chin-Mei Lee;Hurng-Yi Wangen
dc.subject.keyword紅豆,開花時間,全基因體關聯分析,地區性適應,族群層級基因風險分數,zh_TW
dc.subject.keywordAdzuki bean,Flowering time,GWAS,Local adaptation,Population-mean polygenic-score,en
dc.relation.page168-
dc.identifier.doi10.6342/NTU202502712-
dc.rights.note未授權-
dc.date.accepted2025-08-05-
dc.contributor.author-college生命科學院-
dc.contributor.author-dept生態學與演化生物學研究所-
dc.date.embargo-liftN/A-
顯示於系所單位:生態學與演化生物學研究所

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
  未授權公開取用
57.35 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved