請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99070完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 詹瀅潔 | zh_TW |
| dc.contributor.advisor | Ying-Chieh Chan | en |
| dc.contributor.author | 馬小堤 | zh_TW |
| dc.contributor.author | Hsiao-Ti Ma | en |
| dc.date.accessioned | 2025-08-21T16:16:19Z | - |
| dc.date.available | 2025-08-22 | - |
| dc.date.copyright | 2025-08-21 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-07-25 | - |
| dc.identifier.citation | 1. Ataei, E., & Branch, A. (2013). Application of TOPSIS and fuzzy TOPSIS methods for plant layout design. World Applied Sciences Journal, 24(7), 908-913.
2. Barrie, D. S., & Paulson, B. C. (1992). Professional construction management: Including C.M., design-construct and general contracting (3rd ed., p. 35). McGraw-Hill Inc. 3. Benn, S., Edwards, M., & Williams, T. (2018). Organizational change for corporate sustainability (4th ed.). Routledge. https://doi.org/10.4324/9781315619620 4. Bright, O. (2024). Strategies for the optimization of critical infrastructure projects to enhance urban resilience to climate change. Journal of Scientific and Engineering Research, 11(6), 107–123. https://orcid.org/0009-0000-0772-8887 5. Brundtland, G. H. (1987). Our common future: World Commission on Environment and Development. Oxford University Press. 6. Bulkeley, H. (2013). Cities and climate change (1st ed.). Routledge. https://doi.org/10.4324/9780203077207 7. Hwang, C. L., & Yoon, K. (1981). Multiple attribute decision making. Springer-Verlag. 8. Chen, C. T. (2000). Extensions of the TOPSIS for group decision-making under fuzzy environment. Fuzzy Sets and Systems, 114(1), 1–9. 9. Chen, S., & Hwang, C. (1992). Fuzzy multiple attribute decision making: Methods and applications. Lecture Notes in Economics and Mathematical Systems. https://doi.org/10.1007/978-3-642-46768-4 10. Construction Management Association of America. (2020). Construction management standards of practice (4th ed.). https://www.cmaanet.org 11. Dilley, M. (2005). Natural disaster hotspots: A global risk analysis (Vol. 5). World Bank Publications. 12. Dubois, D., & Prade, H. (1983). Ranking fuzzy number in the setting of possibility theory. Information Sciences, 3, 183–224. http://dx.doi.org/10.1016/0020-0255(83)90025-7 13. Dubois, D., & Prade, H. (1978). Operations on fuzzy numbers. International Journal of Systems Science, 9(6), 613–626. https://doi.org/10.1080/00207727808941724 14. Ehrgott, M. (2005). Multicriteria optimization. Springer. https://www.amazon.com/Multicriteria-Optimization-Matthias-Ehrgott/dp/3540213988 15. Elkington, J. (1997). Cannibals with forks: The triple bottom line of 21st century business. Capstone. 16. Endo, H., Kitoh, A., & Mizuta, R. (2022). Future changes in extreme precipitation and their association with tropical cyclone activity over the western North Pacific and East Asia in 20 km AGCM simulations. SOLA, 18(0), 58–64. https://doi.org/10.2151/sola.2022-010 17. Epstein, M. J. (2008). Making sustainability work: Best practices in managing and measuring corporate social, environmental and economic impacts (1st ed.). Routledge. https://doi.org/10.4324/9781351280129 18. Taylor, F. W. (1911). The principles of scientific management. Harper & Brothers. 19. Garrido, A. (2012). A brief history of fuzzy logic. BRAIN. Broad Research in Artificial Intelligence and Neuroscience, 3(1), 71–77. 20. Hallegatte, S., Rentschler, J., & Rozenberg, J. (2019). Lifelines: The resilient infrastructure opportunity. World Bank Group. https://hdl.handle.net/10986/31805 21. Hsu, P., Chen, K., Tsou, C., Hsu, H., Hong, C., Liang, H., Tu, C., & Kitoh, A. (2021). Future changes in the frequency and destructiveness of landfalling tropical cyclones over East Asia projected by high‐resolution AGCMs. Earth’s Future, 9(3). https://doi.org/10.1029/2020EF001888 22. Intergovernmental Panel on Climate Change (IPCC). (2023). Climate change 2023: Synthesis report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (H. Lee & J. Romero, Eds.). IPCC. https://www.ipcc.ch/report/sixth-assessment-report-cycle/ 23. Agyeman, J., Bullard, R., & Evans, B. (2002). Exploring the nexus: Bringing together sustainability, environmental justice and equity. Space and Polity, 6(1), 77–90. https://doi.org/10.1080/13562570220137907 24. Kabir, G., & Hasin, M. (2012). Comparative analysis of TOPSIS and fuzzy TOPSIS for the evaluation of travel website service quality. International Journal for Quality Research, 6(3). 25. Kahraman, C. (2008). Multi-criteria decision making methods and fuzzy sets. In Fuzzy multi-criteria decision making (Vol. 16, pp. 1–18). Springer. https://doi.org/10.1007/978-0-387-76813-7_1 26. Kaufmann, A., & Gupta, M. M. (1985). Introduction to fuzzy arithmetic: Theory and applications. Van Nostrand Reinhold. 27. Klir, G. J., & Folger, T. A. (1988). Fuzzy sets, uncertainty and information. Prentice Hall. 28. Knutson, T., Camargo, S. J., Chan, J. C., Emanuel, K., Ho, C., Kossin, J., Mohapatra, M., Satoh, M., Sugi, M., Walsh, K., & Wu, L. (2020). Tropical cyclones and climate change assessment: Part II: Projected response to anthropogenic warming. Bulletin of the American Meteorological Society, 101(3), E303–E322. https://doi.org/10.1175/BAMS-D-18-0194.1 29. Lavell, A., Oppenheimer, M., Diop, C., Hess, J., Lempert, R., Li, J., & Myeong, S. (2012). Managing the risks of extreme events and disasters to advance climate change adaptation. In A special report of Working Groups I and II of the Intergovernmental Panel on Climate Change (IPCC) (pp. 25–64). 30. Lok, C. C., & Chan, J. C. (2018). Changes of tropical cyclone landfalls in South China throughout the twenty-first century. Climate Dynamics, 51(7–8), 2467–2483. https://doi.org/10.1007/s00382-017-4023-0 31. Lomba-Fernández, C., Hernantes, J., & Labaka, L. (2019). Guide for climate-resilient cities: An urban critical infrastructures approach. Sustainability, 11(17), 4727. https://doi.org/10.3390/su11174727 32. Mardani, A., Jusoh, A., & Zavadskas, E. K. (2015). Fuzzy multiple criteria decision-making techniques and applications—Two decades review from 1994 to 2014. Expert Systems With Applications, 42(8), 4126–4148. https://doi.org/10.1016/j.eswa.2015.01.003 33. Najafi, E., Molana, M. H., Sajadi, M., & Miri-Nargesi, S. (2016). A hierarchical fuzzy TOPSIS methodology for supplier selection with a case study in Guilan textile industry. 34. Pattnaik, C. R., Mohanty, S. N., Mohanty, S., Chatterjee, J. M., Jana, B., & Diaz, V. G. (2021). A fuzzy multi-criteria decision-making method for purchasing life insurance in India. Bulletin of Electrical Engineering and Informatics, 10(1), 344–356. https://doi.org/10.11591/eei.v10i1.2275 35. Pelling, M. (2003). Vulnerability of cities: Natural disasters and social resilience. Earthscan. 36. Klir, G. J., & Yuan, B. (1995). Fuzzy sets and fuzzy logic: Theory and application. Prentice Hall. 37. Project Management Institute (PMI). (2017). A guide to the project management body of knowledge (PMBOK guide) (6th ed.). Project Management Institute. 38. Project Management Institute (PMI). (2021). A guide to the project management body of knowledge (PMBOK guide) (7th ed.). Project Management Institute. 39. Saghafian, S., & Hejazi, S. R. (2005, November). Multi-criteria group decision making using a modified fuzzy TOPSIS procedure. In International Conference on Computational Intelligence for Modelling, Control and Automation and International Conference on Intelligent Agents, Web Technologies and Internet Commerce (CIMCA-IAWTIC'06) (Vol. 2, pp. 215–221). IEEE. 40. Scott-Showalter, P., & Showalter, W. E. (1986). The history of construction management. Construction Management: A State-of-the-Art Update, October. 41. Shih, H. S., Shyur, H. J., & Lee, E. S. (2007). An extension of TOPSIS for group decision making. Mathematical and Computer Modelling, 45(7–8), 801–813. 42. Short, J. R., & Farmer, A. (2021). Cities and climate change. Earth, 2(4), 1038–1045. https://doi.org/10.3390/earth2040061 43. United Nations Environment Programme, International Environmental Technology Centre. (2021). Annual Report 2020. https://www.unep.org/ietc/resources/report/annual-report-2020 44. Tsou, C., Huang, P., Tu, C., Chen, C., Tzeng, T., & Cheng, C. (2016). Present simulation and future typhoon activity projection over western North Pacific and Taiwan/East Coast of China in 20-km HIRAM climate model. Terrestrial, Atmospheric and Oceanic Sciences, 27(5), 687–703. https://doi.org/10.3319/TAO.2016.06.13.04 45. Tzeng, G. H., & Huang, J. J. (2011). Multiple attribute decision making: Methods and applications. CRC Press. 46. United Nations. (May 21, 2025). United Nations. https://www.un.org/en/ 47. Wang, Y.-J. (2008). Applying FMCDM to evaluate financial performance of domestic airlines in Taiwan. Expert Systems With Applications, 34(3), 1837–1845. https://doi.org/10.1016/j.eswa.2007.02.029 48. World Bank Group (2024). Rising to the Challenge-Success Stories and Strategies for Achieving Climate Adaptation and Resilience. World Bank Group. 49. Wuebbles, D. J. (2016). Setting the stage for risk management: Severe weather under a changing climate. In Climate science: Oxford research encyclopedias. https://doi.org/10.1007/978-3-319-22126-7_5 50. Yamada, Y., Satoh, M., Sugi, M., Kodama, C., Noda, A. T., Nakano, M., & Nasuno, T. (2017). Response of tropical cyclone activity and structure to global warming in a high-resolution global nonhydrostatic model. Journal of Climate, 30(23), 9703–9724. https://doi.org/10.1175/JCLI-D-17-0068.1 51. Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8(3), 338–353. 52. Zadeh, L. A. (1975). The concept of a linguistic variable and its application to approximate reasoning—I. Information Sciences, 8(3), 199–249. https://doi.org/10.1016/0020-0255(75)90036-5 53. Zadeh, L. A. (1995). Discussion: Probability theory and fuzzy logic are complementary rather than competitive. Technometrics, 37(3), 271–276. 54. Zavadskas, E. K., Antucheviciene, J., & Chatterjee, P. (2018). Multiple-criteria decision-making (MCDM) techniques for business processes information management (Vol. 10). MDPI. https://doi.org/10.3390/books978-3-03897-643-1 55. 中央氣象局。(n.d.)。取自 https://www.cwb.gov.tw/ 56. 內政部消防署(2018)。臺灣地區天然災害損失統計表(47年至106年)。取自 https://www.nfa.gov.tw/cht/index.php?code=list&ids=233 57. 內政部建築研究所(2023)。我國建築碳足跡法令探討與標示制度研議之研究。內政部建築研究所自行研究報告。 58. 王明德(1999)。營建管理基礎理論與發展趨勢。中華民國建築學會,公共工程委辦專案管理實務研討會。 59. 王致陽(2004)。公共工程在施工階段專案管理缺失及改善作為之研究(碩士論文)。國立中央大學。 60. 交通部(2023)。維生基礎設施領域氣候變遷調適行動方案(112-115年)。https://www.cca.gov.tw/information-service/info/3826.html 61. 交通部中央氣象署(2024)。112年氣候年報。交通部中央氣象署出版。 62. 任秋玲(2017)。建構新竹縣政府人事人員服務品質指標之研究—以TOPSIS與模糊層級分析法為分析途徑(碩士論文)。國立清華大學。 63. 行政院(2013)。民國102年災害防救白皮書。行政院。 64. 行政院(2024)。民國113年災害防救白皮書。行政院。 65. 行政院(2023)。國家氣候變遷調適行動計畫(112–115年)。環境部。 66. 行政院公共工程委員會。(n.d.)。取自 https://lawweb.pcc.gov.tw/index.aspx 67. 行政院公共工程委員會(2022)。公共工程節能減碳檢核注意事項。https://lawweb.pcc.gov.tw/LawContent.aspx?id=GL000092 68. 行政院公共工程委員會(2023)。公共工程汛期工地防災減災作業要點。取自 https://lawweb.pcc.gov.tw/LawContent.aspx?id=FL046785 69. 行政院環境保護署氣候行動工作分組(2022)。國家氣候變遷調適行動方案(112年–116年)〔會議簡報〕。行政院國家永續發展委員會第54次工作會議。 70. 吳薇萱(2015)。因應氣候變遷之韌性景觀工程評估與設計(碩士論文)。國立成功大學。 71. 李育如(2011)。專案管理流程架構的研究與應用—以某機械業規劃政府標案之專案管理實務研究(碩士論文)。佛光大學。 72. 李得璋(1995)。國內專業營建管理(PCM)制度之推行。營建管理季刊,11–22。 73. 沈勁利(2006)。國內營建業施行專案管理現況探討。技師月刊, 41,100–108。 74. 沈勁利、葉根、林樹豪(2007)。營建工程專案管理(PM)與專業營建管理(PCM)之研究。德霖學報, 21,301–309。 75. 災害防救法(2022年6月15日公布)。取自 https://law.moj.gov.tw/LawClass/LawAll.aspx?pcode=D0120014 76. 林原宏(2002)。模糊語意量表的語意模糊數建構演算與實證分析。調查研究, 11, 31–71。 77. 林靜珊(2014)。應用模糊理論於大學行政服務品質衡量模式之研究(博士論文)。國立彰化師範大學。 78. 時序時(n.d.)。多準則決策分析概論。淡江大學管理科學學系。取自 https://ms.tku.edu.tw/ms/File/Archive/C4-E5-F8-1A-62-83-46-A3-59-5A-DB-FC-5B-C4-7B-05.pdf 79. 氣候變遷因應法(2023年2月15日修正公布)。取自 https://oaout.moenv.gov.tw/law/LawContent.aspx?id=GL005511 80. 氣候變遷災害風險調適平台。(2025年4月12日)。取自 https://dra.ncdr.nat.gov.tw/ 81. 張育晧(2016)。永續型專案管理評估指標之探討(碩士論文)。中華大學。 82. 張益誠(2000)。應用因子分析方法為臺灣地區建構永續發展趨勢評估指標系統(博士論文)。 國立臺灣大學。 83. 許晃雄、王嘉琪、陳正達、李明旭、詹士樑(2024)。國家氣候變遷科學報告2024:現象、衝擊與調適。國家科學及技術委員會與環境部聯合出版。 84. 陳虹婷(2021)。運用AHP與TOPSIS建立半導體產業工程師選才架構(碩士論文)。國立成功大學。 85. 國家災害防救科技中心(2025年5月10日)。取自https://www.ncdr.nat.gov.tw/ 86. 楊蕙菁(2017)。PMBOK應用於高雄市文化中心演藝廳檔期管理之案例探討(碩士論文)。國立交通大學。 87. 經濟部(2024)。輸電線路災害防救業務計畫。中央災害防救會報第49次會議。 88. 葉政黌(2004)。道路建設綠營建評估指標系統之研究(碩士論文)。國立中央大學。 89. 臺灣氣候變遷推估資訊與調適知識平台(TCCIP)(2025年4月12日)https://tccip.ncdr.nat.gov.tw/index.aspx 90. 環境部(2024)。氣候變遷對全球及台灣的影響衝擊評估〔會議簡報〕。國家氣候變遷對策委員會第一次委員會議。 91. 環境部(2023)。國家因應氣候變遷行動綱領。https://www.cca.gov.tw/affairs/response-policies/action-guidelines/2027.html 92. 環境部氣候變遷署(2025年5月10日)。取自 https://www.cca.gov.tw/ | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99070 | - |
| dc.description.abstract | 面對氣候變遷帶來的高度不確定性與多重災害衝擊,國家政策及工程體系已逐步於法規制度與工程實務中導入低碳、調適及防減災等因應氣候風險作為,惟實際推動仍受限於制度落實與作業整合之斷裂。在此脈絡下,專案管理於工程前期階段扮演關鍵輔助角色,不僅可作為制度要求與實務執行間之推力與介質,更能協助利害關係人進行風險辨識、目標整合與策略擬定,有助於提升整體工程對氣候風險之應變能力與前期整合效益。
本研究結合專案管理知識體系與氣候風險三大因應策略(低碳、調適、防減災),建構一套適用於工程規劃與設計階段之專案管理策略評估架構。首先透過文獻回顧與制度盤點,歸納具策略導向與管理操作性之評估因子,並以專案管理十大知識領域為分類基礎,設計三層級之評估架構。其後,採用模糊多準則決策方法,設計語意型問卷進行專家調查,量化各因子於不同策略導向下之相對重要性。最終共獲得50份有效問卷,依據三角模糊數運算,完成78項因子之接近係數計算與排序。 研究結果顯示,「調適設施的規劃」、「低碳設計的產能與適用範圍」、「低碳設計的規劃」為最重要之三項因子,反映氣候調適與低碳設計於工程前期決策中的高度關鍵性。另有多項位於整合、範疇、成本、品質與利害關係人等管理構面之因子亦列入前十,顯示跨系統整合與協調對氣候策略推動具有關鍵管理價值。 本研究所建構之評估架構與排序結果,除可協助工程團隊於前期階段進行結構化判斷與策略選擇,亦可作為制度推動與管理制度對接之補充工具,提升政策目標與工程實踐之整合效能。其貢獻在於提出一套結合管理邏輯與氣候策略目標之系統化架構,作為臺灣工程體系在節能減碳、調適韌性與防減災治理上的推動基礎,強化氣候風險治理下之專案管理實務發展。 | zh_TW |
| dc.description.abstract | In response to climate change and its associated uncertainties and compound disaster risks, Taiwan has incorporated mitigation, adaptation, and disaster risk reduction strategies into engineering policies and practices. However, gaps remain between institutional requirements and practical implementation. Project management plays a crucial supporting role during the early stages of engineering projects, serving as a driver and intermediary to enhance climate risk integration and strategic planning.
This study proposes a project management strategy evaluation framework tailored for the planning and design phase, integrating the PMBOK® knowledge areas with the three core climate strategies. Evaluation factors were identified through literature review and structured under a three-level dual-axis framework. The Fuzzy TOPSIS method was applied to assess expert judgments collected via a linguistic questionnaire. A total of 50 valid responses were analyzed, and closeness coefficients for 78 evaluation factors were calculated and ranked. Results show that “planning of adaptation facilities,” “capacity and applicability of low-carbon design,” and “planning of low-carbon design” are the most critical factors. Top-ranked items also cover integration, scope, cost, and stakeholder management domains, reflecting the importance of early coordination across systems. The proposed evaluation framework and prioritization results support structured decision-making and strategy selection in early project phases, while also bridging institutional mandates and practical implementation. This research offers a systematic framework that integrates management logic with climate strategy goals, providing a foundational tool for Taiwan’s engineering sector to advance carbon reduction, resilience, and disaster risk governance, and to strengthen climate-responsive project management practices. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-21T16:16:19Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-08-21T16:16:19Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 誌謝 I
摘要 II ABSTRACT III 目次 IV 圖次 VII 表次 IX 第一章 緒論 1 1.1 研究背景 1 1.2 研究動機 2 1.3 研究目的 3 1.4 研究範圍 4 1.5 研究流程 5 1.6 論文架構 5 第二章 文獻回顧 6 2.1 氣候變遷與氣候風險 6 2.1.1 全球氣候變遷趨勢 6 2.1.2 氣候災害風險 9 2.1.3 臺灣面臨氣候風險 12 2.1.4 氣候變遷下的城市 17 2.1.5 臺灣政策與趨勢 20 2.2 專案管理 24 2.2.1 專案管理的起源與定義 24 2.2.2 專案管理知識體系 25 2.3 專業營建管理(PCM) 29 2.3.1 營建管理制度的起源與演進 29 2.3.2 營建管理之定義與範疇 30 2.3.3 臺灣營建管理制度與應用現況 31 2.4 專案永續管理 33 2.4.1 永續管理的起源與定義 33 2.4.2 永續管理的發展與制度演進 34 2.4.3 永續管理的實踐 35 2.5 模糊理論與多準則決策方法 36 2.5.1 模糊理論 36 2.5.2 Fuzzy TOPSIS 方法原理與應用 41 2.6 小結 47 第三章 研究方法 49 3.1 FUZZY TOPSIS 模型建構步驟 49 3.2 評估架構與內容 52 3.2.1 評估因子構想與概念 52 3.2.2 評估因子初擬與架構建立 54 3.2.3 評估因子釋義 61 第四章 研究結果與討論 70 4.1 專家問卷結果 70 4.1.1 第一階段專家問卷 70 4.1.2 第二階段專家問卷 72 4.2 第二階段 FUZZY TOPSIS 評估結果 74 4.2.1 評估因子接近係數計算結果與排序 74 4.2.2 綜合討論 78 4.3 管理與實務應用 82 4.3.1 評估結果的應用 82 4.3.2 專案管理與決策應用 89 4.4 研究限制 91 第五章 結論與建議 93 5.1 研究結論 93 5.2 後續研究建議 94 5.2.1 研究方法擴充 94 5.2.2 工程階段擴展 95 5.2.3 政策與制度接軌建議 95 5.2.4 國際適用性 96 參考文獻 97 附錄1 第一階段專家問卷 106 附錄2 第二階段專家問卷 118 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | Fuzzy TOPSIS | zh_TW |
| dc.subject | 防減災 | zh_TW |
| dc.subject | 調適 | zh_TW |
| dc.subject | 低碳 | zh_TW |
| dc.subject | 氣候變遷 | zh_TW |
| dc.subject | 專案管理 | zh_TW |
| dc.subject | 規劃設計階段 | zh_TW |
| dc.subject | 多準則決策 | zh_TW |
| dc.subject | climate change | en |
| dc.subject | Fuzzy TOPSIS | en |
| dc.subject | multi-criteria decision-making | en |
| dc.subject | mitigation | en |
| dc.subject | adaptation | en |
| dc.subject | disaster risk reduction | en |
| dc.subject | project management | en |
| dc.subject | planning and design | en |
| dc.title | 因應氣候變遷之工程規劃及設計階段專案管理策略評估研究 | zh_TW |
| dc.title | An Evaluation Study on Project Management Strategies in the Planning and Design Phase of Engineering Projects in Response to Climate Change | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 林偲妘;林祐正;洪嫦闈 | zh_TW |
| dc.contributor.oralexamcommittee | Szu-Yun Lin;Yu-Cheng Lin;Chang-Wei Hung | en |
| dc.subject.keyword | 氣候變遷,專案管理,規劃設計階段,Fuzzy TOPSIS,多準則決策,低碳,調適,防減災, | zh_TW |
| dc.subject.keyword | climate change,project management,planning and design,Fuzzy TOPSIS,multi-criteria decision-making,mitigation,adaptation,disaster risk reduction, | en |
| dc.relation.page | 148 | - |
| dc.identifier.doi | 10.6342/NTU202502412 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2025-07-28 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 土木工程學系 | - |
| dc.date.embargo-lift | 2025-08-22 | - |
| 顯示於系所單位: | 土木工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf | 26.09 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
