請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99061完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 顏嗣鈞 | zh_TW |
| dc.contributor.advisor | Hsu-Chun Yen | en |
| dc.contributor.author | 温千懿 | zh_TW |
| dc.contributor.author | Chien-I Wen | en |
| dc.date.accessioned | 2025-08-21T16:14:16Z | - |
| dc.date.available | 2025-08-22 | - |
| dc.date.copyright | 2025-08-21 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-08-01 | - |
| dc.identifier.citation | [1] T. J. Allen and A. R. Fusfeld. Research laboratory architecture and the structuring of communications. R&D Management, 5(2):153–164, 1975.
[2] B. David and M. Erascu. Benchmarking optimization solvers and symmetry breakers for the automated deployment of component-based applications in the cloud (extended abstract). arXiv preprint arXiv:2305.15231, May 2023. Presented at the 7th International Workshop on Satisfiability Checking and Symbolic Computation (SCsquare),IJCAR 2022. [3] J. Klawitter, F. Klesen, and A. Wolff. Algorithms for floor planning with proximity requirements. In G. J. Gerber et al., editors, CAAD Futures 2021: Design Imperatives–The Future is Now, volume 1465 of Communications in Computer and Information Science, pages 151–171. Springer, 2022. [4] F. Klesen. Algorithms for automated floor planning. Master’s thesis, Julius-Maximilians-Universität Würzburg, Würzburg, Germany, September 2020. Master Thesis, Advisors: Prof. Dr. Alexander Wolff, Dr. Jonathan Klawitter. Available at: https://www1.pub.informatik.uni-wuerzburg.de/pub/theses/2020-klesen-master.pdf. [5] H. Li, Y. Wang, D. Ma, Y. Fang, and Z. Lei. Quasi-monte-carlo tree search for 3d bin packing. In Pattern Recognition and Computer Vision: First Chinese Conference, PRCV 2018, Guangzhou, China, November 23–26, 2018, Proceedings, Part I, volume 11168 of Lecture Notes in Computer Science, pages 384–396. Springer, 2018. [6] Y. G. López, C. G. García, V. G. Díaz, E. R. N. Valdez, and A. G. Gómez. Interpretability of rectangle packing solutions with monte carlo tree search. Journal of Heuristics, 30(3-4):173–198, 2024. [7] M. Rahbar, M. Mahdavinejad, A. H. Markazi, and M. Bemanian. Architectural layout design through deep learning and agent-based modeling: A hybrid approach. Journal of Building Engineering, 47:103822, 2022. [8] M. P. D. Schadd, M. H. M. Winands, H. J. van den Herik, and G. Chaslot. Single-player monte-carlo tree search. In Computers and Games, 6th International Conference, CG 2008, Beijing, China, September 29 – October 1, 2008, Proceedings,volume 5131 of Lecture Notes in Computer Science, pages 1–12. Springer, 2008. [9] K. Shekhawat and J. P. Duarte. Rectilinear floor plans. In Computer-Aided Architectural Design: Future Trajectories - 17th International Conference, CAAD Futures 2017, Selected Papers, volume 724 of Communications in Computer and Information Science, pages 395–411. Springer, 2017. [10] K. Shekhawat, R. Lohani, C. Dasannacharya, S. Bisht, and S. Rastogi. Automated generation of floorplans with non-rectangular rooms. Graphical Models, 127:101175, 2023. [11] K. Shekhawat, Pinki, and J. P. Duarte. A graph theoretical approach for creating building floor plans. In J. Lee, editor, Computer‑Aided Architectural Design. “Hello, Culture" – 18th International Conference, CAAD Futures 2019, Selected Papers, volume 1028 of Communications in Computer and Information Science, pages 3–14, Singapore, 2019. Springer Singapore. [12] F. Shi, R. K. Soman, J. Han, and J. K. Whyte. Addressing adjacency constraints in rectangular floor plans using monte-carlo tree search. Automation in Construction, 115:103187, 2020. [13] N. Upasani, K. Shekhawat, and G. Sachdeva. Automated generation of dimensioned rectangular floorplans. Automation in Construction, 113:103149, 2020. [14] L. Wang, J. Liu, Y. Zeng, G. Cheng, H. Hu, J. Hu, and X. Huang. Automated building layout generation using deep learning and graph algorithms. Automation in Construction, 154:105036, 2023. [15] J. Wen, E. Daher, and S. Kubicki. Optimization of a user-involved floor layout recommendation system at the operation stage. In Proc. 37th CIB W78 Information Technology for Construction Conference (CIB W78), pages 385–400, São Paulo, Brazil, 2020. [16] W. Wu, X.-M. Fu, R. Tang, Y. Wang, Y.-H. Qi, and L. Liu. Data-driven interior plan generation for residential buildings. ACM Transactions on Graphics (TOG), 38(6):234:1–234:12, 2019. [17] S. Yan and N. Liu. Computational design of residential units'floor layout: A heuristic algorithm. Journal of Building Engineering, 96(2):110546, August 2024. [18] I.-C. Yeh. Architectural layout optimization using annealed neural network. Automation in Construction, 15(4):531–539, July 2006. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99061 | - |
| dc.description.abstract | 本研究提出一項稱為AdaptMCTS(Adaptive Monte Carlo Tree Search)的自適應樓層規劃演算法,針對多樓層建築中的房間配置問題,結合蒙地卡羅樹搜尋法與多目標優化技術,於有限時間內快速產生多組高品質可行解。AdaptMCTS 透過階層式樹結構與模擬機制處理樓層容量限制、地形限制及房型鄰近性等實務條件,並在模擬時具備自動回溯與重試功能,有效提升求解穩定性與覆蓋率。此外,本方法整合房型緊密度、類型分佈與空間利用率等多目標指標,建立量化評估函數以篩選優解,並具備並行搜索能力,可於有限時間內產出多樣化的可行配置方案,未來亦可作為機器學習模型訓練資料之來源,有助於解決實務上歷史資料取得不易的問題。實驗以多種樓層數與不同地形情境進行測試,結果顯示AdaptMCTS 在解的品質與擴展性方面均優於模擬退火法與整數規劃法,特別是在高維度或條件頻繁變動的場景下具備更佳表現。綜合而言,AdaptMCTS 為解決複雜建築空間配置問題提供一種具彈性、穩定性與實務應用潛力的優化方法。 | zh_TW |
| dc.description.abstract | This thesis presents AdaptMCTS, an adaptive floor planning algorithm based on Monte Carlo Tree Search (MCTS) for optimizing multi-story room layouts. The proposed approach integrates MCTS with multi-objective heuristics to address practical constraints, including floor capacity, spatial adjacency, and terrain feasibility. A hierarchical search structure and parallel sampling strategy are employed to improve exploration efficiency and enhance solution diversity within limited runtime. A composite scoring function evaluates candidate layouts based on spatial compactness, type clustering, and space utilization. Experimental results show that AdaptMCTS outperforms Simulated Annealing (SA) and Integer Linear Programming (ILP) in both solution quality and scalability, especially under high-dimensional and dynamic conditions. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-21T16:14:16Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-08-21T16:14:16Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | Acknowledgements i
摘要 ii Abstract iii Contents iv List of Figures vi List of Tables viii Chapter 1 Introduction 1 Chapter 2 Related Work 7 2.1 Machine Learning Approaches 7 2.2 Graph-Theoretic Approaches 8 2.3 Heuristic and Metaheuristic Approaches 9 2.4 Integer Linear Programming 10 Chapter 3 Floor Layout Planning 11 3.1 Math Model and Problem Definitions 11 3.2 Objective Function and Constraints 14 3.3 Terrain Placement Rules 20 3.4 Evaluation Metrics 21 Chapter 4 AdaptMCTS Algorithm 23 4.1 MCTs Algorithm 23 4.2 AdaptMCTs : Room Allocation Modeling 27 Chapter 5 Experimental Evaluation 42 5.1 Environment Settings 42 5.2 Motivation and Design of Simulated Annealing 45 5.3 Test Data 47 5.4 Result and Discussion 50 5.5 Evaluation Metrics 56 Chapter 6 Conclusion and Future Work 60 References 62 | - |
| dc.language.iso | en | - |
| dc.subject | 蒙地卡羅樹搜尋法 | zh_TW |
| dc.subject | 階層式樹結構 | zh_TW |
| dc.subject | 樓層規劃 | zh_TW |
| dc.subject | 整數規劃法 | zh_TW |
| dc.subject | 模擬退火法 | zh_TW |
| dc.subject | Simulated Annealing | en |
| dc.subject | Integer Linear Programming | en |
| dc.subject | Floor Planning | en |
| dc.subject | Monte Carlo Tree Search | en |
| dc.subject | Hierarchical tree structure | en |
| dc.title | 基於蒙地卡羅樹搜尋與多目標優化的自適應樓層規劃 | zh_TW |
| dc.title | Adaptive Floor Layout Planning Based on Monte Carlo Tree Search and Multi-Objective Optimization | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 陳和麟;雷欽隆;郭斯彥 | zh_TW |
| dc.contributor.oralexamcommittee | Ho-Lin Chen;Chin-Laung Lei;Sy-Yen Kuo | en |
| dc.subject.keyword | 階層式樹結構,蒙地卡羅樹搜尋法,模擬退火法,整數規劃法,樓層規劃, | zh_TW |
| dc.subject.keyword | Hierarchical tree structure,Monte Carlo Tree Search,Simulated Annealing,Integer Linear Programming,Floor Planning, | en |
| dc.relation.page | 64 | - |
| dc.identifier.doi | 10.6342/NTU202502839 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2025-08-06 | - |
| dc.contributor.author-college | 電機資訊學院 | - |
| dc.contributor.author-dept | 電機工程學系 | - |
| dc.date.embargo-lift | N/A | - |
| 顯示於系所單位: | 電機工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 未授權公開取用 | 2.5 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
