Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 材料科學與工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99059
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor顏鴻威zh_TW
dc.contributor.advisorHung-Wei Yenen
dc.contributor.author林廷熹zh_TW
dc.contributor.authorTing-Si Linen
dc.date.accessioned2025-08-21T16:13:50Z-
dc.date.available2025-08-22-
dc.date.copyright2025-08-21-
dc.date.issued2025-
dc.date.submitted2025-08-04-
dc.identifier.citation1. He, T., et al., Hydrogen carriers. Nature Reviews Materials, 2016. 1: p. 16059.
2. Jain, I.P., Hydrogen the fuel for 21st century. International Journal of Hydrogen Energy, 2009. 34(17): p. 7368-7378.
3. Singh, S., et al., Hydrogen: A sustainable fuel for future of the transport sector. Renewable and Sustainable Energy Reviews, 2015. 51: p. 623-633.
4. Felderhoff, M., et al., Hydrogen storage: the remaining scientific and technological challenges. Physical Chemistry Chemical Physics, 2007. 9(21).
5. Selvam, P., et al., Magnesium and magnesium alloy hydrides. International Journal of Hydrogen Energy, 1986. 11(3): p. 169-192.
6. Takeichi, N., et al., Hydrogen Absorption and Desorption Behavior of Magnesium Hydride: Incubation Period and Reaction Mechanism. MATERIALS TRANSACTIONS, 2014. 55(8): p. 1161-1167.
7. Zhou, C., Y. Peng, and Q. Zhang, Growth kinetics of MgH2 nanocrystallites prepared by ball milling. Journal of Materials Science & Technology, 2020. 50: p. 178-183.
8. Du, J., et al., Catalytic enhanced hydrogen storage properties of Mg-based alloy by the addition of reduced graphene oxide supported V2O3 nanocomposite. Journal of Alloys and Compounds, 2019. 802: p. 660-667.
9. Fu, Y., et al., Catalytic effect of MOF-derived transition metal catalyst FeCoS@C on hydrogen storage of magnesium. Journal of Materials Science & Technology, 2023. 138: p. 59-69.
10. Gao, H., et al., Effect of Few-Layer Ti3C2Tx Supported Nano-Ni via Self-Assembly Reduction on Hydrogen Storage Performance of MgH2. ACS Applied Materials & Interfaces, 2020. 12(42): p. 47684-47694.
11. Edalati, K., et al., Severe plastic deformation for producing superfunctional ultrafine-grained and heterostructured materials: An interdisciplinary review. Journal of Alloys and Compounds, 2024. 1002.
12. Gault, B., et al., Atom probe tomography. Nature Reviews Methods Primers, 2021. 1(1).
13. Abdin, Z., et al., Hydrogen as an energy vector. Renewable and Sustainable Energy Reviews, 2020. 120: p. 109620.
14. Handwerker, M., J. Wellnitz, and H. Marzbani, Comparison of Hydrogen Powertrains with the Battery Powered Electric Vehicle and Investigation of Small-Scale Local Hydrogen Production Using Renewable Energy. Hydrogen, 2021. 2(1): p. 76-100.
15. R, P., W. M, and G. C, A Review on Solid State Hydrogen Storage Material. Advances in Energy and Power, 2016. 4: p. 11-22.
16. Andersson, J. and S. Grönkvist, Large-scale storage of hydrogen. International Journal of Hydrogen Energy, 2019. 44(23): p. 11901-11919.
17. McCay, M.H. and S. Shafiee, 22 - Hydrogen: An Energy Carrier, in Future Energy (Third Edition), T.M. Letcher, Editor. 2020, Elsevier. p. 475-493.
18. Zhang, T., et al., Hydrogen liquefaction and storage: Recent progress and perspectives. Renewable and Sustainable Energy Reviews, 2023. 176: p. 113204.
19. Jiang, H.-L., et al., From Metal–Organic Framework to Nanoporous Carbon: Toward a Very High Surface Area and Hydrogen Uptake. Journal of the American Chemical Society, 2011. 133(31): p. 11854-11857.
20. Zhou, L., Y. Zhou, and Y. Sun, Enhanced storage of hydrogen at the temperature of liquid nitrogen. International Journal of Hydrogen Energy, 2004. 29(3): p. 319-322.
21. Usman, M.R., Hydrogen storage methods: Review and current status. Renewable and Sustainable Energy Reviews, 2022. 167: p. 112743.
22. Huang, Y., et al., Li- and Mg-based borohydrides for hydrogen storage and ionic conductor. Journal of Materials Science & Technology, 2023. 153: p. 181-204.
23. Malleswararao, K., P. Dutta, and S. Murthy S, Applications of metal hydride based thermal systems: A review. Applied Thermal Engineering, 2022. 215: p. 118816.
24. Shelyapina, M.G., Metal Hydrides for Energy Storage, in Handbook of Ecomaterials, L.M.T. Martínez, O.V. Kharissova, and B.I. Kharisov, Editors. 2019, Springer International Publishing: Cham. p. 775-810.
25. Chen, Z., et al., Perspectives and challenges of hydrogen storage in solid-state hydrides. Chinese Journal of Chemical Engineering, 2021. 29: p. 1-12.
26. Zhang, J., et al., The effects of crystalline defects on hydrogen absorption kinetics of catalyzed MgH2 at ambient conditions. Journal of Alloys and Compounds, 2022. 927: p. 167090.
27. Wang, C.S., et al., The hydriding kinetics of MlNi5—I. Development of the model. International Journal of Hydrogen Energy, 1996. 21(6): p. 471-478.
28. Turnbull, A., Hydrogen diffusion and trapping in metals, in Gaseous Hydrogen Embrittlement of Materials in Energy Technologies. 2012. p. 89-128.
29. Tien, H.-Y., et al., Effect of hydride nucleation rate on the hydrogen capacity of Mg. International Journal of Hydrogen Energy, 2009. 34(15): p. 6343-6349.
30. Karst, J., et al., Watching in situ the hydrogen diffusion dynamics in magnesium on the nanoscale. Science Advances, 2020. 6(19): p. eaaz0566.
31. Abd.Khalim Khafidz, N.Z., et al., The kinetics of lightweight solid-state hydrogen storage materials: A review. International Journal of Hydrogen Energy, 2016. 41(30): p. 13131-13151.
32. Dornheim, M., Thermodynamics of Metal Hydrides: Tailoring Reaction Enthalpies of Hydrogen Storage Materials, in Thermodynamics - Interaction Studies - Solids, Liquids and Gases, J.C. Moreno Piraján, Editor. 2011, IntechOpen: Rijeka.
33. Li, Q., et al., Thermodynamics and kinetics of hydriding and dehydriding reactions in Mg-based hydrogen storage materials. Journal of Magnesium and Alloys, 2021. 9(6): p. 1922-1941.
34. Sadhasivam, T., et al., Dimensional effects of nanostructured Mg/MgH2 for hydrogen storage applications: A review. Renewable and Sustainable Energy Reviews, 2017. 72: p. 523-534.
35. Klopčič, N., et al., A review on metal hydride materials for hydrogen storage. Journal of Energy Storage, 2023. 72: p. 108456.
36. Grill, A., et al., Long-term hydrogen storage in Mg and ZK60 after Severe Plastic Deformation. International Journal of Hydrogen Energy, 2015. 40(47): p. 17144-17152.
37. Paskevicius, M., D.A. Sheppard, and C.E. Buckley, Thermodynamic Changes in Mechanochemically Synthesized Magnesium Hydride Nanoparticles. Journal of the American Chemical Society, 2010. 132(14): p. 5077-5083.
38. Fernández, J.F. and C.R. Sánchez, Rate determining step in the absorption and desorption of hydrogen by magnesium. Journal of Alloys and Compounds, 2002. 340(1): p. 189-198.
39. Mackay, K.M., Hydrogen Compounds of the Metallic Elements. 1966: Spon.
40. Yartys, V.A., et al., Magnesium based materials for hydrogen based energy storage: Past, present and future. International Journal of Hydrogen Energy, 2019. 44(15): p. 7809-7859.
41. Modi, P. and F. Aguey-Zinsou, Room Temperature Metal Hydrides for Stationary and Heat Storage Applications: A Review. Frontiers in Energy Research, 2021. 9: p. 616115.
42. Shiga, T., et al., Phonon transport characteristics of α, β, and γ crystalline phases of magnesium hydride from first-principles-based anharmonic lattice dynamics. Materials Today Communications, 2024. 38: p. 108192.
43. Moser, D., et al., The pressure–temperature phase diagram of MgH2 and isotopic substitution. Journal of Physics: Condensed Matter, 2011. 23(30): p. 305403.
44. Shang, Y., et al., Mg-based materials for hydrogen storage. Journal of Magnesium and Alloys, 2021. 9(6): p. 1837-1860.
45. Kapinos, D., B. Augustyn, and M. Szymanek, METHODS OF INTRODUCING ALLOYING ELEMENTS INTO LIQUID MAGNESIUM. Metallurgy and Foundry Engineering, 2014. 40: p. 141.
46. Zou, J., et al., Microstructural and mechanical response of ZK60 magnesium alloy subjected to radial forging. Journal of Materials Science & Technology, 2021. 83: p. 228-238.
47. Skripnyuk, V.M., et al., The effect of ball milling and equal channel angular pressing on the hydrogen absorption/desorption properties of Mg–4.95 wt% Zn–0.71 wt% Zr (ZK60) alloy. Acta Materialia, 2004. 52(2): p. 405-414.
48. Shahzad, M. and L. Wagner, Microstructure development during extrusion in a wrought Mg–Zn–Zr alloy. Scripta Materialia, 2009. 60(7): p. 536-538.
49. Song, M.Y. and H.R. Park, A study on the reaction of Mg51Zn20 with hydrogen. International Journal of Hydrogen Energy, 1993. 18(8): p. 653-660.
50. Bowman, R., T. Udovic, and C. Jensen, Proceedings of the International Symposium on Metal-Hydrogen Systems, Fundamentals and Applications (MH2006) October 1-6, 2006, Lahaina, Maui Island, Hawaii, USA - Preface. Journal of Alloys and Compounds, 2007. 446: p. 1-2.
51. Deledda, S., B.C. Hauback, and H. Fjellvåg, H-sorption behaviour of mechanically activated Mg–Zn powders. Journal of Alloys and Compounds, 2007. 446-447: p. 173-177.
52. Webb, T.A., et al., In-situ neutron powder diffraction study of Mg–Zn alloys during hydrogen cycling. International Journal of Hydrogen Energy, 2015. 40(25): p. 8106-8109.
53. Qin, J., et al., Construction of Mg/Zr superlattice structure to achieve efficient hydrogen storage via atomic-scale interaction in Mg-Zr modulation films. Acta Materialia, 2024. 263: p. 119470.
54. Sun, M., et al., Effect of Zr on the microstructure, mechanical properties and corrosion resistance of Mg–10Gd–3Y magnesium alloy. Materials Science and Engineering: A, 2009. 523(1): p. 145-151.
55. Sha, G., et al., Hydrogen-induced decomposition of Zr-rich cores in an Mg−6Zn−0.6Zr−0.5Cu alloy. Acta Materialia, 2012. 60(15): p. 5615-5625.
56. Krystian, M., et al., Hydrogen storage properties of bulk nanostructured ZK60 Mg alloy processed by Equal Channel Angular Pressing. Journal of Alloys and Compounds, 2011. 509: p. S449-S455.
57. Okamoto, H., Mg-Zr (Magnesium-Zirconium). Journal of Phase Equilibria and Diffusion, 2007. 28(3): p. 305-306.
58. Asgarian, A., et al., Experimental and Computational Analysis of a Water Spray; Application to Molten Metal Atomization. 2018.
59. Xie, X., et al., Recent advances in magnesium-based hydrogen storage materials with multiple catalysts. International Journal of Hydrogen Energy, 2019. 44(21): p. 10694-10712.
60. de Jongh, P.E. and P. Adelhelm, Nanosizing and Nanoconfinement: New Strategies Towards Meeting Hydrogen Storage Goals. ChemSusChem, 2010. 3(12): p. 1332-1348.
61. Kumar, S., et al., Hydrogen Flux through Size Selected Pd Nanoparticles into Underlying Mg Nanofilms. Advanced Energy Materials, 2017. 8(4).
62. Milanese, C., et al., Hydrogen storage in magnesium–metal mixtures: Reversibility, kinetic aspects and phase analysis. Journal of Alloys and Compounds, 2008. 465(1): p. 396-405.
63. Zaluska, A., L. Zaluski, and J.O. Ström–Olsen, Nanocrystalline magnesium for hydrogen storage. Journal of Alloys and Compounds, 1999. 288(1): p. 217-225.
64. Sadhasivam, T., et al., Effects of nano size mischmetal and its oxide on improving the hydrogen sorption behaviour of MgH2. International Journal of Hydrogen Energy, 2013. 38(18): p. 7353-7362.
65. Zhou, C., et al., Roles of Ti-Based Catalysts on Magnesium Hydride and Its Hydrogen Storage Properties. Inorganics, 2021. 9(5): p. 36.
66. Zolriasatein, A., et al., Comparative study of SPEX and planetary milling methods for the fabrication of complex metallic alloy nanoparticles. Micro & Nano Letters, 2018. 13(4): p. 448-451.
67. Abbas, A., et al., Effects of ball milling and additives (activated carbon and copper) on hydrogen absorption characteristics of ZK60 alloy. Materials Chemistry and Physics, 2021. 271: p. 124950.
68. Ruihan, L., et al., Effect of ball-milling time on hydrogen storage properties of NdMg12-Ni alloy. International Journal of Hydrogen Energy, 2025. 98: p. 1262-1274.
69. Shang, C.X. and Z.X. Guo, Effect of carbon on hydrogen desorption and absorption of mechanically milled MgH2. Journal of Power Sources, 2004. 129(1): p. 73-80.
70. Kecik, D. and M.K. Aydinol, Density functional and dynamics study of the dissociative adsorption of hydrogen on Mg (0001) surface. Surface Science, 2009. 603(2): p. 304-310.
71. Lu, C., et al., Enhanced hydrogen sorption properties of uniformly dispersed Pd-decorated three-dimensional (3D) Mg@Pd architecture. International Journal of Hydrogen Energy, 2024. 50: p. 979-989.
72. Meyer, M. and L. Mendoza-Zélis, Mechanically alloyed Mg–Ni–Ti and Mg–Fe–Ti powders as hydrogen storage materials. International Journal of Hydrogen Energy, 2012. 37(19): p. 14864-14869.
73. Liu, T., et al., Synthesis and hydrogen storage properties of ultrafine Mg–Zn particles. International Journal of Hydrogen Energy, 2011. 36(5): p. 3515-3520.
74. Liang, G., et al., Catalytic effect of transition metals on hydrogen sorption in nanocrystalline ball milled MgH2–Tm (Tm=Ti, V, Mn, Fe and Ni) systems. Journal of Alloys and Compounds, 1999. 292(1): p. 247-252.
75. Huot, J., et al., Investigation of dehydrogenation mechanism of MgH2–Nb nanocomposites. Journal of Alloys and Compounds, 2003. 348(1): p. 319-324.
76. Schimmel, H.G., et al., Hydrogen Cycling of Niobium and Vanadium Catalyzed Nanostructured Magnesium. Journal of the American Chemical Society, 2005. 127(41): p. 14348-14354.
77. Cui, J., et al., Mg–TM (TM: Ti, Nb, V, Co, Mo or Ni) core–shell like nanostructures: synthesis, hydrogen storage performance and catalytic mechanism. J. Mater. Chem. A, 2014. 2(25): p. 9645-9655.
78. Révész, Á. and M. Gajdics, Improved H-Storage Performance of Novel Mg-Based Nanocomposites Prepared by High-Energy Ball Milling: A Review. Energies, 2021. 14(19): p. 6400.
79. Shang, C.X., et al., Mechanical alloying and electronic simulations of (MgH2+M) systems (M=Al, Ti, Fe, Ni, Cu and Nb) for hydrogen storage. International Journal of Hydrogen Energy, 2004. 29(1): p. 73-80.
80. Xu, Y., et al., Transition metal-engineered magnesium-based materials for advanced hydrogen storage: From multifaceted mechanisms to state-of-the-art systems. Journal of Environmental Chemical Engineering, 2025. 13(1): p. 115109.
81. Callini, E., et al., Hydrogen sorption in Pd-decorated Mg–MgO core-shell nanoparticles. Applied Physics Letters, 2009. 94(22).
82. Pundt, A. and R. Kirchheim, HYDROGEN IN METALS: Microstructural Aspects. Annual Review of Materials Research, 2006. 36(1): p. 555-608.
83. Gemma, R., et al., Chemical characterization of Mg0.25Mn0.75-H(D) nanocomposites by Atom Probe Tomography (APT). Journal of Alloys and Compounds, 2022. 896.
84. Nivedhitha, K.S., et al., Graphene enhanced Mg–Ni–Ti nanocomposites for hydrogen storage application. International Journal of Hydrogen Energy, 2025. 102: p. 972-979.
85. Feng, H., et al., Influence of adding graphene on the hydrogen storage thermodynamics and kinetics of as-milled CeMg12–Ni alloy. International Journal of Hydrogen Energy, 2023. 48(35): p. 13213-13226.
86. Huajian, W., et al., Catalytic effect of graphene on the hydrogen storage properties of Mg-Li alloy. Materials Chemistry and Physics, 2018. 207: p. 221-225.
87. Han, Z., et al., Balanced Fracturing and Cold-welding of Magnesium during Ball Milling Assisted by Carbon Coating: Experimental and Molecular Dynamic Simulation. Journal of Wuhan University of Technology-Mater. Sci. Ed., 2024.39(4): p. 895-903.
88. Liu, G., et al., Solid-state synthesis of amorphous TiB2 nanoparticles on graphene nanosheets with enhanced catalytic dehydrogenation of MgH2. International Journal of Hydrogen Energy, 2014. 39(8): p. 3822-3829.
89. Li, M., et al., Hydrogen spillover as a promising strategy for boosting heterogeneous catalysis and hydrogen storage. Chemical Engineering Journal, 2023. 471: p. 144691.
90. Okamoto, H., Mg-Pd (Magnesium-Palladium). Journal of Phase Equilibria and Diffusion, 2010. 31(4): p. 407-408.
91. Xie, W., et al., Role of nano in catalysis: Palladium catalyzed hydrogen desorption from nanosized magnesium hydride. Nano Energy, 2013. 2(5): p. 742-748.
92. Melmed, A.J., Recollections of Erwin Müller's laboratory: the development of FIM (1951–1956). Applied Surface Science, 1996. 94-95: p. 17-25.
93. Miller, M.K. and R.G. Forbes, Atom probe tomography. Materials Characterization, 2009. 60(6): p. 461-469.
94. Larson, D.J., et al., Local electrode atom probe tomography. 2013 ed. 2013, New York, NY: Springer. 318.
95. Kellogg, G.L. and T.T. Tsong, Pulsed‐laser atom‐probe field‐ion microscopy. Journal of Applied Physics, 1980. 51(2): p. 1184-1193.
96. Science, E.E.M. Analytical techniques overview chart. 2023; Available from: https://www.eag.com/techniques/.
97. Mouton, I., et al., Quantification Challenges for Atom Probe Tomography of Hydrogen and Deuterium in Zircaloy-4. Microscopy and Microanalysis, 2019. 25(2): p. 481-488.
98. Sundell, G., M. Thuvander, and H.O. Andrén, Hydrogen analysis in APT: Methods to control adsorption and dissociation of H2. Ultramicroscopy, 2013. 132: p. 285-289.
99. Gemma, R., et al., APT analyses of deuterium-loaded Fe/V multi-layered films. Ultramicroscopy, 2009. 109(5): p. 631-636.
100. Kesten, P., et al., H- and D distribution in metallic multilayers studied by 3-dimensional atom probe analysis and secondary ion mass spectrometry. Journal of Alloys and Compounds, 2002. 330-332: p. 225-228.
101. Oh-ishi, K., et al., Effect of laser power and specimen temperature on atom probe analyses of magnesium alloys. Ultramicroscopy, 2011. 111(6): p. 715-718.
102. Cerezo, A., G.D.W. Smith, and P.H. Clifton, Measurement of temperature rises in the femtosecond laser pulsed three-dimensional atom probe. Applied Physics Letters, 2006. 88(15).
103. McCarroll, I.E., et al., The effect of hydrogen on the early stages of oxidation of a magnesium alloy. Corrosion Science, 2020. 165: p. 108391.
104. Lin, Y.-C., et al., Response of Hydrogen Desorption and Hydrogen Embrittlement to Precipitation of Nanometer-Sized Copper in Tempered Martensitic Low-Carbon Steel. JOM, 2019. 71(4): p. 1349-1356.
105. Bassim, N., K. Scott, and L.A. Giannuzzi, Recent advances in focused ion beam technology and applications. MRS Bulletin, 2014. 39(4): p. 317-325.
106. Lu, Y., et al., Destabilizing the Dehydrogenation Thermodynamics of Magnesium Hydride by Utilizing the Immiscibility of Mn with Mg. Inorganic Chemistry, 2019. 58(21): p. 14600-14607.
107. Wang, Y.-S., Study on microstructure and property of ZK60 hydrogen storage alloy manufactured from atomized powder. 2022, National Taiwan University: International Institute of Applied Materials Engineering.
108. Neuß, D., et al., High-resolution chemical and structural characterization of the native oxide scale on a Mg-based alloy. Corrosion Science, 2024. 227: p. 111776.
109. Brady, M.P., et al., Rapid Diffusion and Nanosegregation of Hydrogen in Magnesium Alloys from Exposure to Water. ACS Applied Materials & Interfaces, 2017. 9(43): p. 38125-38134.
110. Baran, A. and M. Polański, Magnesium-Based Materials for Hydrogen Storage—A Scope Review. Materials, 2020. 13(18): p. 3993.
111. Čermák, J. and L. Král, Hydrogen diffusion in Mg–H and Mg–Ni–H alloys. Acta Materialia, 2008. 56(12): p. 2677-2686.
112. Uchida, H.T., et al., Absorption kinetics and hydride formation in magnesium films: Effect of driving force revisited. Acta Materialia, 2015. 85: p. 279-289.
113. Bruzzone, G., et al., Hydrogen storage in Mg51Zn20. International Journal of Hydrogen Energy, 1983. 8(6): p. 459-461.
114. Lyu, J., V. Kudiiarov, and A. Lider Experimentally Observed Nucleation and Growth Behavior of Mg/MgH2 during De/Hydrogenation of MgH2/Mg: A Review. Materials, 2022. 15, DOI: 10.3390/ma15228004.
115. Nishimura, C., M. Komaki, and M. Amano, Hydrogen permeation through magnesium. Journal of Alloys and Compounds, 1999. 293-295: p. 329-333.
116. Hamm, M., et al., In situ observation of hydride nucleation and selective growth in magnesium thin-films with environmental transmission electron microscopy. International Journal of Hydrogen Energy, 2019. 44(60): p. 32112-32123.
117. Mueller, J.J., et al., Accelerated Ferrite-to-Austenite Transformation During Intercritical Annealing of Medium-Manganese Steels Due to Cold-Rolling. Metals, 2019. 9(9): p. 926.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99059-
dc.description.abstract這份研究利用原子探針斷層掃描技術(Atom Probe Tomography, APT)探討ZK60鎂合金系統中的氫吸收行為,特別聚焦於原子尺度下界面動力學與催化增效的影響。ZK60合金的基體為鎂(Mg),其中包含約6 wt.%的鋅(Zn)與0.5 wt.%的鋯(Zr)。鋅可提供固溶強化作用,並可能形成影響氫動力學的金屬間化合物;而鋯則作為晶粒細化劑。儘管ZK60因其優異的強度與耐腐蝕性廣泛應用於結構材料領域,但其作為氫儲存材料的潛力仍少有探討,特別是在原子氫交互機制方面。
為探究這些效應,本研究將ZK60製成霧化粉末(Atomized Powder, AP),該製程相較於傳統切削具有顯著優勢,不僅時間效率高,且能有效控制顆粒大小與化學性質。霧化粉末呈現均勻球形結構,晶粒尺寸達到次微米等級。
此霧化ZK60粉末進一步摻入5 wt.%石墨烯與0.5 wt.%鈀(Pd),兩者皆為提升氫吸收動力學的催化劑,其中Pd亦被此研究證實能透過固溶效應促進氫化物相的生成。混合後於氬氣氛下進行機械式球磨,引入差排(dislocation)與晶界(grain boundary)等結構缺陷,這些缺陷提供氫擴散路徑並成為氫化物成核位置。考量APT分析中氫的質譜峰會與背景殘留氫重疊,實驗選用氘氣(D2)作為充氣氣體以提高鑑別度。
樣品製備方面,使用聚焦離子束(Focused Ion Beam, FIB)技術進行局部納米尺度製程,經過拔取(lift-out)與環狀研磨(annular milling)後製得針狀樣品,並謹慎控制損傷以避免裂縫或孔隙產生。
APT的質荷比譜圖顯示明確的氘相關訊號,包括D⁺、HD⁺與MgD2⁺,證實材料成功吸氘。此外,APT重建出的原子分佈顯示出氫化物形成與界面行為的關鍵特徵。在25%與50%充氘樣品中均可觀察到氘富(deuterium-rich)區與鎂基(magnesium-based)區域的共存,且氘濃度在界面處出現明顯下降,支持「持續移動界面理論(continuously moving boundary)」(一種描述氫化物成長時相界面遷移行為的動力學模型)。
此研究首次在ZK60系統中,以APT直接觀察氫動力學行為於納米尺度下的表現。APT能夠定量解析局部化學組成並辨識微觀結構特徵,提供對於複雜鎂合金氫儲存機制前所未有的深入理解。
zh_TW
dc.description.abstractIn this study, we investigate hydrogen absorption behavior in the ZK60 magnesium alloy system using Atom Probe Tomography (APT), with a focus on the influence of interface dynamics and catalytic enhancement at the atomic scale. ZK60 alloy comprises approximately 6 wt.% Zn and 0.5 wt.% Zr in a magnesium matrix. Zinc contributes to solid solution strengthening and can form intermetallic phases that may alter hydrogen kinetics. Zirconium serves as grain refiner. While ZK60 is widely applied in structural applications for its superior strength and corrosion resistance, its potential as a hydrogen storage material remains relatively unexplored, particularly in terms of atomic hydrogen interaction mechanisms.
To investigate these effects, ZK60 alloy was processed as atomized power (AP), which provides significant advantages over conventional cutting and milling methods. The atomized powder exhibits uniform spherical morphology with sub-micron grain size and allows for precise control over particle size distribution and chemical properties in a less time-consuming process.
The atomized ZK60 powders were further modified with 5 wt.% graphene and 0.5 wt.% palladium (Pd), both of which serve as catalysts to enhance hydrogen uptake kinetics, while Pd is also proved to enhance hydride phase formation via solid solution effect. The mixture was subjected to mechanical ball milling under an argon atmosphere, introducing structural defects such as dislocations and grain boundaries. These defects act as diffusion pathways and nucleation sites for hydride formation. Deuterium (D2) gas was used for charging instead of H2 to prevent confusion in APT, owing to overlapping mass peaks from residual hydrogen contamination.
To prepare site-specific nanoscale specimens, Focused Ion Beam (FIB) techniques were employed. FIB allowed for the lift-out and annular milling of needle-shaped samples suitable for APT, with attention paid to minimizing damage and avoiding internal cracks or porosity.
The mass-to-charge spectra revealed clear signatures of deuterium-related species, including D⁺, HD⁺, and MgD2⁺, confirming successful absorption in the material. Additionally, atomic distributions reconstructed from APT data highlighted key features of hydride formation and interface behavior. In both 25% and 50% loaded samples, deuterium-rich zones were identified alongside magnesium-rich matrix regions. Notably, the deuterium concentration sharply decreased at interfaces, supporting the continuously moving boundary theory, a kinetic model describing phase front migration during hydride growth.
The application of APT in this context provides the first direct, nanoscale observation of hydrogen kinetics in a ZK60-based system. The ability to quantitatively resolve local chemical compositions and identify microstructural features offers unprecedented insight into the mechanisms governing hydrogen storage in complicated Mg alloys.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-21T16:13:50Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-08-21T16:13:50Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsContent
口試委員審定書.................................................................................................................. i
誌謝..................................................................................................................................... ii
中文摘要............................................................................................................................ iii
Abstract ............................................................................................................................... v
Content .............................................................................................................................. vii
List of figures ...................................................................................................................... x
List of tables ..................................................................................................................... xiv
Chapter 1 Introduction ........................................................................................................ 1
Chapter 2 Literature review ................................................................................................ 3
2.1 Overview of hydrogen energy............................................................................... 3
2.1.1 Hydrogen fuel ............................................................................................ 3
2.1.2 Hydrogen storage ....................................................................................... 5
2.2 Metal hydride and magnesium hydride as hydrogen storage alloy ....................... 7
2.2.1 Metal hydride ............................................................................................. 7
2.2.2 Mechanism and Kinetics of metal hydride formation...............................11
2.2.3 Thermodynamics of metal hydrides ......................................................... 15
2.2.4 Fundamental properties of MgH2............................................................. 16
2.3 ZK60 Alloy ......................................................................................................... 20
2.3.1 ZK60 as hydrogen storage material ......................................................... 20
2.3.2 Atomization process of ZK60 .................................................................. 23
2.4 Strategies to improve storage capacity ............................................................... 25
2.4.1 Energy barriers of the formation process ................................................. 25
2.4.2 High energy ball-milling .......................................................................... 27
2.4.3 Catalytic mechanisms for hydrogen storage in MgH2 ............................. 30
2.5 Atom probe tomography (APT) .......................................................................... 35
2.5.1 Overview .................................................................................................. 35
2.5.2 Potential challenges in APT experiment .................................................. 38
Chapter 3 Experimental procedure ................................................................................... 40
3.1 Experimental workflow ...................................................................................... 40
3.2 Hydrogen storage material .................................................................................. 41
3.2.1 Ball milling .............................................................................................. 41
3.2.2 Heat treatment .......................................................................................... 42
3.2.3 TDA ......................................................................................................... 45
3.3 APT related instruments ...................................................................................... 46
3.3.1 Focus ion beam ........................................................................................ 46
3.3.2 Atom probe tomography experiments ...................................................... 49
Chapter 4 Results and Discussion ..................................................................................... 51
4.1 Morphology and Microstructure ......................................................................... 51
4.1.1 Morphology evolution ............................................................................. 51
4.1.2 Cross section ............................................................................................ 53
4.2 Storage kinetics of MgD2 .................................................................................... 57
4.2.1 TDA verification ...................................................................................... 57
4.2.2 Absorption curve ...................................................................................... 59
4.3 Results of Atom Probe Tomography ................................................................... 61
4.3.1 Mass spectrum analysis............................................................................ 61
4.3.2 The 25% loaded sample ........................................................................... 66
4.3.3 The 50% loaded sample ........................................................................... 71
4.3.4 Special discovery ..................................................................................... 75
4.4 Discussion ........................................................................................................... 81
4.4.1 Solid solution behaviors ........................................................................... 81
4.4.2 Interface properties .................................................................................. 85
Chapter 5 Conclusion ........................................................................................................ 88
Chapter 6 Future work ...................................................................................................... 89
Reference .......................................................................................................................... 90
-
dc.language.isoen-
dc.subject原子針尖斷層影像zh_TW
dc.subject儲氫合金zh_TW
dc.subject鎂合金zh_TW
dc.subjectHydrogen Storageen
dc.subjectZK60en
dc.subjectAtom Probe Tomographyen
dc.subjectMagnesiumen
dc.titleZK60基儲氫合金之原子針尖斷層影像分析研究zh_TW
dc.titleAtom probe study on ZK60-based hydrogen storage alloyen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee林昆霖;陳政營;柯富祥zh_TW
dc.contributor.oralexamcommitteeKun-Lin Lin;Cheng-Ying Chen;Fu-Hsiang Koen
dc.subject.keyword原子針尖斷層影像,儲氫合金,鎂合金,zh_TW
dc.subject.keywordAtom Probe Tomography,Hydrogen Storage,ZK60,Magnesium,en
dc.relation.page96-
dc.identifier.doi10.6342/NTU202503169-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2025-08-06-
dc.contributor.author-college工學院-
dc.contributor.author-dept材料科學與工程學系-
dc.date.embargo-lift2030-07-31-
顯示於系所單位:材料科學與工程學系

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
  未授權公開取用
8.59 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved