Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生化科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99054
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張茂山zh_TW
dc.contributor.advisorMau-Sun Changen
dc.contributor.author史庭瑋zh_TW
dc.contributor.authorTing-Wei Shihen
dc.date.accessioned2025-08-21T16:12:44Z-
dc.date.available2025-08-22-
dc.date.copyright2025-08-21-
dc.date.issued2025-
dc.date.submitted2025-08-02-
dc.identifier.citationReferences
1 Siegel, R., Desantis, C. & Jemal, A. Colorectal cancer statistics, 2014. CA Cancer J Clin 64, 104-117, doi:10.3322/caac.21220 (2014).
2 JE, I. J., Vermeulen, L., Meijer, G. A. & Dekker, E. Serrated neoplasia-role in colorectal carcinogenesis and clinical implications. Nat Rev Gastroenterol Hepatol 12, 401-409, doi:10.1038/nrgastro.2015.73 (2015).
3 Li, J., Pan, J., Wang, L., Ji, G. & Dang, Y. Colorectal Cancer: Pathogenesis and Targeted Therapy. MedComm (2020) 6, e70127, doi:10.1002/mco2.70127 (2025).
4 Brannon, A. R. et al. Comparative sequencing analysis reveals high genomic concordance between matched primary and metastatic colorectal cancer lesions. Genome Biol 15, 454, doi:10.1186/s13059-014-0454-7 (2014).
5 Comprehensive molecular characterization of human colon and rectal cancer. Nature 487, 330-337, doi:10.1038/nature11252 (2012).
6 Clevers, H. & Nusse, R. Wnt/β-catenin signaling and disease. Cell 149, 1192-1205, doi:10.1016/j.cell.2012.05.012 (2012).
7 McCormick, F. KRAS as a Therapeutic Target. Clin Cancer Res 21, 1797-1801, doi:10.1158/1078-0432.Ccr-14-2662 (2015).
8 Nakayama, M. & Oshima, M. Mutant p53 in colon cancer. J Mol Cell Biol 11, 267-276, doi:10.1093/jmcb/mjy075 (2019).
9 Itatani, Y., Kawada, K. & Sakai, Y. Transforming Growth Factor-β Signaling Pathway in Colorectal Cancer and Its Tumor Microenvironment. Int J Mol Sci 20, doi:10.3390/ijms20235822 (2019).
10 Bunz, F. et al. Requirement for p53 and p21 to sustain G2 arrest after DNA damage. Science 282, 1497-1501, doi:10.1126/science.282.5393.1497 (1998).
11 Datta, J. et al. Coaltered Ras/B-raf and TP53 Is Associated with Extremes of Survivorship and Distinct Patterns of Metastasis in Patients with Metastatic Colorectal Cancer. Clin Cancer Res 26, 1077-1085, doi:10.1158/1078-0432.Ccr-19-2390 (2020).
12 Chun, Y. S. et al. Deleterious Effect of RAS and Evolutionary High-risk TP53 Double Mutation in Colorectal Liver Metastases. Ann Surg 269, 917-923, doi:10.1097/sla.0000000000002450 (2019).
13 Dongre, A. & Weinberg, R. A. New insights into the mechanisms of epithelial-mesenchymal transition and implications for cancer. Nat Rev Mol Cell Biol 20, 69-84, doi:10.1038/s41580-018-0080-4 (2019).
14 Aiello, N. M. et al. EMT Subtype Influences Epithelial Plasticity and Mode of Cell Migration. Dev Cell 45, 681-695.e684, doi:10.1016/j.devcel.2018.05.027 (2018).
15 Huang, Y., Hong, W. & Wei, X. The molecular mechanisms and therapeutic strategies of EMT in tumor progression and metastasis. J Hematol Oncol 15, 129, doi:10.1186/s13045-022-01347-8 (2022).
16 Lamouille, S., Xu, J. & Derynck, R. Molecular mechanisms of epithelial-mesenchymal transition. Nat Rev Mol Cell Biol 15, 178-196, doi:10.1038/nrm3758 (2014).
17 Lambert, A. W. & Weinberg, R. A. Linking EMT programmes to normal and neoplastic epithelial stem cells. Nat Rev Cancer 21, 325-338, doi:10.1038/s41568-021-00332-6 (2021).
18 Shen, M. & Kang, Y. Role Reversal: A Pro-metastatic Function of E-Cadherin. Dev Cell 51, 417-419, doi:10.1016/j.devcel.2019.10.028 (2019).
19 Liu, H. et al. Interaction of lncRNA MIR100HG with hnRNPA2B1 facilitates m(6)A-dependent stabilization of TCF7L2 mRNA and colorectal cancer progression. Mol Cancer 21, 74, doi:10.1186/s12943-022-01555-3 (2022).
20 Bakir, B., Chiarella, A. M., Pitarresi, J. R. & Rustgi, A. K. EMT, MET, Plasticity, and Tumor Metastasis. Trends Cell Biol 30, 764-776, doi:10.1016/j.tcb.2020.07.003 (2020).
21 Lu, J., Kornmann, M. & Traub, B. Role of Epithelial to Mesenchymal Transition in Colorectal Cancer. Int J Mol Sci 24, doi:10.3390/ijms241914815 (2023).
22 Sun, L., Xing, J., Zhou, X., Song, X. & Gao, S. Wnt/β-catenin signalling, epithelial-mesenchymal transition and crosslink signalling in colorectal cancer cells. Biomed Pharmacother 175, 116685, doi:10.1016/j.biopha.2024.116685 (2024).
23 McCubrey, J. A. et al. Roles of GSK-3 and microRNAs on epithelial mesenchymal transition and cancer stem cells. Oncotarget 8, 14221-14250, doi:10.18632/oncotarget.13991 (2017).
24 Yang, X. et al. Wnt signaling through Snail1 and Zeb1 regulates bone metastasis in lung cancer. Am J Cancer Res 5, 748-755 (2015).
25 Saad, S., Stanners, S. R., Yong, R., Tang, O. & Pollock, C. A. Notch mediated epithelial to mesenchymal transformation is associated with increased expression of the Snail transcription factor. Int J Biochem Cell Biol 42, 1115-1122, doi:10.1016/j.biocel.2010.03.016 (2010).
26 Maharati, A. & Moghbeli, M. PI3K/AKT signaling pathway as a critical regulator of epithelial-mesenchymal transition in colorectal tumor cells. Cell Commun Signal 21, 201, doi:10.1186/s12964-023-01225-x (2023).
27 Saxena, K., Jolly, M. K. & Balamurugan, K. Hypoxia, partial EMT and collective migration: Emerging culprits in metastasis. Transl Oncol 13, 100845, doi:10.1016/j.tranon.2020.100845 (2020).
28 Haque, S. & Morris, J. C. Transforming growth factor-β: A therapeutic target for cancer. Hum Vaccin Immunother 13, 1741-1750, doi:10.1080/21645515.2017.1327107 (2017).
29 Yang, J. et al. Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis. Cell 117, 927-939, doi:10.1016/j.cell.2004.06.006 (2004).
30 Cano, A. et al. The transcription factor snail controls epithelial-mesenchymal transitions by repressing E-cadherin expression. Nat Cell Biol 2, 76-83, doi:10.1038/35000025 (2000).
31 Batlle, E. et al. The transcription factor snail is a repressor of E-cadherin gene expression in epithelial tumour cells. Nat Cell Biol 2, 84-89, doi:10.1038/35000034 (2000).
32 Comijn, J. et al. The two-handed E box binding zinc finger protein SIP1 downregulates E-cadherin and induces invasion. Mol Cell 7, 1267-1278, doi:10.1016/s1097-2765(01)00260-x (2001).
33 Eger, A. et al. DeltaEF1 is a transcriptional repressor of E-cadherin and regulates epithelial plasticity in breast cancer cells. Oncogene 24, 2375-2385, doi:10.1038/sj.onc.1208429 (2005).
34 Seo, J., Ha, J., Kang, E. & Cho, S. The role of epithelial-mesenchymal transition-regulating transcription factors in anti-cancer drug resistance. Arch Pharm Res 44, 281-292, doi:10.1007/s12272-021-01321-x (2021).
35 Tiwari, N. et al. Sox4 is a master regulator of epithelial-mesenchymal transition by controlling Ezh2 expression and epigenetic reprogramming. Cancer Cell 23, 768-783, doi:10.1016/j.ccr.2013.04.020 (2013).
36 Grimm, D. et al. The role of SOX family members in solid tumours and metastasis. Semin Cancer Biol 67, 122-153, doi:10.1016/j.semcancer.2019.03.004 (2020).
37 Moreno, C. S. SOX4: The unappreciated oncogene. Semin Cancer Biol 67, 57-64, doi:10.1016/j.semcancer.2019.08.027 (2020).
38 Li, L. & Li, W. Epithelial-mesenchymal transition in human cancer: comprehensive reprogramming of metabolism, epigenetics, and differentiation. Pharmacol Ther 150, 33-46, doi:10.1016/j.pharmthera.2015.01.004 (2015).
39 S, A., Parida, N. & Patnaik, S. SOX4 induces cytoskeleton remodeling and promotes cell motility via N-wasp/ARP2/3 pathway in colorectal cancer cells. Exp Cell Res 439, 114059, doi:10.1016/j.yexcr.2024.114059 (2024).
40 Parvani, J. G. & Schiemann, W. P. Sox4, EMT programs, and the metastatic progression of breast cancers: mastering the masters of EMT. Breast Cancer Res 15, R72, doi:10.1186/bcr3466 (2013).
41 Hanieh, H., Ahmed, E. A., Vishnubalaji, R. & Alajez, N. M. SOX4: Epigenetic regulation and role in tumorigenesis. Semin Cancer Biol 67, 91-104, doi:10.1016/j.semcancer.2019.06.022 (2020).
42 Mehta, G. A. et al. Amplification of SOX4 promotes PI3K/Akt signaling in human breast cancer. Breast Cancer Res Treat 162, 439-450, doi:10.1007/s10549-017-4139-2 (2017).
43 Zhou, C. L., Li, J. J. & Ji, P. Propofol Suppresses Esophageal Squamous Cell Carcinoma Cell Migration and Invasion by Down-Regulation of Sex-Determining Region Y-box 4 (SOX4). Med Sci Monit 23, 419-427, doi:10.12659/msm.899732 (2017).
44 Cheng, Q. et al. SOX4 promotes melanoma cell migration and invasion though the activation of the NF-κB signaling pathway. Int J Mol Med 40, 447-453, doi:10.3892/ijmm.2017.3030 (2017).
45 Ettahar, A. et al. Identification of PHRF1 as a tumor suppressor that promotes the TGF-β cytostatic program through selective release of TGIF-driven PML inactivation. Cell Rep 4, 530-541, doi:10.1016/j.celrep.2013.07.009 (2013).
46 Chang, C. F. et al. PHRF1 promotes genome integrity by modulating non-homologous end-joining. Cell Death Dis 6, e1716, doi:10.1038/cddis.2015.81 (2015).
47 Prunier, C. et al. Disruption of the PHRF1 Tumor Suppressor Network by PML-RARα Drives Acute Promyelocytic Leukemia Pathogenesis. Cell Rep 10, 883-890, doi:10.1016/j.celrep.2015.01.024 (2015).
48 Wang, Y. et al. Overexpression of PHRF1 attenuates the proliferation and tumorigenicity of non-small cell lung cancer cells. Oncotarget 7, 64360-64370, doi:10.18632/oncotarget.11842 (2016).
49 Lee, J. Y., Fan, C. C., Chou, N. L., Lin, H. W. & Chang, M. S. PHRF1 promotes migration and invasion by modulating ZEB1 expression. PLoS One 15, e0236876, doi:10.1371/journal.pone.0236876 (2020).
50 Liu, W. J. et al. p62 links the autophagy pathway and the ubiqutin-proteasome system upon ubiquitinated protein degradation. Cell Mol Biol Lett 21, 29, doi:10.1186/s11658-016-0031-z (2016).
51 Schubert, U. et al. Rapid degradation of a large fraction of newly synthesized proteins by proteasomes. Nature 404, 770-774, doi:10.1038/35008096 (2000).
52 Çetin, G., Klafack, S., Studencka-Turski, M., Krüger, E. & Ebstein, F. The Ubiquitin-Proteasome System in Immune Cells. Biomolecules 11, doi:10.3390/biom11010060 (2021).
53 Cockram, P. E. et al. Ubiquitination in the regulation of inflammatory cell death and cancer. Cell Death Differ 28, 591-605, doi:10.1038/s41418-020-00708-5 (2021).
54 Cui, Z. et al. Role of protein degradation systems in colorectal cancer. Cell Death Discov 10, 141, doi:10.1038/s41420-023-01781-8 (2024).
55 Su, W. J. et al. RNF2/Ring1b negatively regulates p53 expression in selective cancer cell types to promote tumor development. Proc Natl Acad Sci U S A 110, 1720-1725, doi:10.1073/pnas.1211604110 (2013).
56 Wen, W. et al. Knockdown of RNF2 induces apoptosis by regulating MDM2 and p53 stability. Oncogene 33, 421-428, doi:10.1038/onc.2012.605 (2014).
57 Li, H. et al. Fbxw7 regulates tumor apoptosis, growth arrest and the epithelial-to-mesenchymal transition in part through the RhoA signaling pathway in gastric cancer. Cancer Lett 370, 39-55, doi:10.1016/j.canlet.2015.10.006 (2016).
58 Yang, H. et al. FBXW7 suppresses epithelial-mesenchymal transition, stemness and metastatic potential of cholangiocarcinoma cells. Oncotarget 6, 6310-6325, doi:10.18632/oncotarget.3355 (2015).
59 Kizer, K. O. et al. A novel domain in Set2 mediates RNA polymerase II interaction and couples histone H3 K36 methylation with transcript elongation. Mol Cell Biol 25, 3305-3316, doi:10.1128/mcb.25.8.3305-3316.2005 (2005).
60 Rebehmed, J., Revy, P., Faure, G., de Villartay, J. P. & Callebaut, I. Expanding the SRI domain family: a common scaffold for binding the phosphorylated C-terminal domain of RNA polymerase II. FEBS Lett 588, 4431-4437, doi:10.1016/j.febslet.2014.10.014 (2014).
61 Taylor, P. N. et al. Erratum: Whole-genome sequence-based analysis of thyroid function. Nat Commun 6, 7172, doi:10.1038/ncomms8172 (2015).
62 Shih, T. W., Lee, L. J., Chang, H. C., Lin, H. W. & Chang, M. S. An important role of PHRF1 in dendritic architecture and memory formation by modulating TGF-β signaling. Sci Rep 10, 10857, doi:10.1038/s41598-020-67675-2 (2020).
63 Jung, B., Staudacher, J. J. & Beauchamp, D. Transforming Growth Factor β Superfamily Signaling in Development of Colorectal Cancer. Gastroenterology 152, 36-52, doi:10.1053/j.gastro.2016.10.015 (2017).
64 Lourenço, A. R. & Coffer, P. J. SOX4: Joining the Master Regulators of Epithelial-to-Mesenchymal Transition? Trends Cancer 3, 571-582, doi:10.1016/j.trecan.2017.06.002 (2017).
65 Vervoort, S. J. et al. SOX4 can redirect TGF-β-mediated SMAD3-transcriptional output in a context-dependent manner to promote tumorigenesis. Nucleic Acids Res 46, 9578-9590, doi:10.1093/nar/gky755 (2018).
66 Kuwahara, M. et al. The transcription factor Sox4 is a downstream target of signaling by the cytokine TGF-β and suppresses T(H)2 differentiation. Nat Immunol 13, 778-786, doi:10.1038/ni.2362 (2012).
67 Bagati, A. et al. Integrin αvβ6-TGFβ-SOX4 Pathway Drives Immune Evasion in Triple-Negative Breast Cancer. Cancer Cell 39, 54-67.e59, doi:10.1016/j.ccell.2020.12.001 (2021).
68 Li, L. et al. A TGF-β-MTA1-SOX4-EZH2 signaling axis drives epithelial-mesenchymal transition in tumor metastasis. Oncogene 39, 2125-2139, doi:10.1038/s41388-019-1132-8 (2020).
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99054-
dc.description.abstractPHRF1 (PHD and RING Finger Domains 1)是具有E3 ubiquitin ligase功能的核蛋白,透過其 N 端的 RING 結構域降解TGIF(TG 交互因子),並且在不同癌細胞中促進 TGF-β信號傳導。然而,在被活化的原致癌突變基因 Kras和被剔除的抑癌基因p53的遺傳背景下,PHRF1對細胞功能之影響尚不清楚。本研究透過CRISPR-Cas9技術,在大腸癌細胞HCT116-p53-/-(KrasG13D/p53-/-)中敲除PHRF1基因表達,觀察對HCT116-p53-/-PHRF1-/-細胞功能的變化和影響為何。與我們先前在肺癌A549(KrasG12S/p53wt)細胞中的結果不同,在 PHRF1 缺失的HCT116-p53-/-細胞中,我們發現SRY-box轉錄因子4 (SOX4)可能是關鍵的下游效應因子,其表現量下降與細胞的侵襲能力降低有關。根據次世代定序(Next-Generation Sequencing)結果顯示,SOX4對於調控HCT116-p53-/-PHRF1-/-細胞侵襲能力至關重要,研究發現PHRF1透過C端SRI結構域可誘導SOX4的表現並影響大腸癌細胞的移動能力,將SOX4重新導入HCT116-p53-/-PHRF1-/-細胞後,可以部分恢復細胞的侵襲能力。這些發現強調了PHRF1在結直腸癌HCT116-p53-/- 細胞中調控細胞侵襲的作用。綜上所述,這些結果揭示了PHRF1在結直腸癌腫瘤發生過程中的新功能,特別是在KrasG13D突變和p53缺失的遺傳背景下。我們證實了PHRF1透過其C端的SRI結構域,調控SOX4的表現量,來促進細胞的侵襲能力。為PHRF1在大腸癌惡性腫瘤的發展中,提供了一個新的觀點。zh_TW
dc.description.abstractPHRF1 (PHD and RING Finger Domains 1) functions as an E3 ubiquitin ligase that enhances TGF-β signaling through its N-terminal RING domain by targeting TGIF (TG-interacting factor) for degradation in different cancer cells. However, the effects of PHRF1 on cell motility in the context of activated oncogenic Kras and inactivated tumor suppressor p53 have yet to be clarified. Our study aims to investigate the cellular outcomes when PHRF1 was knocked out by using CRISPR-Cas9 gene editing in colorectal cancer HCT116-p53-/- (KrasG13D/p53-/-) cells. By analyzing the resulting gene expression profiles in HCT116-p53-/-PHRF1-/- cells, we found that SOX4 (SRY-box transcription factor 4) was potentially a key downstream effector, whose downregulation correlated with reduced invasive potential in these cells. According to next-generation sequencing analysis, PHRF1 is crucial for regulating cell invasion ability and SOX4 expression. Our evidence suggests that PHRF1 induces cellular motility by modulating the C-terminal SRI domain. Importantly, SOX4 reintroduction could partially restore the invasion ability in HCT116-p53-/-PHRF1-/- cells. These findings highlight the effects of PHRF1 in modulating cell invasion in colorectal cancer HCT116-p53-/- cells.
Collectively, these results uncover a novel function of PHRF1 in colorectal cancer tumorigenesis, particularly within the genetic context of KrasG13D mutation and p53 loss. Our findings demonstrate that PHRF1 promotes cellular invasion by modulating SOX4 expression through its C-terminal SRI domain, offering new mechanistic insights into its role in driving malignancy
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-21T16:12:44Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-08-21T16:12:44Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsContents
論文審定書 i
誌謝 ii
中文摘要 iii
Abstract iv
Figures and Index vii
Chapter 1. Introduction 1
1. Colorectal cancer (CRC) progression 1
2. Epithelial-to-mesenchymal transition (EMT) in CRC 3
3. SRY-box transcription factor 4 (SOX4) 5
4. PHD and RING Finger Domains 1 (PHRF1) 6
5. PHRF1 regulates tumor progression 10
Chapter 2. Materials and Methods 14
Chapter 3. Results 22
Chapter 4. Discussion 30
Figures and legends 34
Tables 49
References 53
-
dc.language.isoen-
dc.subject大腸癌zh_TW
dc.subject次世代定序 (NGS)zh_TW
dc.subjectPHRF1zh_TW
dc.subjectSRY-box轉錄因子4 (SOX4)zh_TW
dc.subjectNext-Generation Sequencing (NGS)en
dc.subjectSRY-box transcription factor 4 (SOX4)en
dc.subjectcolorectal cancer (CRC)en
dc.subjectPHRF1en
dc.title探討PHRF1誘導HCT116-p53-/-直腸癌細胞侵襲之功能zh_TW
dc.titleInvestigation of PHRF1-mediated invasive capacity in colorectal cancer HCT116-p53-/- cellsen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree博士-
dc.contributor.oralexamcommittee張瀞仁;蕭超隆;朱家瑩;鄭嘉雄zh_TW
dc.contributor.oralexamcommitteeChing-Jin Chang;Chiao-long Hsiao;Chia-Ying Chu;Chia-Hsiung Chengen
dc.subject.keyword大腸癌,次世代定序 (NGS),PHRF1,SRY-box轉錄因子4 (SOX4),zh_TW
dc.subject.keywordcolorectal cancer (CRC),Next-Generation Sequencing (NGS),PHRF1,SRY-box transcription factor 4 (SOX4),en
dc.relation.page63-
dc.identifier.doi10.6342/NTU202502603-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2025-08-06-
dc.contributor.author-college生命科學院-
dc.contributor.author-dept生化科學研究所-
dc.date.embargo-lift2025-08-22-
顯示於系所單位:生化科學研究所

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
2.15 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved