請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99049完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 卿建業 | zh_TW |
| dc.contributor.advisor | Jianye Ching | en |
| dc.contributor.author | 李晑 | zh_TW |
| dc.contributor.author | Xiang Li | en |
| dc.date.accessioned | 2025-08-21T16:11:34Z | - |
| dc.date.available | 2025-08-22 | - |
| dc.date.copyright | 2025-08-21 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-08-01 | - |
| dc.identifier.citation | Abramowitz, M. and Stegun, I. A. (1965). Handbook of Mathematical Functions: With Formulas, Graphs, and Mathematical Tables. Dover Publications, Inc., New York.
ASTM International (2011). Standard practice for classification of soils for engineering purposes (unified soil classification system) (ASTM D2487-11). ASTM International, West Conshohocken, PA, USA. Begemann, H. (1965). The friction jacket cone as an aid in determining the soil profile. Proceedings of the 6th ICSMFE, Montreal, Canada, 17-20. Bennett, M. J. and Tinsley III, J. (1995). Geotechnical Data from Surface and Subsurface Samples Outside of and within Liquefaction-Related Ground Failures Caused by the October 17, 1989, Loma Prieta Earthquake, Santa Cruz and Monterey Counties, California. Open-File Report 95-663, US Geological Survey, Menlo Park, California. Bray, J. D. and Sancio, R. B. (2006). Assessment of the liquefaction susceptibility of fine-grained soils. ASCE Journal of Geotechnical and Geoenvironmental Engineering, 132 (9), 1165-1177. Campanella, R. G., Gillespie, D., and Robertson, P. K. (1982). Pore pressures during cone penetration testing. Proceedings of 2nd European Symposium on Penetration Testings, Amsterdam. Ching, J. and Phoon, K. K. (2014). Correlations among some clay parameters—the multivariate distribution. Canadian Geotechnical Journal, 51 (6), 686-704. Ching, J. and Phoon, K. K. (2015). Constructing multivariate distributions for soil parameters. Risk and Reliability in Geotechnical Engineering, 3-76. Ching, J., Wu, S., and Phoon, K. K. (2021). Constructing quasi-site-specific multivariate probability distribution using hierarchical Bayesian model. ASCE Journal of Engineering Mechanics, 147 (10), 04021069. Chung, Y., Gelman, A., Rabe-Hesketh, S., Liu, J., and Dorie, V. (2015). Weakly informative prior for point estimation of covariance matrices in hierarchical models. Journal of Educational and Behavioral Statistics, 40 (2), 136-157. Douglas, B. J. and Olsen, R. S. (1981). Soil classification using electric cone penetrometer. Proceedings of Symposium on Cone Penetration Testing and Experience, St. Louis, Missouri, 209-227. Geman, S. and Geman, D. (1984). Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Transactions on pattern analysis and machine intelligence (6), 721-741. Huang, A. and Wand, M. P. (2013). Simple marginally noninformative prior distributions for covariance matrices. Bayesian Analysis, 8 (2), 439-452. Idriss, I. M. and Boulanger, R. W. (2008). Soil Liquefaction During Earthquakes. Earthquake Engineering Research Institute. James, A. T. (1964). Distributions of matrix variates and latent roots derived from normal samples. The Annals of Mathematical Statistics, 35 (2), 475-501. James, G., Witten, D., Hastie, T., and Tibshirani, R. (2013). An Introduction to Statistical Learning. Springer. Jefferies, M. G. and Davies, M. P. (1993). Use of CPTU to estimate equivalent SPT N 60. Geotechnical Testing Journal, 16 (4), 458-468. Jung, B.-C., Gardoni, P., and Biscontin, A. (2008). Probabilistic soil identification based on cone penetration tests. Géotechnique, 58 (7), 591-603. Kulhawy, F. H. and Mayne, P. W. (1990). Manual on Estimating Soil Properties for Foundation Design. Electric Power Research Inst., Palo Alto, California. Lengkeek, A. (2024). CPT based classification with focus on organic soils. Proceedings of 7th International Conference on Geotechnical and Geophysical Site Characterization, Barcelona, Spain. Lengkeek, H. J. (2022). CPT-based classification and correlations for organic soils. 4TU.ResearchData. https://doi.org/10.4121/19139651.v2. Leroueil, S. and Hight, D. (2003). Behaviour and properties of natural soils and soft rocks. Characterisation and engineering properties of natural soils, 1, 29-254. Lunne, T., Powell, J. J. M., and Robertson, P. K. (1997). Cone Penetration Testing in Geotechnical Practice. Taylor & Francis, UK. Mayne, P., Peuchen, J., and Bouwmeester, D. (2010). Soil unit weight estimation from CPTs. Proceedings of 2nd International Symposium on Cone Penetration Testing, Huntington Beach, CA, USA. Moss, R. E. S. (2003). CPT-Based Probabilistic Assessment of Seismic Soil Liquefaction Initiation. PhD Dissertation, University of California, Berkeley, USA. Phoon, K. K., Ching, J., and Shuku, T. (2022). Challenges in data-driven site characterization. Georisk: Assessment and Management of Risk for Engineered Systems and Geohazards, 16 (1), 114-126. Ricceri, G., Simonini, P., and Cola, S. (2002). Applicability of piezocone and dilatometer to characterize the soils of the Venice Lagoon. Geotechnical & Geological Engineering, 20, 89-121. Robertson, P. K. (1990). Soil classification using the cone penetration test. Canadian Geotechnical Journal, 27 (1), 151-158. Robertson, P. K. (2009). Interpretation of cone penetration tests—a unified approach. Canadian Geotechnical Journal, 46 (11), 1337-1355. Robertson, P. K. (2016). Cone penetration test (CPT)-based soil behaviour type (SBT) classification system—an update. Canadian Geotechnical Journal, 53 (12), 1910-1927. Robertson, P. K., Campanella, R. G., Gillespie, D., and Greig, J. (1986). Use of piezometer cone data. Proceedings of ASCE Specialty Conference In Situ’86: Use of In Situ Tests in Geotechnical Engineering, Blacksburg, Virginia, USA. Robertson, P. K. and Wride, C. (1998). Evaluating cyclic liquefaction potential using the cone penetration test. Canadian Geotechnical Journal, 35 (3), 442-459. Zhang, G., Robertson, P., and Brachman, R. W. (2002). Estimating liquefaction-induced ground settlements from CPT for level ground. Canadian Geotechnical Journal, 39 (5), 1168-1180. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99049 | - |
| dc.description.abstract | 現今常見的土壤分類系統為統一土壤分類系統 (Unified Soil Classification System, USCS)。然而在現地實務中,受限於經費與工期,往往僅能於特定深度土壤取樣分類,難以獲得連續的地層資訊。近年來,圓錐貫入試驗 (cone penetration test, CPT) 因具備高度重現性與近乎連續的量測能力,逐漸成為現地調查的主流手段。CPT的一項重要應用為土壤分類,其中又以Robertson (2009) 所提出的正規土壤行為類別 (normalized soil behavior type, SBTn) 最具代表性。該方法可實現沿深度方向的連續土壤分類,有效降低USCS因樣本稀少所帶來的不確定性。
在大地工程中,另一項不可忽視的挑戰為「場址獨特性」。SBTn方法是依據大量歷史資料迴歸所建構的通用模型,雖於多數場址中表現良好,然而在特定場址上可能因場址特性差異而降低其適用性。此外,場址特定資料通常相當有限,使得建立之場址特定模型常伴隨較高的統計不確定性。 為解決上述問題,本研究首先建立一套名為「CPT-USCS/8/4182」之資料庫,整合來自全球 506 個場址共 4182 筆CPT試驗與USCS土壤分類對應資料,作為後續模型訓練之基礎。此外,本研究提出一套改良之層級貝葉斯模型 (hierarchical Bayesian model, HBM) 架構,稱為USCS-HBM,用以處理CPT土壤分類問題,並學習資料庫中各場址的場址特徵。 USCS-HBM經由資料庫訓練後,能為任意目標場址產生對應的先驗模型,該模型可進一步融合目標場址的少量觀測資料進行更新,進而推估出準場址特定模型。透過本研究所提出之 USCS-HBM 架構,能有效處理CPT土壤分類中「場址獨特性」與「資料稀疏性」所帶來的挑戰,提升分類準確性與模型實務應用性。 | zh_TW |
| dc.description.abstract | The Unified Soil Classification System (USCS) is one of the most commonly used soil classification methods. However, in practice, due to budget and time limits, soil sampling is often done only at specific depths. In recent years, the cone penetration test (CPT) has become a popular site investigation method because of its high repeatability and nearly continuous measurements. One key application of CPT is soil classification, with the normalized soil behavior type (SBTn) (Robertson 2009) being widely used. This method allows continuous soil classification with depth and helps reduce the uncertainty of USCS caused by limited sampling.
A key challenge that should not be overlooked in geotechnical engineering is site-uniqueness. The SBTn method is a generic model constructed through regression analysis of extensive historical data. While it performs well in most global site, its applicability may be reduced at certain sites due to differences in site characteristics. Moreover, site-specific data are often limited, which introduces a higher degree of statistical uncertainty when developing site-specific models. To address these issues, this study develops a global database, CPT-USCS/8/4182, containing 4,182 CPT-USCS data pairs from 506 sites. In addition, this study proposes an improved hierarchical Bayesian model (HBM) framework, referred to as USCS-HBM, to address CPT-based soil classification and to learn site-specific characteristics from the database. The trained model can generate a prior for any target site and update it with sparse target-site data to produce a quasi-site-specific model. This approach improves CPT-based soil classification under conditions of site uniqueness and the practical challenge of sparse target-site data. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-21T16:11:34Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-08-21T16:11:34Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書 I
誌謝 II 摘要 III Abstract IV 目次 V 圖次 VII 表次 IX 第 1 章 緒論 1 1.1 研究動機與目的 1 1.2 研究方法 2 1.3 研究流程 3 1.4 本文架構 4 第 2 章 文獻回顧 5 2.1 土壤的基本介紹與分類系統 5 2.1.1 粒徑分析與分布 5 2.1.2 黏性土壤的參數 6 2.1.3 統一土壤分類系統 6 2.2 基於CPT的土壤分類系統 9 2.2.1 土壤行為 9 2.2.2 圓錐貫入試驗 (Cone penetration test, CPT) 10 2.2.3 正規土壤行為類別 (Normalized soil behavior type, SBTn) 12 2.3 層級貝葉斯模型 (Hierarchical Bayesian model, HBM) 15 2.3.1 HBM架構 17 2.3.2 學習階段-Gibbs採樣法 ( Gibbs Sampler ) 22 2.3.3 推論階段 25 第 3 章 資料庫建置 28 3.1 CPT-USCS/8/4182 28 3.1.1 資料類型 28 3.1.2 資料庫規模、分類與統計 29 3.1.3 參數與土壤類別的關聯性 30 3.2 CPT-USCS/3/2017 37 3.2.1 資料庫概要 37 3.2.2 資料特性與分類對應關係分析 37 第 4 章 USCS-HBM 41 4.1 USCS-HBM架構 41 4.2 學習階段 47 4.3 推論階段 50 4.4 學習階段成果 54 第 5 章 真實案例與交叉驗證 57 5.1 真實案例驗證 57 5.1.1 場址介紹 57 5.1.2 驗證方式 59 5.1.3 驗證結果 61 5.2 Leave-one-site-out 交叉驗證 73 第 6 章 結論與未來建議 76 6.1 結論 76 6.2 未來建議 76 參考文獻 78 附錄A 「CPT-USCS/8/4182」資料庫 82 資料庫參考文獻 118 附錄B 「CPT-USCS/8/4182」統計資訊 134 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 圓錐貫入系統 | zh_TW |
| dc.subject | 全球資料庫 | zh_TW |
| dc.subject | 層級貝葉斯模型 | zh_TW |
| dc.subject | 土壤分類 | zh_TW |
| dc.subject | 土壤行為類別 | zh_TW |
| dc.subject | soil classification | en |
| dc.subject | soil behavior type | en |
| dc.subject | cone penetration test | en |
| dc.subject | hierarchical Bayesian model | en |
| dc.subject | global database | en |
| dc.title | 基於層級貝葉斯模型之CPT土壤分類研究 | zh_TW |
| dc.title | CPT-Based Soil Classification Using Hierarchical Bayesian Model | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 林志平;王瑞斌 | zh_TW |
| dc.contributor.oralexamcommittee | Chih-Ping Lin;Jui-Pin Wang | en |
| dc.subject.keyword | 土壤分類,圓錐貫入系統,土壤行為類別,全球資料庫,層級貝葉斯模型, | zh_TW |
| dc.subject.keyword | soil classification,cone penetration test,soil behavior type,global database,hierarchical Bayesian model, | en |
| dc.relation.page | 138 | - |
| dc.identifier.doi | 10.6342/NTU202503005 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2025-08-06 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 土木工程學系 | - |
| dc.date.embargo-lift | 2025-08-22 | - |
| 顯示於系所單位: | 土木工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf | 7.86 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
