請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99047完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 黃奎隆 | zh_TW |
| dc.contributor.advisor | Kwei-Long Huang | en |
| dc.contributor.author | 劉芃均 | zh_TW |
| dc.contributor.author | Peng-Chun Liu | en |
| dc.date.accessioned | 2025-08-21T16:11:05Z | - |
| dc.date.available | 2025-08-22 | - |
| dc.date.copyright | 2025-08-21 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-08-01 | - |
| dc.identifier.citation | M. Garetti and M. Taisch. Sustainable manufacturing: trends and research challenges. Production Planning & Control, 23(2-3):83–104, 2012.
S. M. Johnson. Optimal two-and three-stage production schedules with setup times included. Naval research logistics quarterly, 1(1):61–68, 1954. Z.A.Lomnicki. A “branch-and-bound" algorithm for the exact solution of the three machine scheduling problem. Journal of the operational research society, 16(1):89-100, 1965. S. Ashour. A branch-and-bound algorithm for flow shop scheduling problems. AIIE Transactions, 2(2):172–176, 1970. H. G. Campbell, R. A. Dudek, and M. L. Smith. A heuristic algorithm for the n job, m machine sequencing problem. Management science, 16(10):B–630, 1970. W. J. Selen and D. D. Hott. A mixed-integer goal-programming formulation of the standard flow-shop scheduling problem. Journal of the Operational Research Society, 37(12):1121–1128, 1986. M. R. Garey, D. S. Johnson, and R. Sethi. The complexity of flowshop and jobshop scheduling. Mathematics of operations research, 1(2):117–129, 1976. O. Etiler, B. Toklu, M. Atak, and J. Wilson. A genetic algorithm for flow shop scheduling problems. Journal of the Operational Research Society, 55(8):830–835, 2004. A. R. Rahimi-Vahed and S. M. Mirghorbani. A multi-objective particle swarm for a flow shop scheduling problem. Journal of combinatorial optimization, 13:79–102, 2007. A. Janiak. General flow-shop scheduling with resource constraints. International Journal of Production Research, 26(6):1089–1103, 1988. C. N. Potts, D. B. Shmoys, and D. P. Williamson. Permutation vs. non-permutation flow shop schedules. Operations Research Letters, 10(5):281–284, 1991. V. A. Strusevich and C. M. Zwaneveld. On non-permutation solutions to some two machine flow shop scheduling problems. Zeitschrift für Operations Research, 39:305–319, 1994. C. Koulamas. A new constructive heuristic for the flowshop scheduling problem. European Journal of Operational Research, 105(1):66–71, 1998. M. Nawaz, E. E. Enscore Jr, and I. Ham. A heuristic algorithm for the m-machine, n-job flow-shop sequencing problem. Omega, 11(1):91–95, 1983. N. Christofides, R. Alvarez-Valdés, and J. M. Tamarit. Project scheduling with resource constraints: A branch and bound approach. European journal of operational research, 29(3):262–273, 1987. E. Cakici and S. J. Mason. Parallel machine scheduling subject to auxiliary resource constraints. Production Planning and Control, 18(3):217–225, 2007. R. L. Burdett, P. Corry, C. Eustace, and S. Smith. Scheduling pre-emptible tasks with flexible resourcing options and auxiliary resource requirements. Computers & Industrial Engineering, 151:106939, 2021. Z. Hanzálek and P. Šcha. Time symmetry of resource constrained project scheduling with general temporal constraints and take-give resources. Annals of Operations Research, 248(1):209–237, 2017. C.Gahm,F.Denz,M.Dirr,andA.Tuma. Energy-efficient scheduling in manufacturing companies: A review and research framework. European Journal of Operational Research, 248(3):744–757, 2016. M. Mashaei and B. Lennartson. Energy reduction in a pallet-constrained flow shop through on–off control of idle machines. IEEE Transactions on Automation Science and Engineering, 10(1):45–56, 2012. S. Zanoni, L. Bettoni, and C. H. Glock. Energy implications in a two-stage production system with controllable production rates. International Journal of Production Economics, 149:164–171, 2014. K.Fangand and B.M.T.Lin. Parallel-machine scheduling to minimize tardiness penalty and power cost. Computers & Industrial Engineering, 64(1):224–234, 2013. K. Fang, N. A. Uhan, F. Zhao, and J. W. Sutherland. Flow shop scheduling with peak power consumption constraints. Annals of Operations Research, 206:115–145, 2013. A. A. G. Bruzzone, D. Anghinolfi, M. Paolucci, and F. Tonelli. Energy-aware scheduling for improving manufacturing process sustainability: A mathematical model for flexible flow shops. CIRP annals, 61(1):459–462, 2012. Z. Sun and L. Li. Potential capability estimation for real time electricity demand response of sustainable manufacturing systems using markov decision process. Journal of Cleaner Production, 65:184–193, 2014. J. Kennedy and R. Eberhart. Particle swarm optimization. In Proceedings of ICNN’95-international conference on neural networks, volume 4, pages 1942–1948. IEEE, 1995. J. Liang and P. N. Suganthan. Dynamic multi-swarm particle swarm optimizer. In Proceedings 2005 IEEE Swarm Intelligence Symposium, 2005. SIS 2005., pages 124–129. IEEE, 2005. Y. Shi and R. Eberhart. A modified particle swarm optimizer. In 1998 IEEE international conference on evolutionary computation proceedings. IEEE world congress on computational intelligence (Cat. No. 98TH8360), pages 69–73. IEEE, 1998. B. Mohammadi-Ivatloo, M. Moradi-Dalvand, and A. Rabiee. Combined heat and power economic dispatch problem solution using particle swarm optimization with time varying acceleration coefficients. Electric Power Systems Research, 95:9–18, 2013. T. T. Ngo, A. Sadollah, and J. H. Kim. A cooperative particle swarm optimizer with stochastic movements for computationally expensive numerical optimization problems. Journal of Computational Science, 13:68–82, 2016. J. Jakubik, A. Binding, and S. Feuerriegel. Directed particle swarm optimization with gaussian-process-based function forecasting. European Journal of Operational Research, 295(1):157–169, 2021. Y. Xue, T. Tang, W.Pang, and A.X.Liu. Self-adaptive parameter and strategy based particle swarm optimization for large-scale feature selection problems with multiple classifiers. Applied Soft Computing, 88:106031, 2020. P. Cheng, Z. Xu, R. Li, and C. Shi. A hybrid taguchi particle swarm optimization algorithm for reactive power optimization of deep-water semi-submersible platforms with new energy sources. Energies, 15(13):4565, 2022. S. Sahoo, R. K. Dalei, S. K. Rath, and U. K. Sahu. Selection of pso parameters based on taguchi design-anova-ann methodology for missile gliding trajectory optimization. Cognitive Robotics, 3:158–172, 2023. M. Clerc and J. Kennedy. The particle swarm-explosion, stability, and convergence in a multidimensional complex space. IEEE transactions on Evolutionary Computation, 6(1):58–73, 2002. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99047 | - |
| dc.description.abstract | 隨著氣候變遷影響日益嚴重,如何在生產過程中有效降低能源消耗已成為一項重要課題。同時,加工過程中的能源系統穩定性亦不可忽視,特別是對能源消耗峰值的控制更是關鍵。此外,輔具資源限制在實際生產中相當常見,若在排程規劃時忽略此類限制,可能導致排程結果與實際運作出現顯著落差。因此,若能在排程過程中同時納入能源消耗與輔具資源的考量,將能使規劃結果更貼近現實,進而有效提升生產效率並降低能源浪費。
為因應上述挑戰,本研究開發一套粒子群演算法,並針對問題特性設計兩階段編碼機制:第一階段編碼代表工件的生產優先順序,第二階段則對應每個工件所搭配的輔具配置。此外,本研究亦提出結合多層感知器(Multilayer Perceptron, MLP)以最佳化粒子群演算法參數的方法,有效提升演算法的收斂表現。該方法亦具有良好的泛用性,可應用於其他需要參數調整的啟發式演算法中。 | zh_TW |
| dc.description.abstract | As the effects of climate change intensify, reducing energy consumption during production has become a critical challenge. Equally important is maintaining energy system stability throughout machining operations particularly by controlling peak demand. Moreover, auxiliary resource constraints are commonplace in real-world manufacturing; overlooking them during scheduling can create a wide gap between planned and actual shop-floor performance. By simultaneously accounting for energy use and auxiliary resource availability, scheduling decisions become more realistic, thereby boosting efficiency and curbing energy waste.
To tackle these issues, this study develops a particle swarm optimization (PSO) algorithm with a problem-specific two-stage encoding scheme: Stage 1 encodes the production priority of each job, while Stage 2 assigns the corresponding auxiliary resource to each job. We additionally integrate a multilayer perceptron (MLP) to automatically tune PSO parameters, greatly improving convergence. This tuning framework is generic and can be transferred to other heuristic algorithms that require parameter calibration. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-21T16:11:05Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-08-21T16:11:05Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 摘要i
Abstract ii 目次iii 圖次v 表次vii 第一章緒論1 1.1永續製造. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2輔具資源分配. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.3研究目的與架構. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 第二章文獻探討6 2.1流線型生產排程問題. . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.2資源限制排程問題. . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.3能源考量排程問題. . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.4粒子群演算法. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 第三章問題描述與混整數規劃模型12 3.1問題描述. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 3.2混整數規劃模型. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 第四章粒子群演算法20 4.1粒子群演算法. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 4.1.1粒子座標編碼設計和初始化. . . . . . . . . . . . . . . . . . . . 20 4.1.2座標與速度更新. . . . . . . . . . . . . . . . . . . . . . . . . . . 21 4.1.3解碼函式設計. . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 4.2參數最佳化. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 4.2.1模型架構. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 4.2.2模型訓練. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 第五章數值測試與分析29 5.1驗證參數最佳化. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 5.2粒子群演算法求解能力. . . . . . . . . . . . . . . . . . . . . . . . . 31 5.3實務案例求解與分析. . . . . . . . . . . . . . . . . . . . . . . . . . 34 5.3.1實務案例求解. . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 5.3.2能源峰值分析. . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 5.3.3目標式權重分析. . . . . . . . . . . . . . . . . . . . . . . . . . . 38 5.3.4輔具能源消耗分析. . . . . . . . . . . . . . . . . . . . . . . . . . 39 5.3.5工件與輔具對應關係分析. . . . . . . . . . . . . . . . . . . . . . 41 第六章結論44 6.1研究總結. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 6.2未來研究方向. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 參考文獻47 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 粒子群演算法 | zh_TW |
| dc.subject | 參數最佳化 | zh_TW |
| dc.subject | 混整數規劃 | zh_TW |
| dc.subject | 永續製造 | zh_TW |
| dc.subject | 流線型生產排程 | zh_TW |
| dc.subject | Sustainable Manufacturing | en |
| dc.subject | Particle Swarm Optimization | en |
| dc.subject | Parameter Optimization | en |
| dc.subject | Mixed Integer Programming | en |
| dc.subject | Flow Shop Scheduling | en |
| dc.title | 粒子群演算法結合機器學習參數優化於考量輔具能源消耗之流線型生產排程 | zh_TW |
| dc.title | Particle Swarm Optimization with Machine-Learning-Based Parameter Tuning for Flow Shop Scheduling Considering Auxiliary Resource Energy Consumption | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 洪英超;吳政翰 | zh_TW |
| dc.contributor.oralexamcommittee | Ying-Chao Hung;Gen-Han Wu | en |
| dc.subject.keyword | 粒子群演算法,參數最佳化,混整數規劃,永續製造,流線型生產排程, | zh_TW |
| dc.subject.keyword | Particle Swarm Optimization,Parameter Optimization,Mixed Integer Programming,Sustainable Manufacturing,Flow Shop Scheduling, | en |
| dc.relation.page | 50 | - |
| dc.identifier.doi | 10.6342/NTU202502981 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2025-08-05 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 工業工程學研究所 | - |
| dc.date.embargo-lift | 2030-07-30 | - |
| 顯示於系所單位: | 工業工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 此日期後於網路公開 2030-07-30 | 2.8 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
