Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電信工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99046
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林坤佑zh_TW
dc.contributor.advisorKun-You Linen
dc.contributor.author張承德zh_TW
dc.contributor.authorCheng-Te Changen
dc.date.accessioned2025-08-21T16:10:50Z-
dc.date.available2025-08-22-
dc.date.copyright2025-08-21-
dc.date.issued2025-
dc.date.submitted2025-08-04-
dc.identifier.citationH.-W. Choi, S. Choi, and C.-Y. Kim, "Ultralow-noise figure and high gain Ku-band bulk CMOS low-noise amplifier with large-size transistor," IEEE Microw. Wireless Compon. Lett., vol. 31, no. 1, pp. 60–63, Jan. 2021.
N. Peng and D. Zhao, "A Ku-band low-noise amplifier in 40-nm CMOS," in Proc. IEEE Int. Conf. Integr. Circuits, Technol. Appl. (ICTA), Chengdu, China, Nov. 2019, pp. 9–10.
T. Kanar and G. M. Rebeiz, "X- and K-band SiGe HBT LNAs with 1.2- and 2.2-dB mean noise figures," IEEE Trans. Microw. Theory Techn., vol. 62, no. 10, pp. 2381–2389, Oct. 2014.
H.-W. Choi, C.-Y. Kim, and S. Choi, "6.7–15.3 GHz, high-performance broadband low-noise amplifier with large transistor and two-stage broadband noise matching," IEEE Microw. Wireless Compon. Lett., vol. 31, no. 8, pp. 949–952, Aug. 2021.
J.-F. Chang and Y.-S. Lin, "3–9-GHz CMOS LNA using body floating and self-bias technique for sub-6-GHz 5G communications," IEEE Microw. Wireless Compon. Lett., vol. 31, no. 6, pp. 608–611, Jun. 2021.
P.-C. Huang, Z.-M. Tsai, K.-Y. Lin, and H. Wang, "A 17–35 GHz broadband, high efficiency PHEMT power amplifier using synthesized transformer matching technique," IEEE Trans. Microw. Theory Techn., vol. 60, no. 1, pp. 112–119, Jan. 2012.
S. Guo, T. Xi, P. Gui, D. Huang, Y. Fan, and M. Morgan, "A transformer feedback gm-boosting technique for gain improvement and noise reduction in mm-wave cascode LNAs," IEEE Trans. Microw. Theory Techn., vol. 64, no. 7, pp. 2080–2090, Jul. 2016.
G. Feng et al., "Pole-converging intrastage bandwidth extension technique for wideband amplifiers," IEEE J. Solid-State Circuits, vol. 52, no. 3, pp. 769–780, Mar. 2017.
D. Pan, Z. Duan, S. Chakraborty, L. Sun, and P. Gui, "A 60–90-GHz CMOS double-neutralized LNA technology with 6.3-dB NF and −10 dBm P1dB," IEEE Microw. Wireless Compon. Lett., vol. 29, no. 7, pp. 489–491, Jul. 2019.
M. Vigilante and P. Reynaert, "A 68.1-96.4 GHz variable-gain low-noise amplifier in 28nm CMOS," in Proc. IEEE Int. Solid-State Circuits Conf. (ISSCC), San Francisco, CA, USA, Feb. 2016, pp. 360–362.
M. Yaghoobi, M. Yavari, M. H. Kashani, H. Ghafoorifard, and S. Mirabbasi, "A 55–64-GHz low-power small-area LNA in 65-nm CMOS with 3.8-dB average NF and ~12.8-dB power gain," IEEE Microw. Wireless Compon. Lett., vol. 29, no. 2, pp. 128–130, Feb. 2019.
L. Wu, H. F. Leung, and H. C. Luong, "Design and analysis of CMOS LNAs with transformer feedback for wideband input matching and noise cancellation," IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 64, no. 6, pp. 1626–1635, Jun. 2017.
M. Khanpour, K. W. Tang, P. Garcia, and S. P. Voinigescu, "A wideband W-band receiver front-end in 65-nm CMOS," IEEE J. Solid-State Circuits, vol. 43, no. 8, pp. 1717–1730, Aug. 2008.
S. Piotrowicz et al., "Ultra compact X-band GaInP/GaAs HBT MMIC amplifiers: 11 W, 42% of PAE on 13 mm² and 8.7 W, 38% of PAE on 9 mm²," in Proc. IEEE MTT-S Int. Microw. Symp., San Francisco, CA, USA, Jun. 2006, pp. 1867–1870.
S. Hwang, J. Jeon, S. Bae, B. Yoon, S. Kang, and J. Kim, "A 5.15–7.125-GHz differential power amplifier with enhanced linearity of average power region using dynamic cross-coupled capacitor," IEEE Trans. Microw. Theory Techn., vol. 72, no. 1, pp. 575–588, Jan. 2024.
P. Asbeck, S. Alluri, J.-H. Li, and J.-T. Chung, "A monolithic X-band 32 dBm GaAs HBT power amplifier with efficient operation over a wide power supply range," in Proc. IEEE MTT-S Int. Microw. Symp., Washington, DC, USA, Jun. 2024, pp. 768–771.
J. Li, Z. Zhang, and G. Zhang, "A 5.15–6.425 GHz stagger-tuning neutralized power amplifier using a continuous-mode harmonically tuned network," IEEE Microw. Wireless Technol. Lett., vol. 33, no. 2, pp. 173–176, Feb. 2023.
S. Kang, M.-S. Jeon, and J. Kim, "Highly efficient 5.15- to 5.85-GHz neutralized HBT power amplifier for LTE applications," IEEE Microw. Wireless Compon. Lett., vol. 28, no. 3, pp. 254–256, Mar. 2018.
J.-T. Chung, K.-L. Hsu, C.-T. Chang, K.-Y. Lin, C.-H. Wu, J.-H. Li, S.-Y. Tu, S.-H. Tsai, and C.-K. Lin, "A high-efficiency GaAs HBT power amplifier for 6G FR3 applications," in Proc. IEEE MTT-S Int. Microw. Symp. (IMS), San Francisco, CA, USA, Jun. 2025, pp. 564–567.
Z. Li, J. Huang, J. Zhang, S. Jia, H. Sun, G. Li, and G. Wen, "Design of power amplifiers for BDS-3 terminal based on InGaP/GaAs HBT MMIC and LGA technology," Micromachines, vol. 14, no. 11, Art. no. 1995, Nov. 2023.
Y. Wei, "Wide Bandwidth Power Heterojunction Bipolar Transistors and Amplifiers," Ph.D. dissertation, Dept. of Electrical and Computer Engineering, University of California, Santa Barbara, CA, USA, 2003.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99046-
dc.description.abstract本論文主要可分為三個部分。
第一部分介紹一款採用 TSMC 90 nm 製程設計的第七代無線網路寬頻低雜訊放大器。在接收系統中,低雜訊放大器需兼具低雜訊指數與高增益的特性。為達成此目標,本論文所提出的設計於輸入端採用最佳化的路徑匹配網路,並結合電容性與電感性磁耦合共振腔,構建寬頻匹配架構以實現寬頻雜訊匹配;輸出端也採用磁耦合共振腔架構達成寬頻增益匹配。根據量測結果,該電路在 4.04 GHz 至 6.3 GHz 頻段內,達成 43.7% 的 3 dB 帶寬,最大增益可達 16.6 dB,最低雜訊指數則為 2.1 dB,展現優異的性能表現。
第二部分則提出一款適用於雷達通訊的 V-Band 低雜訊放大器。該電路採用 UMC 40 nm CMOS 製程實現,結合源極退化技術與 gm boosting,有效提升放大器的整體性能。模擬結果顯示,該 LNA 在 57 GHz 至 71 GHz 頻段內具備約 20 dB 的小訊號增益,3 dB 頻寬涵蓋整個 V-Band,且雜訊指數極低,展現出卓越的寬頻與低雜訊特性。
第三部分則聚焦於 FR3 頻段(約 13 GHz)應用所設計的 GaAs HBT 功率放大器。該設計強調一級一路架構的優化,採用高功率密度的 HBT 晶體管,並結合熱模擬結果進行電路與佈局優化,以提升功率附加效率(PAE)與熱穩定性。量測結果顯示,一級一路放大器在 12.3 GHz 時達到 32.0 dBm 的輸出功率、51% 的 PAE 以及約 10.5 dB 的增益;兩級一路放大器則分別達到 32.2 dBm 輸出功率、54.5% PAE 及約 21.7 dB 增益;兩級兩路放大器則可達 34.4 dBm 輸出功率、50% PAE 與約 21.1 dB 增益,展現優異的大訊號性能。本部分亦探討了 Flip-Chip 封裝技術在 HBT 功率放大器中的應用,並分析功率耗散與熱阻對接面溫度及晶體管特性的影響。實驗結果顯示,導入銅柱技術後,於 12 GHz 頻點 PAE 提升達 24.9%,輸出功率與增益分別增加 1.1 dB 與 0.9 dB,有效強化了高頻大訊號表現與電路可靠度。
zh_TW
dc.description.abstractThis paper is mainly divided into three parts.
The first part introduces a seventh-generation wideband low-noise amplifier (LNA) designed using the TSMC 90 nm process. In receiver systems, the LNA needs to simultaneously achieve low noise figure and high gain. To meet these requirements, the proposed design employs an optimized path-matching network at the input, combined with capacitive and inductive magnetically coupled resonators to build a wideband noise-matching architecture. The output also utilizes a magnetically coupled resonator structure to achieve wideband gain matching. Measurement results show that the circuit attains a 3 dB bandwidth of 43.7% over the frequency range of 4.04 GHz to 6.3 GHz, with a maximum gain of 16.6 dB and a minimum noise figure of 2.1 dB, demonstrating excellent performance.
The second part proposes a V-Band LNA suitable for radar communication applications. This circuit is implemented in UMC 40 nm CMOS technology and incorporates source degeneration and gm boosting techniques to effectively enhance the overall amplifier performance. Simulation results indicate that the LNA provides approximately 20 dB small-signal gain across the 57 GHz to 71 GHz band, covering the entire V-Band with a 3 dB bandwidth, and exhibits an extremely low noise figure, demonstrating outstanding wideband and low-noise characteristics.
The third part focuses on the design of a GaAs HBT power amplifier for the FR3 band (around 13 GHz). This design emphasizes optimization of a single-stage single-path architecture, utilizing high power density HBT devices and incorporating thermal simulation results to optimize the circuit and layout, thereby improving power-added efficiency (PAE) and thermal stability. Measurement results show that the single-stage single-path amplifier achieves an output power of 32.08 dBm, a PAE of 51%, and a gain of approximately 10.5 dB at 12.3 GHz; the two-stage single-path amplifier achieves 32.28 dBm output power, 54.5% PAE, and about 21.73 dB gain; the two-stage dual-path amplifier achieves 34.4 dBm output power, 50% PAE, and about 21.09 dB gain, demonstrating excellent large-signal performance. This part also explores the application of Flip-Chip packaging technology in HBT power amplifiers and analyzes the impact of power dissipation and thermal resistance on the interface temperature and transistor characteristics. Experimental results indicate that, after introducing copper pillar technology, the PAE at 12 GHz improved by 24.9%, with output power and gain increasing by 1.1 dB and 0.9 dB respectively, effectively enhancing high-frequency large-signal performance and circuit reliability.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-21T16:10:50Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-08-21T16:10:50Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員審定書 i
誌謝 ii
中文摘要 iv
ABSTRACT vi
CONTENTS viii
LIST OF FIGURES xii
LIST OF TABLES xxvi
Chapter 1. Introduction 1
1.1 Background and Motivation 1
1.2 Literature Survey 2
1.2.1 Wideband Wifi-7 CMOS LNA 2
1.2.2 V-band CMOS LNA 4
1.2.3 FR3 Band GaAs HBT PA 5
1.3 Contribution 7
1.4 Thesis Organization 9
Chapter 2. WiFi-7 Low Noise Amplifier in 90-nm CMOS 10
2.1 Introduction 10
2.1.1 Introduction of TSMC 90 nm Process 11
2.2 Circuit Design 11
2.2.1 Design of Low Noise Amplifier 11
2.2.2 Transistor Sizing and Bias Selection 12
2.2.3 Noise Matching Technique 20
2.2.4 Broadband Matching Technique 24
2.2.5 Gm-Boost Technique [7] 36
2.2.6 Design of the Power Grid Network 41
2.2.7 Circuit Layout and Simulation Results 42
2.3 Measurement Result and Discussion 51
2.3.1 Measurement Results 51
2.3.2 Discussion 59
2.4 Summary 65
Chapter3. V-Band CMOS Wideband Low Noise Amplifier 68
3.1 Introduction 68
3.1.1 Introduction of UMC 40 nm Process 69
3.2 Circuit Design 69
3.2.1 Design of Three-Stage Low Noise Amplifier 69
3.2.2 Transistor Sizing and Bias Selection 71
3.2.3 Gate-Source Feedback Transformer Technique [8] 77
3.2.4 Drain-Source Feedback Transformer Technique [13] 83
3.2.5 Gm-Boost Technique 90
3.2.6 Circuit Matching Network 94
3.2.7 Design of the Power Grid Network 100
3.2.8 Circuit Layout and Simulation Results 101
3.3 Measurement Result and Discussion 108
3.3.1 Measurement Results 108
3.3.2 Discussion 113
3.4 Summary 124
Chapter4. Development of a High-Efficiency GaAs HBT PA for 6G FR3 Communications 127
4.1 Introduction 127
4.1.1 Introduction of WIN Semiconductor H01U-R7 HBT Process 129
4.2 Flip-Chip Technology [19] 130
4.3 Circuit Design 136
4.3.1 Temperature-Insensitive Bias Circuit Design [20] 136
4.3.2 One-Way One-Stage PA Design 140
4.3.3 One-Way Two-Stage PA Design and Two-Way Two-Stage PA Design 149
4.3.4 Circuit Layout and Simulation Results 159
4.4 Measurement Result and Discussion 171
4.4.1 Measurement Results 171
4.4.2 Discussion 182
4.5 Summary 187
Chapter 5 Conclusions 191
Reference 193
-
dc.language.isoen-
dc.subjectCMOS 低雜訊放大器zh_TW
dc.subject寬頻zh_TW
dc.subjectGaAs HBT 功率放大器zh_TW
dc.subjectFlip-Chip 封裝zh_TW
dc.subjectBroadbanden
dc.subjectGaAs HBT Power Amplifieren
dc.subjectCMOS Low-Noise Amplifieren
dc.subjectFlip-Chipen
dc.title應用於第七代無線網路及毫米波雷達寬頻CMOS低雜訊放大器與應用於 6G 通訊之 GaAs HBT 功率放大器研究zh_TW
dc.titleResearch on Wideband CMOS Low-noise Amplifiers for WiFi-7 and Millimeter Wave Radar Application and GaAs HBT Power Amplifiers for 6G Communicationen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee張鴻埜;傅資皓;蔡政翰;吳佩熹zh_TW
dc.contributor.oralexamcommitteeHong-Yeh Chang;Zi-Hao Fu;Jeng-Han Tsai ;Pei-Hsi Wuen
dc.subject.keywordCMOS 低雜訊放大器,寬頻,GaAs HBT 功率放大器,Flip-Chip 封裝,zh_TW
dc.subject.keywordCMOS Low-Noise Amplifier,Broadband,GaAs HBT Power Amplifier,Flip-Chip,en
dc.relation.page196-
dc.identifier.doi10.6342/NTU202503065-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2025-08-07-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept電信工程學研究所-
dc.date.embargo-lift2025-08-22-
顯示於系所單位:電信工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
15.35 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved