請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99045完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林坤佑 | zh_TW |
| dc.contributor.advisor | Kun-You Lin | en |
| dc.contributor.author | 潘昱辰 | zh_TW |
| dc.contributor.author | Yu-Chen Pan | en |
| dc.date.accessioned | 2025-08-21T16:10:35Z | - |
| dc.date.available | 2025-08-22 | - |
| dc.date.copyright | 2025-08-21 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-08-01 | - |
| dc.identifier.citation | [1] D.-W. Kim, “An output matching technique for a GaN distributed power amplifier MMIC using tapered drain shunt capacitors,” IEEE Microw. Wireless Compon. Lett., vol. 25, no. 9, pp. 603–605, Sep. 2015.
[2] G. R. Nikandish, R. B. Staszewski, and A. Zhu, “Broadband fully integrated GaN power amplifier with minimum-inductance BPF matching and two-transistor AM-PM compensation,” IEEE Trans. Circuits Syst. I, vol. 67, no. 12, pp. 4211–4223, Dec. 2020. [3] B. Liu, M. Mao, D. Khanna, C.-C. Boon, P. Choi, and E. A. Fitzgerald, “A novel 2.6–6.4 GHz highly integrated broadband GaN power amplifier,” IEEE Microw. Wireless Compon. Lett., vol. 28, no. 1, pp. 37–39, Jan. 2018. [4] M. A. Gonzalez-Garrido, J. Grajal, P. Cubilla, A. Cetronio, C. Lanzieri, and M. Uren, “2–6 GHz GaN MMIC power amplifiers for electronic warfare applications,” in Proc. Eur. Microw. Integr. Circuit Conf., Oct. 2008, pp. 83–86. [5] G. Nikandish, R. B. Staszewski, and A. Zhu, “A broadband continuous class-F GaN MMIC PA using multi-resonance matching network,” in Proc. 14th Eur. Microw. Integr. Circuits Conf. (EuMIC), Sep. 2019, pp. 108–111. [6] M. Litchfield and J. J. Komiak, “A 6–18 GHz 40 W reactively matched GaN MMIC power amplifier,” IEEE MTT-S Int. Microw. Symp. Dig., Jun. 2018, pp. 1348–1351. [7] H. Q. Tao, W. Hong, and B. Zhang, “6-18GHz 13W reactive matched GaN power amplifier MMIC,” in Eur. Microw. Integr. circuits conf., Oct. 2017, pp. 357–360. [8] G. Mouginot et al., “Three-stage 6–18 GHz high gain and high power amplifier based on GaN technology,” in Proc. IEEE MTT-S Int. Microw. Symp., May 2010, pp. 1392–1395. [9] J.-C. Jeong et al., “AlGaN/GaN-based ultra-wideband 15-W high power amplifier with improved return loss,” ETRI J., vol. 38, no. 5, pp. 972–980, Oct. 2016. [10] U. Schmid et al., “Ultra-wideband GaN MMIC chip set and high power amplifier module for multi-function defense AESA applications,” IEEE Trans. Microw. Theory Techn., vol. 61, pp. 3043–3051, 2013. [11] E. Kuwata et al., “C-Ku band ultra broadband GaN MMIC amplifier with 20 W output power,” in Proc. Asia-Pacific Microw. Conf., Dec. 2011, pp. 1558–1561. [12] G.-H. Ko et al., “24-GHz 4TX–4RX phased array transceiver with automatic beam steering mode for FMCW radar applications,” IEEE Trans. Microw. Theory Techn., vol. 72, no. 5, pp. 3065–3075, May 2024. [13] K. Dandu et al., “2.2 high-performance and small form-factor mm-Wave CMOS radars for automotive and industrial sensing in 76-to-81GHz and 57-to-64GHz bands,” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, San Francisco, CA, USA, Feb. 2021, pp. 39–41. [14] C. Xu et al., “A 54-to-69-GHz wideband 2T2R FMCW radar transceiver employing cascaded-PLL topology and PTAT-enhanced temperature compensation in 40-nm CMOS,” in IEEE Asian Solid-State Circuits Conf. (A-SSCC), Haikou, China, 2023, pp. 1–3. [15] A. Hamidian et al., “24 GHz CMOS transceiver with novel T/R switching concept for indoor localization,” in IEEE RFIC Symp., Seattle, USA, 2013, pp. 293–296. [16] Y.-C. Lin, “Research on 2–6 GHz GaN power amplifier integrated circuits and modules,” M.S. thesis, Graduate Inst. of Commun. Eng., Nat. Taiwan Univ., Taipei, Taiwan, 2024. [17] B. Liu, C.-C. Boon, M. Mao, P. Choi, and T. Guo, “A 2.4–6 GHz broadband GaN power amplifier for 802.11ax application,” IEEE Trans. Circuits Syst. I, vol. 68, no. 6, pp. 2404–2417, Jun. 2021. [18] G. R. Nikandish, R. B. Staszewski, and A. Zhu, “A fully integrated GaN dual-channel power amplifier with crosstalk suppression for 5G massive MIMO transmitters,” IEEE Trans. Circuits Syst. II: Express Briefs, vol. 68, no. 1, pp. 246–250, Jan. 2021. [19] P.-C. Huang, Z.-M. Tsai, K.-Y. Lin, and H. Wang, “A 17–35 GHz broadband, high-efficiency PHEMT power amplifier using synthesized transformer matching technique,” IEEE Trans. Microw. Theory Techn., vol. 60, no. 1, pp. 112–119, Jan. 2012. [20] H. Jia et al., “A full Ka-band power amplifier with 32.9% PAE and 15.3-dBm power in 65-nm CMOS,” IEEE Trans. Circuits Syst. I, vol. 65, no. 9, pp. 2657–2668, Sep. 2018. [21] P.-W. Huang, “Research on millimeter-wave dual-band and wide-band power amplifier for 5G mobile communication,“ M.S. thesis, Graduate Inst. of Commun. Eng., Nat. Taiwan Univ., Taipei, Taiwan, 2021. [22] A. Wu and L. Kang, “A 6–18 GHz 10 W GaN balanced power amplifier MMIC,” in Proc. IEEE MTT-S Int. Wireless Symp. (IWS), May 2023. [23] J. Kim and Y. Kwon, “A high-performance GaN-modified nonuniform distributed power amplifier,” IEEE Trans. Microw. Theory Techn., vol. 68, pp. 1729–1740, May 2020. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99045 | - |
| dc.description.abstract | 此論文分為三個主要部分,探討在2-6 GHz頻段及6-18 GHz頻段之GaN寬頻功率放大器,以及應用於MIMO雷達系統之可切換雙模態功率放大器。
第一部分介紹之2-6 GHz頻段寬頻放大器設計使用0.25微米氮化鎵高電子遷移率電晶體製程。該電路使用磁耦合共振腔作為輸出匹配網路及電容性和電感性磁耦合共振腔實現寬頻級間匹配。量測結果顯示,其全頻段飽和輸出功率為36.3至40.9 dBm,功率附加效率為8.8至44.4%,以及其小訊號增益為16.9至23.2 dB。並且由於高瓦數的輸出功率,熱能的產生也不可忽視,因此另外設計了銅塊以加速散熱,使其能夠達到更好的量測結果。 第二個部分為6-18 GHz頻段寬頻放大器,同樣使用0.25微米氮化鎵高電子遷移率電晶體製程。相較於第一部分,雖然比例頻寬相等,但是由於較為高頻,因此絕對頻寬較大,在比較了磁耦合共振腔、電容性及電感性之磁耦合共振腔以及多階電抗性匹配後,採用多階電抗性匹配網路以達到寬頻匹配效果。同第一部分,由於其高瓦數之輸出功率,故也加入了銅塊設計以加速散熱。量測結果顯示,其全頻段飽和輸出功率為37.2至42.5 dBm,功率附加效率為10至33.3%,以及其小訊號增益為7.9至17.7 dB。 第三部分則是MIMO雷達系統之雙模態功率放大器之設計。此雙模態功率放大器可隨使用需求,切換雷達系統中常用的TDM或者BPM模態。透過在輸出端加上三組開關,並控制三組開關的狀態以決定使用模態。此外在驅動級放大器的設計使用交叉對架構,以產生BPM所需要的180度相位差。並且在此架構下,能夠改善傳統架構中,兩種模態EIRP不相等的問題。在TDM模態下,此電路量測飽和功率為16.6 dBm,功率附加效率為15.4%;在BPM模態下,飽和功率為15.8 dBm,功率附加效率為26.4%。兩種模態之小訊號增益皆超過21 dB。 | zh_TW |
| dc.description.abstract | This paper is divided into three main parts, focusing on the design of GaN wideband power amplifiers operating in the 2–6 GHz and 6–18 GHz, as well as a switchable dual-mode PA for MIMO radar systems.
The first part presents a 2–6 GHz wideband power amplifier implemented using a 0.25-μm GaN HEMT process. Magnetically coupled resonators are utilized as the output matching network, while capacitively and inductively coupled resonators are used for inter-stage matching to achieve the desired broadband effect. Measurement results show that the amplifier achieves a saturated output power ranging from 36.3 to 40.9 dBm, a power-added efficiency (PAE) between 8.8% and 44.4%, and a small-signal gain from 16.9 to 23.2 dB. Due to the high output power, thermal issues arise, and a copper block is designed to improve heat dissipation and enhance measurement performance. The second part discusses a 6–18 GHz wideband power amplifier which is also fabricated using the 0.25-μm GaN HEMT process. Although the relative bandwidth is similar to the first part, the higher operating frequency leads to a wider absolute bandwidth. After evaluating magnetically coupled resonators, capacitively and inductively coupled resonators, and multi-stage reactive matching networks, this work adopts the multi-stage reactive matching approach to achieve the desired wideband performance. Similarly, a copper block is added to improve heat dissipation. Measurement results demonstrate a saturated output power ranging from 37.2 to 42.5 dBm, a power-added efficiency (PAE) between 10% and 33.3%, and a small-signal gain from 7.9 to 17.7 dB. The third part proposes a dual-mode power amplifier for MIMO radar systems, capable of switching between Time-Division Multiplexing and Binary Phase Modulation modes depending on application needs. Three switches are added at the output terminal, and the PA operating mode is determined by controlling their states. A cross-pair architecture is adopted in the driver stage to generate the 180° phase difference required for BPM mode. This architecture also helps address the EIRP imbalance issue commonly seen in conventional designs. Measurement results show that the PA achieves a saturated output power of 16.6 dBm and 15.8 dBm in TDM and BPM modes respectively, with corresponding PAEs of 15.4% and 26.4%. In both modes, the small-signal gain exceeds 21 dB. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-21T16:10:35Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-08-21T16:10:35Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員審定書 i
誌謝 ii 中文摘要 v ABSTRACT vi CONTENTS viii LIST OF FIGURES xi LIST OF TABLES xix Chapter 1 Introduction 1 1.1 Background and Motivation 1 1.2 Literature Survey 2 1.3 Contributions 6 1.4 Thesis Organization 8 Chapter 2 A 2-6 GHz Ultra-wideband 5-10 W Power Amplifier in 0.25-μm GaN HEMT 9 2.1 Introduction 9 2.2 Circuit Design 10 2.2.1 Overall Schematic of the Two-Stage Power Amplifier 10 2.2.2 Design of Power Stage 11 2.2.3 Design of Driver Stage 25 2.2.4 Input Matching Design 33 2.2.5 Bypass Design 35 2.2.6 Circuit Layout and Simulation Results 36 2.3 Measurement Setup and Results 46 2.3.1 Heat Dissipation Design 46 2.3.2 Measurement Results 49 2.3.3 Discussion 57 2.4 Summary 68 Chapter 3 A 6-18 GHz Ultra-wideband 10 W Power Amplifier in 0.25-μm GaN HEMT 71 3.1 Introduction 71 3.2 Circuit Design 72 3.2.1 Overall Schematic of the Two-Stage Power Amplifier 72 3.2.2 Design of Power Stage 72 3.2.3 Design of Driver Stage 82 3.2.4 Input Matching Design 88 3.2.5 Bypass Design 90 3.2.6 Circuit Layout and Simulation Results 91 3.3 Measurement Setup and Results 100 3.3.1 Heat Dissipation Design 100 3.3.2 Measurement Results 102 3.3.3 Discussion 112 3.4 Summary 115 Chapter 4 A 24 GHz Power Amplifier with a Switching Output Combiner for a Dual-mode MIMO Radar System 117 4.1 Introduction 117 4.2 Circuit Design 118 4.2.1 Overall Schematic of the Proposed Power Amplifier 118 4.2.2 Innovation of proposed PA 119 4.2.3 Design of Power Stage 121 4.2.4 Design of Driver Stage 135 4.2.5 Input Matching Network 138 4.2.6 Circuit Layout and Simulation Results 140 4.3 Measurement Results and Chip Photo 149 4.3.1 Small Signal Measurement 149 4.3.2 Large Signal Measurement 152 4.3.3 Discussion 157 4.4 Summary 164 Chapter 5 Conclusion 166 REFERENCE 168 | - |
| dc.language.iso | en | - |
| dc.subject | 寬頻 | zh_TW |
| dc.subject | 氮化鎵 | zh_TW |
| dc.subject | MIMO雷達 | zh_TW |
| dc.subject | 雙模態 | zh_TW |
| dc.subject | 分時多工 | zh_TW |
| dc.subject | 功率放大器 | zh_TW |
| dc.subject | 高功率 | zh_TW |
| dc.subject | 二進制相位調變 | zh_TW |
| dc.subject | Dual-Mode | en |
| dc.subject | TDM | en |
| dc.subject | BPM | en |
| dc.subject | MIMO Radar | en |
| dc.subject | Broadband | en |
| dc.subject | High Power | en |
| dc.subject | Power Amplifier | en |
| dc.subject | GaN | en |
| dc.title | 寬頻氮化鎵功率放大器及應用於多進多出雷達系統之雙模態CMOS功率放大器之研究 | zh_TW |
| dc.title | Research on wideband GaN Power Amplifier and Dual-mode CMOS Power Amplifier for MIMO radar system | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 張鴻埜;蔡政翰;吳佩憙;傅資皓 | zh_TW |
| dc.contributor.oralexamcommittee | Hong-Yeh Chang;Jeng-Han Tsai;Pei-Si Wu;Zi-Hao Fu | en |
| dc.subject.keyword | 氮化鎵,功率放大器,高功率,寬頻,MIMO雷達,雙模態,分時多工,二進制相位調變, | zh_TW |
| dc.subject.keyword | GaN,Power Amplifier,High Power,Broadband,MIMO Radar,Dual-Mode,TDM,BPM, | en |
| dc.relation.page | 170 | - |
| dc.identifier.doi | 10.6342/NTU202502650 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2025-08-06 | - |
| dc.contributor.author-college | 電機資訊學院 | - |
| dc.contributor.author-dept | 電信工程學研究所 | - |
| dc.date.embargo-lift | 2025-08-22 | - |
| 顯示於系所單位: | 電信工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf | 10.81 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
