Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 動物科學技術學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99040
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor陳靜宜zh_TW
dc.contributor.advisorChing-Yi Chenen
dc.contributor.author江俊嫻zh_TW
dc.contributor.authorChun-Hsien Chiangen
dc.date.accessioned2025-08-21T16:09:22Z-
dc.date.available2025-08-22-
dc.date.copyright2025-08-21-
dc.date.issued2025-
dc.date.submitted2025-07-31-
dc.identifier.citation[1] Fontana L, Partridge L. Promoting health and longevity through diet: from model organisms to humans. Cell 2015;161:106–18. https://doi.org/10.1016/j.cell.2015.02.020.
[2] Lin S-J, Defossez P-A, Guarente L. Requirement of NAD and SIR2 for life-span extension by calorie restriction in saccharomyces cerevisiae. Science 2000;289:2126–8. https://doi.org/10.1126/science.289.5487.2126.
[3] McCay CM, Crowell MF, Maynard LA. The effect of retarded growth upon the length of life span and upon the ultimate body size: one figure. The Journal of Nutrition 1935;10:63–79. https://doi.org/10.1093/jn/10.1.63.
[4] Weindruch R, Walford RL, Fligiel S, Guthrie D. The retardation of aging in mice by dietary restriction: longevity, cancer, immunity and lifetime energy intake. The Journal of Nutrition 1986;116:641–54. https://doi.org/10.1093/jn/116.4.641.
[5] Colman RJ, Anderson RM, Johnson SC, Kastman EK, Kosmatka KJ, Beasley TM, et al. Caloric restriction delays disease onset and mortality in rhesus monkeys. Science 2009;325:201–4. https://doi.org/10.1126/science.1173635.
[6] Li S-J, Lin Y-H, Chiang C-H, Wang P-Y, Chen C-Y. Early-onset dietary restriction maintains mitochondrial health, autophagy and ER function in the left ventricle during aging. The Journal of Nutritional Biochemistry 2022;101:108944. https://doi.org/10.1016/j.jnutbio.2022.108944.
[7] Chiang C-H, Li S-J, Zhang T-R, Chen C-Y. Long-term dietary restriction ameliorates ageing-related renal fibrosis in male mice by normalizing mitochondrial functions and autophagy. Biogerontology 2022;23:731–40. https://doi.org/10.1007/s10522-022-09993-8.
[8] Chiang C-H, Li S-J, Lin Y-H, Wang P-Y, Hsu P-S, Lin S-P, et al. Early-onset caloric restriction alleviates ageing-associated steatohepatitis in male mice via restoring mitochondrial homeostasis. Biogerontology 2023;24:391–401. https://doi.org/10.1007/s10522-023-10023-4.
[9] Sohal RS, Forster MJ. Caloric restriction and the aging process: a critique. Free Radical Biology and Medicine 2014;73:366–82. https://doi.org/10.1016/j.freeradbiomed.2014.05.015.
[10] Cornejo MA, Nguyen J, Cazares J, Escobedo B, Nishiyama A, Nakano D, et al. Partial body mass recovery after caloric restriction abolishes improved glucose tolerance in obese, insulin resistant rats. Front Endocrinol 2020;11. https://doi.org/10.3389/fendo.2020.00363.
[11] Shah M. Calorie restriction and insulin sensitivity in obesity. in: preedy vr, patel vb, editors. Handbook of Famine, Starvation, and Nutrient Deprivation: From Biology to Policy, Cham: Springer International Publishing; 2019, p. 1127–38. https://doi.org/10.1007/978-3-319-55387-0_82.
[12] Haigh L, Kirk C, El Gendy K, Gallacher J, Errington L, Mathers JC, et al. The effectiveness and acceptability of Mediterranean diet and calorie restriction in non-alcoholic fatty liver disease (NAFLD): A systematic review and meta-analysis. Clinical Nutrition 2022;41:1913–31. https://doi.org/10.1016/j.clnu.2022.06.037.
[13] Park CY, Park S, Kim MS, Kim H-K, Han SN. Effects of mild calorie restriction on lipid metabolism and inflammation in liver and adipose tissue. Biochemical and Biophysical Research Communications 2017;490:636–42. https://doi.org/10.1016/j.bbrc.2017.06.090.
[14] Li R, Toan S, Zhou H. Role of mitochondrial quality control in the pathogenesis of nonalcoholic fatty liver disease. Aging (Albany NY) 2020;12:6467. https://doi.org/10.18632/aging.102972.
[15] Nassir F, Ibdah JA. Role of mitochondria in nonalcoholic fatty liver disease. Int J Mol Sci 2014;15:8713–42. https://doi.org/10.3390/ijms15058713.
[16] Di Ciaula A, Passarella S, Shanmugam H, Noviello M, Bonfrate L, Wang DQ-H, et al. Nonalcoholic fatty liver disease (NAFLD). Mitochondria as players and targets of therapies? International Journal of Molecular Sciences 2021;22:5375. https://doi.org/10.3390/ijms22105375.
[17] Zamarron BF, Porsche CE, Luan D, Lucas HR, Mergian TA, Martinez-Santibanez G, et al. Weight regain in formerly obese mice hastens development of hepatic steatosis due to impaired adipose tissue function. Obesity 2020;28:1086–97. https://doi.org/10.1002/oby.22788.
[18] Kim M-S, Kim IY, Sung HR, Nam M, Kim YJ, Kyung DS, et al. Metabolic dysfunction following weight regain compared to initial weight gain in a high-fat diet-induced obese mouse model. The Journal of Nutritional Biochemistry 2019;69:44–52. https://doi.org/10.1016/j.jnutbio.2019.02.011.
[19] Barbosa-da-Silva S, da Silva NC, Aguila MB, Mandarim-de-Lacerda CA. Liver damage is not reversed during the lean period in diet-induced weight cycling in mice. Hepatology Research 2014;44:450–9. https://doi.org/10.1111/hepr.12138.
[20] Fabbrini E, Sullivan S, Klein S. Obesity and nonalcoholic fatty liver disease: Biochemical, metabolic, and clinical implications. Hepatology 2010;51:679–89. https://doi.org/10.1002/hep.23280.
[21] Li X, Jiang L, Yang M, Wu Y-W, Sun J-Z. Impact of weight cycling on CTRP3 expression, adipose tissue inflammation and insulin sensitivity in C57BL/6J mice. Exp Ther Med 2018;16:2052–9. https://doi.org/10.3892/etm.2018.6399.
[22] Mattison JA, Colman RJ, Beasley TM, Allison DB, Kemnitz JW, Roth GS, et al. Caloric restriction improves health and survival of rhesus monkeys. Nat Commun 2017;8:14063. https://doi.org/10.1038/ncomms14063.
[23] Redman LM, Smith SR, Burton JH, Martin CK, Il’yasova D, Ravussin E. Metabolic slowing and reduced oxidative damage with sustained caloric restriction support the rate of living and oxidative damage theories of aging. Cell Metab 2018;27:805-815.e4. https://doi.org/10.1016/j.cmet.2018.02.019.
[24] Cabo R de, Mattson MP. Effects of intermittent fasting on health, aging, and disease. New England Journal of Medicine 2019;381:2541–51. https://doi.org/10.1056/NEJMra1905136.
[25] Guarente L. Sirtuins, aging, and medicine. New England Journal of Medicine 2011;364:2235–44. https://doi.org/10.1056/NEJMra1100831.
[26] López-Lluch G, Navas P. Calorie restriction as an intervention in ageing. The Journal of Physiology 2016;594:2043–60. https://doi.org/10.1113/JP270543.
[27] Cao SX, Dhahbi JM, Mote PL, Spindler SR. Genomic profiling of short- and long-term caloric restriction effects in the liver of aging mice. Proceedings of the National Academy of Sciences 2001;98:10630–5. https://doi.org/10.1073/pnas.191313598.
[28] Pignatti C, D’Adamo S, Stefanelli C, Flamigni F, Cetrullo S. Nutrients and pathways that regulate health span and life span. Geriatrics 2020;5:95. https://doi.org/10.3390/geriatrics5040095.
[29] Li L, Pan R, Li R, Niemann B, Aurich A-C, Chen Y, et al. Mitochondrial biogenesis and peroxisome proliferator–activated receptor-γ coactivator-1α (PGC-1α) deacetylation by physical activity: intact adipocytokine signaling is required. Diabetes 2010;60:157–67. https://doi.org/10.2337/db10-0331.
[30] Pang J, Yin L, Jiang W, Wang H, Cheng Q, Jiang Z, et al. Sirt1-mediated deacetylation of PGC-1α alleviated hepatic steatosis in type 2 diabetes mellitus via improving mitochondrial fatty acid oxidation. Cellular Signalling 2024;124:111478. https://doi.org/10.1016/j.cellsig.2024.111478.
[31] Faye A, Esnous C, Price NT, Onfray MA, Girard J, Prip-Buus C. Rat liver carnitine palmitoyltransferase 1 forms an oligomeric complex within the outer mitochondrial membrane*. Journal of Biological Chemistry 2007;282:26908–16. https://doi.org/10.1074/jbc.M705418200.
[32] Li Y, Xu S, Mihaylova MM, Zheng B, Hou X, Jiang B, et al. AMPK phosphorylates and inhibits SREBP activity to attenuate hepatic steatosis and atherosclerosis in diet-induced insulin-resistant mice. Cell Metabolism 2011;13:376–88. https://doi.org/10.1016/j.cmet.2011.03.009.
[33] Ding R-B, Bao J, Deng C-X. Emerging roles of SIRT1 in fatty liver diseases. International Journal of Biological Sciences 2017;13:852–67. https://doi.org/10.7150/ijbs.19370.
[34] Khraiwesh H, López-Domínguez JA, López-Lluch G, Navas P, de Cabo R, Ramsey JJ, et al. Alterations of ultrastructural and fission/fusion markers in hepatocyte mitochondria from mice following calorie restriction with different dietary fats. The Journals of Gerontology: Series A 2013;68:1023–34. https://doi.org/10.1093/gerona/glt006.
[35] Li S-J, Lin Y-H, Chiang C-H, Wang P-Y, Chen C-Y. Early-onset dietary restriction maintains mitochondrial health, autophagy and ER function in the left ventricle during aging. The Journal of Nutritional Biochemistry 2022;101:108944. https://doi.org/10.1016/j.jnutbio.2022.108944.
[36] Fromenty B, Roden M. Mitochondrial alterations in fatty liver diseases. Journal of Hepatology 2023;78:415–29. https://doi.org/10.1016/j.jhep.2022.09.020.
[37] López-Lluch G, Irusta PM, Navas P, de Cabo R. Mitochondrial biogenesis and healthy aging. Exp Gerontol 2008;43:813–9. https://doi.org/10.1016/j.exger.2008.06.014.
[38] López-Lluch G, Hunt N, Jones B, Zhu M, Jamieson H, Hilmer S, et al. Calorie restriction induces mitochondrial biogenesis and bioenergetic efficiency. Proceedings of the National Academy of Sciences 2006;103:1768–73. https://doi.org/10.1073/pnas.0510452103.
[39] Picca A, Pesce V, Fracasso F, Joseph A-M, Leeuwenburgh C, Lezza AMS. Aging and calorie restriction oppositely affect mitochondrial biogenesis through tfam binding at both origins of mitochondrial dna replication in rat liver. PLOS ONE 2013;8:e74644. https://doi.org/10.1371/journal.pone.0074644.
[40] Picca A, Pesce V, Fracasso F, Joseph A-M, Leeuwenburgh C, Lezza AMS. A comparison among the tissue-specific effects of aging and calorie restriction on TFAM amount and TFAM-binding activity to mtDNA in rat. Biochim Biophys Acta 2014;1840:2184–91. https://doi.org/10.1016/j.bbagen.2014.03.004.
[41] Cantó C, Auwerx J. PGC-1α, SIRT1 and AMPK, an energy sensing network that controls energy expenditure. Current Opinion in Lipidology 2009;20:98. https://doi.org/10.1097/MOL.0b013e328328d0a4.
[42] Rakovic A, Shurkewitsch K, Seibler P, Grünewald A, Zanon A, Hagenah J, et al. Phosphatase and Tensin Homolog (PTEN)-induced Putative Kinase 1 (PINK1)-dependent Ubiquitination of Endogenous Parkin Attenuates Mitophagy: STUDY IN HUMAN PRIMARY FIBROBLASTS AND INDUCED PLURIPOTENT STEM CELL-DERIVED NEURONS* *This work was supported by the Fritz Thyssen Foundation (to A. G.), National Genome Research Network-plus (Federal Ministry of Education and Research, to C. K.), and EU Grant European Project on Mendelian Forms of Parkinson’s Disease (FP7). Journal of Biological Chemistry 2013;288:2223–37. https://doi.org/10.1074/jbc.M112.391680.
[43] Rogov V, Dötsch V, Johansen T, Kirkin V. Interactions between Autophagy Receptors and Ubiquitin-like Proteins Form the Molecular Basis for Selective Autophagy. Molecular Cell 2014;53:167–78. https://doi.org/10.1016/j.molcel.2013.12.014.
[44] Su X, Abumrad NA. Cellular fatty acid uptake: a pathway under construction. Trends in Endocrinology & Metabolism 2009;20:72–7. https://doi.org/10.1016/j.tem.2008.11.001.
[45] Mansbach CM, Siddiqi SA. The biogenesis of chylomicrons. Annual Review of Physiology 2010;72:315–33. https://doi.org/10.1146/annurev-physiol-021909-135801.
[46] Mu H, Høy C-E. The digestion of dietary triacylglycerols. Progress in Lipid Research 2004;43:105–33. https://doi.org/10.1016/S0163-7827(03)00050-X.
[47] Solinas G, Borén J, Dulloo AG. De novo lipogenesis in metabolic homeostasis: More friend than foe? Mol Metab 2015;4:367–77. https://doi.org/10.1016/j.molmet.2015.03.004.
[48] Bruce CR, Hoy AJ, Turner N, Watt MJ, Allen TL, Carpenter K, et al. Overexpression of carnitine palmitoyltransferase-1 in skeletal muscle is sufficient to enhance fatty acid oxidation and improve high-fat diet–induced insulin resistance. Diabetes 2009;58:550–8. https://doi.org/10.2337/db08-1078.
[49] Eaton S. Control of mitochondrial β-oxidation flux. Progress in Lipid Research 2002;41:197–239. https://doi.org/10.1016/S0163-7827(01)00024-8.
[50] Wanders RJA, Ferdinandusse S, Brites P, Kemp S. Peroxisomes, lipid metabolism and lipotoxicity. Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids 2010;1801:272–80. https://doi.org/10.1016/j.bbalip.2010.01.001.
[51] Schönfeld P, Wojtczak L. Short- and medium-chain fatty acids in energy metabolism: the cellular perspective. Journal of Lipid Research 2016;57:943–54. https://doi.org/10.1194/jlr.R067629.
[52] Coleman RA, Lee DP. Enzymes of triacylglycerol synthesis and their regulation. Progress in Lipid Research 2004;43:134–76. https://doi.org/10.1016/S0163-7827(03)00051-1.
[53] Nassir F, Rector RS, Hammoud GM, Ibdah JA. Pathogenesis and prevention of hepatic steatosis. Gastroenterol Hepatol (N Y) 2015;11:167–75.
[54] Sekiya M, Osuga J, Yahagi N, Okazaki H, Tamura Y, Igarashi M, et al. Hormone-sensitive lipase is involved in hepatic cholesteryl ester hydrolysis. Journal of Lipid Research 2008;49:1829–38. https://doi.org/10.1194/jlr.M800198-JLR200.
[55] Singh R, Kaushik S, Wang Y, Xiang Y, Novak I, Komatsu M, et al. Autophagy regulates lipid metabolism. Nature 2009;458:1131–5. https://doi.org/10.1038/nature07976.
[56] McGarry JD, Brown NF. The mitochondrial carnitine palmitoyltransferase system — from concept to molecular analysis. European Journal of Biochemistry 1997;244:1–14. https://doi.org/10.1111/j.1432-1033.1997.00001.x.
[57] Hussain MM, Shi J, Dreizen P. Microsomal triglyceride transfer protein and its role in apoB-lipoprotein assembly. Journal of Lipid Research 2003;44:22–32. https://doi.org/10.1194/jlr.R200014-JLR200.
[58] Rambold AS, Cohen S, Lippincott-Schwartz J. Fatty acid trafficking in starved cells: regulation by lipid droplet lipolysis, autophagy, and mitochondrial fusion dynamics. Developmental Cell 2015;32:678–92. https://doi.org/10.1016/j.devcel.2015.01.029.
[59] Nassir F. NAFLD: Mechanisms, treatments, and biomarkers. Biomolecules 2022;12:824. https://doi.org/10.3390/biom12060824.
[60] Najt CP, Senthivinayagam S, Aljazi MB, Fader KA, Olenic SD, Brock JRL, et al. Liver-specific loss of Perilipin 2 alleviates diet-induced hepatic steatosis, inflammation, and fibrosis. Am J Physiol Gastrointest Liver Physiol 2016;310:G726–38. https://doi.org/10.1152/ajpgi.00436.2015.
[61] Geng Y, Faber KN, de Meijer VE, Blokzijl H, Moshage H. How does hepatic lipid accumulation lead to lipotoxicity in non-alcoholic fatty liver disease? Hepatol Int 2021;15:21–35. https://doi.org/10.1007/s12072-020-10121-2.
[62] Yazıcı D, Demir SÇ, Sezer H. Insulin resistance, obesity, and lipotoxicity. In: ENGIN AB, ENGIN A, editors. Obesity and Lipotoxicity, Cham: Springer International Publishing; 2024, p. 391–430. https://doi.org/10.1007/978-3-031-63657-8_14.
[63] Khawar MB, Abbasi MH, Rafiq M, Naz N, Mehmood R, Sheikh N. A decade of mighty lipophagy: what we know and what facts we need to know? Oxid Med Cell Longev 2021;2021:5539161. https://doi.org/10.1155/2021/5539161.
[64] Ma X, Qian H, Chen A, Ni H-M, Ding W-X. Perspectives on mitochondria–er and mitochondria–lipid droplet contact in hepatocytes and hepatic lipid metabolism. Cells 2021;10:2273. https://doi.org/10.3390/cells10092273.
[65] Bilson J, Sethi JK, Byrne CD. Non-alcoholic fatty liver disease: a multi-system disease influenced by ageing and sex, and affected by adipose tissue and intestinal function. Proceedings of the Nutrition Society 2022;81:146–61. https://doi.org/10.1017/S0029665121003815.
[66] Huttasch M, Roden M, Kahl S. Obesity and MASLD: Is weight loss the (only) key to treat metabolic liver disease? Metabolism 2024;157:155937. https://doi.org/10.1016/j.metabol.2024.155937.
[67] Fabbrini E, Sullivan S, Klein S. Obesity and nonalcoholic fatty liver disease: biochemical, metabolic and clinical implications. Hepatology 2010;51:679–89. https://doi.org/10.1002/hep.23280.
[68] Huttasch M, Roden M, Kahl S. Obesity and MASLD: Is weight loss the (only) key to treat metabolic liver disease? Metabolism 2024;157:155937. https://doi.org/10.1016/j.metabol.2024.155937.
[69] Marengo A, Rosso C, Bugianesi E. Liver cancer: connections with obesity, fatty liver, and cirrhosis. Annual Review of Medicine 2016;67:103–17. https://doi.org/10.1146/annurev-med-090514-013832.
[70] Pouwels S, Sakran N, Graham Y, Leal A, Pintar T, Yang W, et al. Non-alcoholic fatty liver disease (NAFLD): a review of pathophysiology, clinical management and effects of weight loss. BMC Endocr Disord 2022;22:63. https://doi.org/10.1186/s12902-022-00980-1.
[71] Seki E, Schwabe RF. Hepatic inflammation and fibrosis: Functional links and key pathways. Hepatology 2015;61:1066. https://doi.org/10.1002/hep.27332.
[72] Tsuchida T, Friedman SL. Mechanisms of hepatic stellate cell activation. Nat Rev Gastroenterol Hepatol 2017;14:397–411. https://doi.org/10.1038/nrgastro.2017.38.
[73] Dewidar B, Meyer C, Dooley S, Meindl-Beinker and N. TGF-β in hepatic stellate cell activation and liver fibrogenesis—Updated 2019. Cells 2019;8:1419. https://doi.org/10.3390/cells8111419.
[74] Braczkowski MJ, Kufel KM, Kulińska J, Czyż DŁ, Dittmann A, Wiertelak M, et al. Pleiotropic action of tgf-beta in physiological and pathological liver conditions. Biomedicines 2024;12:925. https://doi.org/10.3390/biomedicines12040925.
[75] Yan M, Cui Y, Xiang Q. Metabolism of hepatic stellate cells in chronic liver diseases: emerging molecular and therapeutic interventions. Theranostics 2025;15:1715–40. https://doi.org/10.7150/thno.106597.
[76] Zisser A, Ipsen DH, Tveden-Nyborg P. Hepatic stellate cell activation and inactivation in NASH-fibrosis—Roles as putative treatment targets? Biomedicines 2021;9:365. https://doi.org/10.3390/biomedicines9040365.
[77] Kisseleva T, Brenner D. Molecular and cellular mechanisms of liver fibrosis and its regression. Nat Rev Gastroenterol Hepatol 2021;18:151–66. https://doi.org/10.1038/s41575-020-00372-7.
[78] Park H-J, Choi J, Kim H, Yang D-Y, An TH, Lee E-W, et al. Cellular heterogeneity and plasticity during NAFLD progression. Front Mol Biosci 2023;10. https://doi.org/10.3389/fmolb.2023.1221669.
[79] Serviddio G, Sastre J, Bellanti F, Viña J, Vendemiale G, Altomare E. Mitochondrial involvement in non-alcoholic steatohepatitis. Molecular Aspects of Medicine 2008;29:22–35. https://doi.org/10.1016/j.mam.2007.09.014.
[80] Begriche K, Igoudjil A, Pessayre D, Fromenty B. Mitochondrial dysfunction in NASH: Causes, consequences and possible means to prevent it. Mitochondrion 2006;6:1–28. https://doi.org/10.1016/j.mito.2005.10.004.
[81] Shin S, Kim J, Lee JY, Kim J, Oh C-M. Mitochondrial quality control: its role in metabolic dysfunction-associated steatotic liver disease (MASLD). J Obes Metab Syndr 2023;32:289–302. https://doi.org/10.7570/jomes23054.
[82] Oh TJ, Moon JH, Choi SH, Lim S, Park KS, Cho NH, et al. Body-weight fluctuation and incident diabetes mellitus, cardiovascular disease, and mortality: a 16-year prospective cohort study. J Clin Endocrinol Metab 2019;104:639–46. https://doi.org/10.1210/jc.2018-01239.
[83] Rhee E-J. Weight cycling and its cardiometabolic impact. J Obes Metab Syndr 2017;26:237–42. https://doi.org/10.7570/jomes.2017.26.4.237.
[84] Field AE, Malspeis S, Willett WC. Weight cycling and mortality among middle-aged and older women. Arch Intern Med 2009;169:881–6. https://doi.org/10.1001/archinternmed.2009.67.
[85] Stevens VL, Jacobs EJ, Sun J, Patel AV, McCullough ML, Teras LR, et al. Weight Cycling and mortality in a large prospective us study. American Journal of Epidemiology 2012;175:785–92. https://doi.org/10.1093/aje/kwr378.
[86] List EO, Berryman DE, Wright-Piekarski J, Jara A, Funk K, Kopchick JJ. The effects of weight cycling on lifespan in male C57BL/6J mice. Int J Obes (Lond) 2013;37:1088–94. https://doi.org/10.1038/ijo.2012.203.
[87] Rosenbaum JL, Frayo RS, Melhorn SJ, Cummings DE, Schur EA. Effects of multiple cycles of weight loss and regain on the body weight regulatory system in rats. Am J Physiol Endocrinol Metab 2019;317:E863–70. https://doi.org/10.1152/ajpendo.00110.2019.
[88] Smith DL, Yang Y, Nagy TR, Patki A, Vasselli JR, Zhang Y, et al. Weight cycling increases longevity compared with sustained obesity in mice. Obesity (Silver Spring) 2018;26:1733–9. https://doi.org/10.1002/oby.22290.
[89] Smith DL, Yang Y, Nagy TR, Patki A, Vasselli JR, Zhang Y, et al. Weight cycling increases longevity compared with sustained obesity in mice. Obesity 2018;26:1733–9. https://doi.org/10.1002/oby.22290.
[90] Bernecker M, Lin A, Feuchtinger A, Molenaar A, Schriever SC, Pfluger PT. Weight cycling exacerbates glucose intolerance and hepatic triglyceride storage in mice with a history of chronic high fat diet exposure. Journal of Translational Medicine 2025;23:7. https://doi.org/10.1186/s12967-024-06039-0.
[91] Anderson E, Gutierrez D, Kennedy A, Hasty A. Weight cycling increases T-Cell accumulation in adipose tissue and impairs systemic glucose tolerance. Diabetes 2013;62. https://doi.org/10.2337/db12-1076.
[92] Thillainadesan S, Madsen S, James DE, Hocking SL. The impact of weight cycling on health outcomes in animal models: A systematic review and meta-analysis. Obesity Reviews 2022;23:e13416. https://doi.org/10.1111/obr.13416.
[93] Palm IF, Schram RGAE, Swarts HJM, van Schothorst EM, Keijer J. Body weight cycling with identical diet composition does not affect energy balance and has no adverse effect on metabolic health parameters. Nutrients 2017;9. https://doi.org/10.3390/nu9101149.
[94] Kim M-S, Kim IY, Sung HR, Nam M, Kim YJ, Kyung DS, et al. Metabolic dysfunction following weight regain compared to initial weight gain in a high-fat diet-induced obese mouse model. The Journal of Nutritional Biochemistry 2019;69:44–52. https://doi.org/10.1016/j.jnutbio.2019.02.011.
[95] Sun Y, Geng M, Yuan Y, Guo P, Chen Y, Yang D, et al. Lmo4-resistin signaling contributes to adipose tissue-liver crosstalk upon weight cycling. The FASEB Journal 2020;34:4732–48. https://doi.org/10.1096/fj.201902708R.
[96] Inia JA, de Jong JCBC, Keijzer N, Menke AL, Princen HMG, Jukema JW, et al. Effects of repeated weight cycling on non-alcoholic steatohepatitis in diet-induced obese mice. The FASEB Journal 2024;38:e23579. https://doi.org/10.1096/fj.202400167R.
[97] Thillainadesan S, Madsen S, James DE, Hocking SL. The impact of weight cycling on health outcomes in animal models: A systematic review and meta-analysis. Obesity Reviews 2022;23:e13416. https://doi.org/10.1111/obr.13416.
[98] Mcmillen T, Minami E, Leboeuf R. Atherosclerosis and cardiac function assessment in low-density lipoprotein receptor-deficient mice undergoing body weight cycling. Nutrition & Diabetes 2013;3:e79. https://doi.org/10.1038/nutd.2013.19.
[99] Ahmet I, Tae H-J, de Cabo R, Lakatta EG, Talan MI. Effects of Calorie Restriction on Cardioprotection and Cardiovascular Health. J Mol Cell Cardiol 2011;51:263–71. https://doi.org/10.1016/j.yjmcc.2011.04.015.
[100] Takahashi Y, Fukusato T. Histopathology of nonalcoholic fatty liver disease/nonalcoholic steatohepatitis. World J Gastroenterol 2014;20:15539–48. https://doi.org/10.3748/wjg.v20.i42.15539.
[101] Kleiner DE, Brunt EM, Van Natta M, Behling C, Contos MJ, Cummings OW, et al. Design and validation of a histological scoring system for nonalcoholic fatty liver disease. Hepatology 2005;41:1313–21. https://doi.org/10.1002/hep.20701.
[102] Kim YN, Shin JH, Kyeong DS, Cho SY, Kim M-Y, Lim HJ, et al. Ahnak deficiency attenuates high-fat diet-induced fatty liver in mice through FGF21 induction. Exp Mol Med 2021;53:468–82. https://doi.org/10.1038/s12276-021-00573-3.
[103] Li Y, Xie Z, Song Q, Li J. Mitochondria homeostasis: Biology and involvement in hepatic steatosis to NASH. Acta Pharmacol Sin 2022;43:1141–55. https://doi.org/10.1038/s41401-022-00864-z.
[104] Keipert S, Voigt A, Klaus S. Dietary effects on body composition, glucose metabolism, and longevity are modulated by skeletal muscle mitochondrial uncoupling in mice. Aging Cell 2011;10:122–36. https://doi.org/10.1111/j.1474-9726.2010.00648.x.
[105] Ikuta T, Saito S, Tani H, Tatefuji T, Hashimoto K. Resveratrol derivative-rich melinjo (Gnetum gnemon L.) seed extract improves obesity and survival of C57BL/6 mice fed a high-fat diet. Bioscience, Biotechnology, and Biochemistry 2015;79:2044–9. https://doi.org/10.1080/09168451.2015.1056510.
[106] Montani J-P, Viecelli AK, Prévot A, Dulloo AG. Weight cycling during growth and beyond as a risk factor for later cardiovascular diseases: the ‘repeated overshoot’ theory. Int J Obes 2006;30:S58–66. https://doi.org/10.1038/sj.ijo.0803520.
[107] Itabe H, Yamaguchi T, Nimura S, Sasabe N. Perilipins: a diversity of intracellular lipid droplet proteins. Lipids in Health and Disease 2017;16:83. https://doi.org/10.1186/s12944-017-0473-y.
[108] Lomb DJ, Laurent G, Haigis MC. Sirtuins regulate key aspects of lipid metabolism. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics 2010;1804:1652–7. https://doi.org/10.1016/j.bbapap.2009.11.021.
[109] Schreurs M, Kuipers F, Van Der Leij FR. Regulatory enzymes of mitochondrial β-oxidation as targets for treatment of the metabolic syndrome. Obesity Reviews 2010;11:380–8. https://doi.org/10.1111/j.1467-789X.2009.00642.x.
[110] Feldstein AE, Canbay A, Angulo P, Taniai M, Burgart LJ, Lindor KD, et al. Hepatocyte apoptosis and fas expression are prominent features of human nonalcoholic steatohepatitis. Gastroenterology 2003;125:437–43. https://doi.org/10.1016/S0016-5085(03)00907-7.
[111] Canbay A, Feldstein A, Baskin-Bey E, Bronk SF, Gores GJ. The Caspase Inhibitor IDN-6556 Attenuates hepatic injury and fibrosis in the bile duct ligated mouse. J Pharmacol Exp Ther 2004;308:1191–6. https://doi.org/10.1124/jpet.103.060129.
[112] Wang R, Song F, Li S, Wu B, Gu Y, Yuan Y. Salvianolic acid A attenuates CCl4-induced liver fibrosis by regulating the PI3K/AKT/mTOR, Bcl-2/Bax and caspase-3/cleaved caspase-3 signaling pathways. DDDT 2019;13:1889–900. https://doi.org/10.2147/DDDT.S194787.
[113] Witek RP, Stone WC, Karaca FG, Syn W-K, Pereira TA, Agboola KM, et al. Pan-caspase inhibitor VX-166 reduces fibrosis in an animal model of nonalcoholic steatohepatitis. Hepatology 2009;50:1421–30. https://doi.org/10.1002/hep.23167.
[114] Wang K. Molecular mechanisms of hepatic apoptosis. Cell Death Dis 2014;5:e996–e996. https://doi.org/10.1038/cddis.2013.499.
[115] Ng MYW, Wai T, Simonsen A. Quality control of the mitochondrion. Developmental Cell 2021;56:881–905. https://doi.org/10.1016/j.devcel.2021.02.009.
[116] Moore MP, Cunningham RP, Meers GM, Johnson SA, Wheeler AA, Ganga RR, et al. Compromised hepatic mitochondrial fatty acid oxidation and reduced markers of mitochondrial turnover in human NAFLD. Hepatology 2022;76:1452–65. https://doi.org/10.1002/hep.32324.
[117] Farrell GC, Mridha AR, Yeh MM, Arsov T, Van Rooyen DM, Brooling J, et al. Strain dependence of diet-induced NASH and liver fibrosis in obese mice is linked to diabetes and inflammatory phenotype. Liver International 2014;34:1084–93. https://doi.org/10.1111/liv.12335.
[118] Chen Z, Tian R, She Z, Cai J, Li H. Role of oxidative stress in the pathogenesis of nonalcoholic fatty liver disease. Free Radical Biology and Medicine 2020;152:116–41. https://doi.org/10.1016/j.freeradbiomed.2020.02.025.
[119] García-Ruiz I, Solís-Muñoz P, Fernández-Moreira D, Grau M, Colina F, Muñoz-Yagüe T, et al. High-fat diet decreases activity of the oxidative phosphorylation complexes and causes nonalcoholic steatohepatitis in mice. Dis Model Mech 2014;7:1287–96. https://doi.org/10.1242/dmm.016766.
[120] Yuzefovych L, Musiyenko S, Wilson G, Rachek L. Mitochondrial DNA damage and dysfunction, and oxidative stress are associated with endoplasmic reticulum stress, protein degradation and apoptosis in high fat diet-induced insulin resistance mice. PloS One 2013;8:e54059. https://doi.org/10.1371/journal.pone.0054059.
[121] Haase CL, Lopes S, Olsen AH, Satylganova A, Schnecke V, McEwan P. Weight loss and risk reduction of obesity-related outcomes in 0.5 million people: evidence from a UK primary care database. Int J Obes 2021;45:1249–58. https://doi.org/10.1038/s41366-021-00788-4.
[122] Kim KE, Jung Y, Min S, Nam M, Heo RW, Jeon BT, et al. Caloric restriction of db/db mice reverts hepatic steatosis and body weight with divergent hepatic metabolism. Sci Rep 2016;6:30111. https://doi.org/10.1038/srep30111.
[123] Green CL, Lamming DW, Fontana L. Molecular mechanisms of dietary restriction promoting health and longevity. Nat Rev Mol Cell Biol 2022;23:56–73. https://doi.org/10.1038/s41580-021-00411-4.
[124] Wilson KA, Chamoli M, Hilsabeck TA, Pandey M, Bansal S, Chawla G, et al. Evaluating the beneficial effects of dietary restrictions: A framework for precision nutrigeroscience. Cell Metabolism 2021;33:2142–73. https://doi.org/10.1016/j.cmet.2021.08.018.
[125] Luukkonen PK, Sädevirta S, Zhou Y, Kayser B, Ali A, Ahonen L, et al. Saturated fat is more metabolically harmful for the human liver than unsaturated fat or simple sugars. Diabetes Care 2018;41:1732–9. https://doi.org/10.2337/dc18-0071.
[126] Westerbacka J, Lammi K, Häkkinen A-M, Rissanen A, Salminen I, Aro A, et al. Dietary fat content modifies liver fat in overweight nondiabetic subjects. The Journal of Clinical Endocrinology & Metabolism 2005;90:2804–9. https://doi.org/10.1210/jc.2004-1983.
[127] de Meijer VE, Le HD, Meisel JA, Sharif MRA, Pan A, Nosé V, et al. Dietary fat intake promotes the development of hepatic steatosis independently from excess caloric consumption in a murine model. Metabolism 2010;59:1092–105. https://doi.org/10.1016/j.metabol.2009.11.006.
[128] Lian C-Y, Zhai Z-Z, Li Z-F, Wang L. High fat diet-triggered non-alcoholic fatty liver disease: A review of proposed mechanisms. Chemico-Biological Interactions 2020;330:109199. https://doi.org/10.1016/j.cbi.2020.109199.
[129] Cioffi F, Giacco A, Petito G, de Matteis R, Senese R, Lombardi A, et al. Altered Mitochondrial quality control in rats with metabolic dysfunction-associated fatty liver disease (MAFLD) induced by high-fat feeding. Genes (Basel) 2022;13:315. https://doi.org/10.3390/genes13020315.
[130] Della Pepa G, Vetrani C, Lombardi G, Bozzetto L, Annuzzi G, Rivellese AA. Isocaloric dietary changes and non-alcoholic fatty liver disease in high cardiometabolic risk individuals. Nutrients 2017;9:1065. https://doi.org/10.3390/nu9101065.
[131] Eslamparast T, Tandon P, Raman M. Dietary composition independent of weight loss in the management of non-alcoholic fatty liver disease. Nutrients 2017;9:800. https://doi.org/10.3390/nu9080800.
[132] Brainard RE, Watson LJ, DeMartino AM, Brittian KR, Readnower RD, Boakye AA, et al. High fat feeding in mice is insufficient to induce cardiac dysfunction and does not exacerbate heart failure. PLOS ONE 2013;8:e83174. https://doi.org/10.1371/journal.pone.0083174.
[133] Jeckel KM, Miller KE, Chicco AJ, Chapman PL, Mulligan CM, Falcone PH, et al. The role of dietary fatty acids in predicting myocardial structure in fat-fed rats. Lipids in Health and Disease 2011;10:92. https://doi.org/10.1186/1476-511X-10-92.
[134] Hydes T, Alam U, Cuthbertson DJ. The impact of macronutrient intake on non-alcoholic fatty liver disease (NAFLD): Too much fat, too much carbohydrate, or just too many calories? Front Nutr 2021;8. https://doi.org/10.3389/fnut.2021.640557.
[135] Duwaerts CC, Amin AM, Siao K, Her C, Fitch M, Beysen C, et al. Specific macronutrients exert unique influences on the adipose-liver axis to promote hepatic steatosis in mice. Cell Mol Gastroenterol Hepatol 2017;4:223–36. https://doi.org/10.1016/j.jcmgh.2017.04.004.
[136] Simões ICM, Fontes A, Pinton P, Zischka H, Wieckowski MR. Mitochondria in non-alcoholic fatty liver disease. The International Journal of Biochemistry & Cell Biology 2018;95:93–9. https://doi.org/10.1016/j.biocel.2017.12.019.
[137] Zheng P, Ma W, Gu Y, Wu H, Bian Z, Liu N, et al. High-fat diet causes mitochondrial damage and downregulation of mitofusin-2 and optic atrophy-1 in multiple organs. J Clin Biochem Nutr 2023;73:61–76. https://doi.org/10.3164/jcbn.22-73.
[138] Lee K, Haddad A, Osme A, Kim C, Borzou A, Ilchenko S, et al. Hepatic mitochondrial defects in a nonalcoholic fatty liver disease mouse model are associated with increased degradation of oxidative phosphorylation subunits. Molecular & Cellular Proteomics 2018;17:2371–86. https://doi.org/10.1074/mcp.RA118.000961.
[139] Ueno T, Komatsu M. Autophagy in the liver: functions in health and disease. Nat Rev Gastroenterol Hepatol 2017;14:170–84. https://doi.org/10.1038/nrgastro.2016.185.
[140] Bagherniya M, Butler AE, Barreto GE, Sahebkar A. The effect of fasting or calorie restriction on autophagy induction: A review of the literature. Ageing Research Reviews 2018;47:183–97. https://doi.org/10.1016/j.arr.2018.08.004.
[141] Steffen J, Ngo J, Wang S-P, Williams K, Kramer HF, Ho G, et al. The mitochondrial fission protein Drp1 in liver is required to mitigate NASH and prevents the activation of the mitochondrial ISR. Molecular Metabolism 2022;64:101566. https://doi.org/10.1016/j.molmet.2022.101566.
[142] Elbadawy M, Tanabe K, Yamamoto H, Ishihara Y, Mochizuki M, Abugomaa A, et al. Evaluation of the efficacy of mitochondrial fission inhibitor (Mdivi-1) using non-alcoholic steatohepatitis (NASH) liver organoids. Front Pharmacol 2023;14. https://doi.org/10.3389/fphar.2023.1243258.
[143] Da Dalt L, Moregola A, Svecla M, Pedretti S, Fantini F, Ronzio M, et al. The inhibition of inner mitochondrial fusion in hepatocytes reduces non-alcoholic fatty liver and improves metabolic profile during obesity by modulating bile acid conjugation. Cardiovascular Research 2023;119:2917–29. https://doi.org/10.1093/cvr/cvad169.
[144] Wood JD, Enser M, Fisher AV, Nute GR, Sheard PR, Richardson RI, et al. Fat deposition, fatty acid composition and meat quality: A review. Meat Science 2008;78:343–58. https://doi.org/10.1016/j.meatsci.2007.07.019.
[145] Wang D, Wei Y, Pagliassotti MJ. Saturated fatty acids promote endoplasmic reticulum stress and liver injury in rats with hepatic steatosis. Endocrinology 2006;147:943–51. https://doi.org/10.1210/en.2005-0570.
[146] Rosqvist F, Kullberg J, Ståhlman M, Cedernaes J, Heurling K, Johansson H-E, et al. Overeating saturated fat promotes fatty liver and ceramides compared with polyunsaturated fat: a randomized trial. The Journal of Clinical Endocrinology & Metabolism 2019;104:6207–19. https://doi.org/10.1210/jc.2019-00160.
[147] Šmíd V, Dvořák K, Stehnová K, Strnad H, Rubert J, Stříteský J, et al. The ameliorating effects of n-3 polyunsaturated fatty acids on liver steatosis induced by a high-fat methionine choline-deficient diet in mice. International Journal of Molecular Sciences 2023;24:17226. https://doi.org/10.3390/ijms242417226.
[148] Schoeler M, Ellero-Simatos S, Birkner T, Mayneris-Perxachs J, Olsson L, Brolin H, et al. The interplay between dietary fatty acids and gut microbiota influences host metabolism and hepatic steatosis. Nat Commun 2023;14:1–16. https://doi.org/10.1038/s41467-023-41074-3.
[149] Van Name MA, Savoye M, Chick JM, Galuppo BT, Feldstein AE, Pierpont B, et al. A low ω-6 to ω-3 pufa ratio (n–6:n–3 PUFA) diet to treat fatty liver disease in obese youth. The Journal of Nutrition 2020;150:2314–21. https://doi.org/10.1093/jn/nxaa183.
[150] Zamarron BF, Porsche CE, Luan D, Lucas HR, Mergian TA, Martinez-Santibanez G, et al. Weight regain in formerly obese mice hastens the development of hepatic steatosis due to impaired adipose tissue function. Obesity (Silver Spring) 2020;28:1086–97. https://doi.org/10.1002/oby.22788.
[151] Canbay A, Friedman S, Gores GJ. Apoptosis: The nexus of liver injury and fibrosis. Hepatology 2004;39:273–8. https://doi.org/10.1002/hep.20051.
[152] Malhi H, Gores GJ. Cellular and molecular mechanisms of liver injury. Gastroenterology 2008;134:1641–54. https://doi.org/10.1053/j.gastro.2008.03.002.
[153] Weiskirchen R, Tacke F. Cellular and molecular functions of hepatic stellate cells in inflammatory responses and liver immunology. Hepatobiliary Surg Nutr 2014;3:344–63. https://doi.org/10.3978/j.issn.2304-3881.2014.11.03.
[154] Garcia-Martinez I, Santoro N, Chen Y, Hoque R, Ouyang X, Caprio S, et al. Hepatocyte mitochondrial DNA drives nonalcoholic steatohepatitis by activation of TLR9. J Clin Invest 2016;126:859–64. https://doi.org/10.1172/JCI83885.
[155] Mansouri A, Gattolliat C-H, Asselah T. Mitochondrial dysfunction and signaling in chronic liver diseases. Gastroenterology 2018;155:629–47. https://doi.org/10.1053/j.gastro.2018.06.083.
[156] Lu J-L, Yu C-X, Song L-J. Programmed cell death in hepatic fibrosis: current and perspectives. Cell Death Discov 2023;9:449. https://doi.org/10.1038/s41420-023-01749-8.
[157] Wree A, McGeough MD, Peña CA, Schlattjan M, Li H, Inzaugarat ME, et al. NLRP3 inflammasome activation is required for fibrosis development in NAFLD. J Mol Med 2014;92:1069–82. https://doi.org/10.1007/s00109-014-1170-1.
[158] Gan C, Cai Q, Tang C, Gao J. Inflammasomes and pyroptosis of liver cells in liver fibrosis. Front Immunol 2022;13:896473. https://doi.org/10.3389/fimmu.2022.896473.
[159] Ma W, Wang Y, Liu J. NLRP3 inflammasome activation in liver disorders: from molecular pathways to therapeutic strategies. JIR 2025;18:8277–94. https://doi.org/10.2147/JIR.S532908.
[160] Schuppan D, Kim YO. Evolving therapies for liver fibrosis. J Clin Invest 2013;123:1887–901. https://doi.org/10.1172/JCI66028.
[161] Loomba R, Adams LA. Advances in non-invasive assessment of hepatic fibrosis 2020. https://doi.org/10.1136/gutjnl-2018-317593.
[162] Dulai PS, Singh S, Patel J, Soni M, Prokop LJ, Younossi Z, et al. Increased risk of mortality by fibrosis stage in nonalcoholic fatty liver disease: Systematic review and meta‐analysis. Hepatology 2017;65:1557. https://doi.org/10.1002/hep.29085.
[163] Powers HJ. Riboflavin (vitamin B-2) and health12. The American Journal of Clinical Nutrition 2003;77:1352–60. https://doi.org/10.1093/ajcn/77.6.1352.
[164] Halvorsen O, Skrede S. Regulation of the biosynthesis of CoA at the level of pantothenate kinase. European Journal of Biochemistry 1982;124:211–5. https://doi.org/10.1111/j.1432-1033.1982.tb05927.x.
[165] Lonsdale D. A Review of the Biochemistry, Metabolism and clinical benefits of thiamin(e) and its derivatives. Evidence-Based Complementary and Alternative Medicine 2006;3:349513. https://doi.org/10.1093/ecam/nek009.
[166] Leklem JE. Vitamin B-6: A status report. The Journal of Nutrition 1990;120:1503–7. https://doi.org/10.1093/jn/120.suppl_11.1503.
[167] Cimmino F, Catapano A, Trinchese G, Cavaliere G, Culurciello R, Fogliano C, et al. Dietary micronutrient management to treat mitochondrial dysfunction in diet-induced obese mice. International Journal of Molecular Sciences 2021;22:2862. https://doi.org/10.3390/ijms22062862.
[168] Zeisel SH. Dietary choline deficiency causes DNA strand breaks and alters epigenetic marks on DNA and histones. Mutat Res 2012;733:34–8. https://doi.org/10.1016/j.mrfmmm.2011.10.008.
[169] Hernandez-Rodas MC, Valenzuela R, Videla LA. Relevant aspects of nutritional and dietary interventions in non-alcoholic fatty liver disease. International Journal of Molecular Sciences 2015;16:25168–98. https://doi.org/10.3390/ijms161025168.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99040-
dc.description.abstract飲⾷限制(Dietary restriction)是指在不引起營養不良的前提下減少⽇常⽣活總熱量攝取之百分之20% ⾄40%,已被廣泛證實可延⾧多種物種的壽命。除了延壽效果之外,飲⾷限制亦被認為能透過維持粒線體功能,改善與⽼化相關的疾病,如代謝性脂肪肝病(metabolic dysfunction-associated steatotic liver disease, MASLD)。飲⾷限制也可作為減重的⼿段。然⽽在實際應⽤中,⾧期且持續實施飲⾷不易維持,飲⾷限制的中斷易導致體重出現波動,進⽽導致體重循環(weight
cycling)的出現。
僅管飲⾷限制的益處已被廣泛探討,但多數⾧期研究是以標準低脂飼料為基礎,與現代⼈偏向西⽅化、⾼脂肪含量的飲⾷型態有所差異,因此尚不清楚在⾼脂飲⾷背景下實施飲⾷限制是否仍能帶來正⾯健康效益。若能釐清不同脂肪含量飲⾷下飲⾷限制的效果,並進⼀步了解由攝⾷量變化引起的體重循環如何影響健康,將有助於制定更合適的飲⾷策略。
本研究旨在探討中等脂肪與⾼脂飲⾷背景下,⾧期飲⾷限制及體重循環對⼩⿏肝臟健康的影響。以中等脂肪含量的繁殖飼糧與⾼脂飼糧餵飼⼩⿏,建⽴飲⾷限制的動物模型;同時透過任飼(ad libitum)與飲⾷限制兩種餵飼⽅式交替,模擬體重循環的狀態。
在第⼀個實驗中,餵飼C57BL/6 公⿏中等脂肪飼糧,並分為四組:⾃由進⾷(AL)組、連續飲⾷限制(DR)組,以及兩組體重循環組別(S-AL組及S-DR組)。S-AL 組別起始於⾃由進⾷⽽S-DR 則起始於飲⾷限制,後續更換兩種飲⾷⽅法(⾃由進⾷或飲⾷限制)數次來達到體重循環。S-AL 及S-DR 兩組別分別在⾃由飲⾷引起體重復重及飲⾷限制引起之體重下降後犧牲。在中等脂肪飲⾷中,連續飲⾷限制可有效降低體重與肝臟脂肪堆積;S-DR ⼩⿏與DR組表現相似,也顯⽰有利於體重與肝脂控制效果。相較之下,S-AL ⼩⿏雖肝臟脂肪堆積下降,但卻出現加劇的肝臟細胞凋亡與纖維化,並伴隨粒線體融合、⽣成與⾃噬相關蛋⽩表現下降。這些結果顯⽰,在中等脂肪飲⾷模式中,體重循環後,若體重復重反⽽可能導致更嚴重的肝損傷;反之,體重減輕階則能保留其健康效益。
在第⼆個實驗中,探討⾼脂飲⾷下的影響。C57BL/6 公⿏分為四組:標準飼料⾃由進⾷(CTR)組、⾼脂飲⾷⾃由進⾷(H)組、⾼脂飲⾷飲⾷限制組(HDR),以及體重循環(WC)組。HDR與WC組⼩⿏體重雖低於H組,但⾎糖未改善且依然引起肝臟脂肪變性、纖維化及⾮酒精脂肪肝(nonalcoholic fatty liver disease, NAFLD) 評分依然偏⾼,此外,兩組肝臟中的ATP 含量下降,粒線體動態與⾃噬相關蛋⽩(如 MFN2、LC3、p62)表現也下降。此結果指出,⾼脂飲⾷下之飲⾷限制及體重循環,仍會引起肝臟損傷,並可能損害粒線體功能。
總結⽽⾔,透過飲⾷限制降低熱量攝取雖有效降低體重,然⽽其對肝臟之影響取決於飲⾷脂肪含量。此外,即便中等脂肪飲⾷限制可對肝臟帶來益處,然⽽中斷飲⾷限制造成體重回升,則會導致更嚴重的肝臟損傷。因此,控制飲⾷中脂肪含量並預防體重回升,是減緩肝臟損傷的關鍵。
zh_TW
dc.description.abstractDietary restriction (DR), characterized by a reduction of 20% to 40% in habitual caloric intake without inducing malnutrition, has been extensively demonstrated to extend lifespan across a wide range of species. Beyond its reported effects on lifespan extension, DR has also been implicated in mitigating age-associated diseases, including metabolic dysfunction-associated steatotic liver disease (MASLD), through the preservation of mitochondrial function. DR can also be a strategy to lose body weight. Nevertheless, the long-term implementation of continuous DR remains a considerable challenge, as it is frequently disrupted in practical settings, thereby giving rise to weight cycling patterns.
Although the benefits of dietary restriction have been widely investigated, most long-term studies are based on standard low-fat diets, which differ from the modern Westernized dietary pattern characterized by higher fat content. Therefore, it remains unclear whether implementing dietary restriction under a high-fat dietary background can still confer positive health effects. Clarifying the effects of dietary restriction with different dietary fat content and further understanding how weight cycling caused by variations in feeding patterns impacts health would contribute to the development of more appropriate dietary strategies.
This study aimed to investigate the effects of long-term dietary restriction and weight cycling on liver health under moderate- and high-fat dietary backgrounds. Mice were fed either a moderate-fat breeding diet or a high-fat diet to establish a dietary restriction animal model. Additionally, alternating between ad libitum feeding and dietary restriction was applied to simulate weight cycling.
In the first experiment, C57BL/6 male mice were fed a moderate-fat breeding diet and divided into four groups: ad libitum feeding (AL) group, continuous DR (DR) group, and two weight cycling groups, which were sacrificed either at the end of the ad libitum phase (S-AL) or at the end of the restriction phase (S-DR). Continuous DR under a moderate-fat diet showed beneficial effects on body weight and hepatic lipid accumulation. S-DR mice showed similar beneficial effects on body weight and liver lipid content to the DR group. In contrast, compared to AL mice, S-AL mice exhibited reduced hepatic lipid content but showed exacerbated apoptosis and fibrosis, as well as reduced expression of mitochondrial fusion, biogenesis, and mitophagy markers. These findings reveal that, in the moderate-fat breeding diet model, termination in the AL phase is associated with more severe hepatic damage, whereas termination in the DR phase shows the healthy benefits.
In the second experiment, the effects of high-fat diets were investigated. C57BL/6 male mice were assigned to four groups: chow diet ad libitum (CTR) group, high-fat diet ad libitum (H), restricted high-fat diet (HDR) group, and weight cycling (WC) group with high-fat diet. Both the HDR and WC groups exhibited lower body weight compared to the H group, but blood glucose levels were still sustained, and pathological alterations were provoked. Hepatic steatosis, fibrosis, and NAFLD scores remained elevated. Additionally, the HDR and the WC groups showed reduced ATP contents and altered expressions of mitochondrial dynamics and autophagy-related proteins in the liver. These findings indicate that DR under high-fat conditions induces liver injury and may impair mitochondrial function, regardless of restriction pattern.
Together, although reduced caloric intake contributes to the metabolic benefits of DR, dietary fat plays a more critical role. These findings highlight the importance of dietary fat and the prevention of weight regain to reduce hepatic injury.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-21T16:09:22Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-08-21T16:09:22Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents謝辭 i
中文摘要 ii
Abstract iv
Table of Contents vi
List of figures x
List of tables xi
List of Abbreviations xii
Chapter 1: Introduction 1
Chapter 2: Literature Review 3
2.1 Dietary restriction (DR) 3
2.2 The molecular regulations of DR on liver health 4
2.2.1 Energy sensing and lipid metabolism 4
2.2.2 Mitochondrial dynamics 5
2.2.3 Mitochondrial biogenesis and respiratory function 5
2.2.4 Mitophagy and organelle turnover 7
2.3 Hepatic lipid storage, oxidation, and transport 8
2.4 Consequences of excessive hepatic lipid accumulation 10
2.5 Obesity and fatty liver 11
2.6 Progression from steatosis and steatohepatitis to hepatic fibrosis 12
2.7 Mitochondrial dysfunction in fatty liver 13
2.8 Weight cycling and its effect on health 14
2.9 Weight cycling and liver 15
Chapter 3: Aim 18
Chapter 4: Evaluation of the effects of long-term DR and weight cycling using a moderate-fat breeding diet on liver health 20
4.1 Materials and Methods 20
4.1.1 Animals and Experimental Design 20
4.1.2 Rationale of Dietary Design 20
4.1.3 Histological Analysis 21
4.1.4 NAFLD Activity Score Assessment 21
4.1.5 Western Blot Analysis 22
4.1.6 Total Collagen Quantification 23
4.1.7 Statistical Analysis 23
4.2 Results 23
4.2.1 Body weight and liver weight of mice 23
4.2.2 Lipid metabolism in the liver of mice underwent weight cycling 27
4.2.3 Hepatic fibrosis and apoptosis in mice undergoing weight cycling 31
4.2.4 The effect of weight cycling on mitochondrial homeostasis 37
4.2.5 The effect of weight cycling on the heart 39
4.3 Discussion 40
4.3.1 Number of DR cycles influences weight fluctuation dynamics 40
4.3.2 Mechanisms involved in hepatic fibrosis by weight cycling ending in weight gain 43
Chapter 5: Evaluation of the effects of long-term DR and weight cycling using HFD on liver health. 46
5.1 Materials and Methods 46
5.1.1 Animals and Experimental Design 46
5.1.2 Triacylglycerol Measurement 48
5.1.3 Histological Analysis 48
5.1.4 NAFLD Activity Score Assessment 48
5.1.5 Lipid Peroxidation (TBARS Assay) 48
5.1.6 ATP Content Analysis 49
5.1.7 Western Blot Analysis 49
5.1.8 Statistical Analysis 50
5.2 Results 51
5.2.1 Body weight, liver weight, heart weight, and blood glucose of mice 51
5.2.2 HFD restriction did not reverse liver impairment caused by HFD 54
5.2.3 TBARS, triacylglycerol and ATP content in the liver 57
5.2.4 Expression of mitochondrial homeostasis-related proteins 59
5.2.5 The effect of HFD restriction on the heart 64
5.3 Discussion 67
5.3.1 Sustained HFD restriction promotes hepatic injury despite reduced caloric intake 67
5.3.2 Mitochondrial dysfunction in the liver remained under HFD restriction 69
5.4 Conclusion 71
Chapter 6: Discussion 72
6.1 The effect of continuous DR with different fat content diets 72
6.2 The effect of weight cycling with different fat content diets 74
6.3 Mechanisms of fibrogenic remodeling under different dietary interventions 75
6.4 Clinical implications of dietary intervention timing 76
6.5 Micronutrient availability under dietary restriction 78
Chapter 7: Conclusions 81
Reference 83
-
dc.language.isoen-
dc.subject粒線體zh_TW
dc.subject飲⾷限制zh_TW
dc.subject肝臟zh_TW
dc.subject體重循環zh_TW
dc.subject纖維化zh_TW
dc.subjectWeight cyclingen
dc.subjectMitochondriaen
dc.subjectFibrosisen
dc.subjectLiveren
dc.subjectDietary restrictionen
dc.title飲⾷中脂肪含量在飲⾷限制與體重循環中對肝臟的影響zh_TW
dc.titleThe effects of dietary fat content in dietary restriction and weight cycling on the liveren
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree博士-
dc.contributor.oralexamcommittee劉逸軒;許秀卿;陳洵一;張育嘉zh_TW
dc.contributor.oralexamcommitteeI-Hsuan Liu;Hsiu-Ching Hsu;Shuen-Ei Chen;Yu-Jia Changen
dc.subject.keyword飲⾷限制,體重循環,肝臟,粒線體,纖維化,zh_TW
dc.subject.keywordDietary restriction,Weight cycling,Liver,Mitochondria,Fibrosis,en
dc.relation.page106-
dc.identifier.doi10.6342/NTU202503042-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2025-08-04-
dc.contributor.author-college生物資源暨農學院-
dc.contributor.author-dept動物科學技術學系-
dc.date.embargo-lift2030-07-30-
Appears in Collections:動物科學技術學系

Files in This Item:
File SizeFormat 
ntu-113-2.pdf
  Restricted Access
25 MBAdobe PDFView/Open
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved