Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99039
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor黃定洧zh_TW
dc.contributor.advisorDing-Wei Huangen
dc.contributor.author黃以誠zh_TW
dc.contributor.authorYi-Cheng Huangen
dc.date.accessioned2025-08-21T16:09:09Z-
dc.date.available2025-08-22-
dc.date.copyright2025-08-21-
dc.date.issued2025-
dc.date.submitted2025-07-31-
dc.identifier.citation1. Thomson, D., et al., “Roadmap on silicon photonics,” Journal of Optics. 18(7): p.073003 (2016).
2. Sinatkas, G., et al., “Electro-optic modulation in integrated photonics,” Journal of Applied Physics. 130(1): p.010901 (2021).
3. Fu, X., et al., “5 × 20 Gb/s heterogeneously integrated III-V on silicon electro- absorption modulator array with arrayed waveguide grating multiplexer,” Optics Express. 23(15): pp.18686–18693 (2015).
4. Li, H., et al., “Design and performance of a thin-film lithium niobate modulator with a sunken electrode structure,” in Proceedings of the Cross Strait Radio Science and Wireless Technology Conference (CSRSWTC), IEEE (2023).
5. Li, X., et al., “AlInGaAs multiple quantum well-integrated device with multi- function light emission/detection and electro-optic modulation in the near-infrared range,” ACS Omega. 6(1): pp.8687–8692 (2021).
6. Haffner, C., et al., “Low-loss plasmon-assisted electro-optic modulator,” Nature. 556(7702): pp.483–486 (2018).
7. Wang, C., et al., “Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages,” Nature. 562(7725): pp.101–104 (2018).
8. Pintus, P., et al., “Ultralow voltage, high-speed, and energy-efficient cryogenic electro-optic modulator,” Optica. 9(10): pp.1176–1182 (2022).
9. Soref, R., “The past, present, and future of silicon photonics,” IEEE Journal of Selected Topics in Quantum Electronics. 12(6): pp.1678–1687 (2006).
10. Liu, J., et al., “Recent advances in polymer electro-optic modulators,” RSC Advances. 5(25): pp.15784–15794 (2015).
11. Komljenovic, T., et al., “Photonic integrated circuits using heterogeneous integration on silicon,” Proceedings of the IEEE. 106(12): pp.2246–2257 (2018).
12. Qiu, F. and Han, Y., “Electro-optic polymer ring resonator modulators,” Chinese Optics Letters. 19(4): p.041301 (2021).
13. Ma, Z., et al., “Two-dimensional material-based mode confinement engineering in electro-optic modulators,” IEEE Journal of Selected Topics in Quantum Electronics. 23(1): p.3400208 (2017).
14. Lee, B. S., et al., “High-performance integrated graphene electro-optic modulator at cryogenic temperature,” Nanophotonics. 10(1): pp.99–104 (2021).
15. Chen, N., et al., “High-efficiency electro-optic modulator on thin-film lithium niobate with high-permittivity cladding,” Preprint (2023).
16. Wang, Y., et al., “High-performance thin-film lithium niobate electro-optic modulator based on etching slot and ultrathin silicon film,” Applied Optics. 62(7): pp.1858–1863 (2023).
17. Xu, Q., et al., “Micrometre-scale silicon electro-optic modulator,” Nature. 435(7040): pp.325–327 (2005).
18. Reed, G. T., et al., “Silicon optical modulators,” Nature Photonics. 4(8): pp.518– 526 (2010).
19. Li, H., et al., “Optimization of a broadband lithium niobate–barium titanate hybrid modulator with low half-wave-voltage–length product,” IEEE Journal of Selected Topics in Quantum Electronics. 29(2): p.8200110 (2023).
20. Chen, L., et al., “Hybrid silicon and lithium niobate electro-optical ring modulator,” Optica. 1(2): pp.112–118 (2014).
21. Wooten, E. L., et al., “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE Journal of Selected Topics in Quantum Electronics. 6(1): pp.69–82 (2000).
22. Chen, G., et al., “Advances in lithium niobate photonics: development status and perspectives,” Advanced Photonics. 4(3): p.034003 (2022).
23. Rao, N. N., Elements of Engineering Electromagnetics, 6th ed. (Prentice Hall India, 2006).
24. Hunsperger, R. G. and Meyer-Arendt, J. R., “Integrated optics: theory and technology,” Applied Optics. 31(3): p.298 (1992).
25. Chuang, S. L., Physics of Optoelectronic Devices (John Wiley & Sons, Inc., 1995).
26. Binh, L. N., “Lithium niobate optical modulators: Devices and applications,” Journal of Crystal Growth. 288(1): pp.180–187 (2006).
27. Zhang, X., et al., “980nm high-power low-divergence VCSELs achieved by optimization of current density distribution,” IEEE Journal of Quantum Electronics. 48(1): pp.42–48 (2012).
28. Veerabathran, G. K., et al., “Room-temperature vertical-cavity surface-emitting lasers at 4 μm with GaSb-based type-II quantum wells,” Applied Physics Letters. 110(7): pp.1–6 (2017).
29. Thomson, D., et al., “Roadmap on silicon photonics,” Journal of Optics. 18(7): p.073003 (2016).
30. Maszara, W. P., et al., “Bonding of silicon wafers for silicon-on-insulator,” Journal of Applied Physics. 64(10): pp.4943–4950 (1988).
31. Kash, J. A., et al., “Chip-to-chip optical interconnects,” in Proceedings of the Optical Fiber Communication Conference (OFC) (2006).
32. Liu, K., et al., “Review and perspective on ultrafast wavelength-size electro-optic modulators,” Laser & Photonics Reviews. 9(2): pp.172–194 (2015).
33. Margalit, N., et al., “Perspective on the future of silicon photonics and electronics,” Applied Physics Letters. 118(22): p.220501 (2021).
34. Cui, Y., et al., “Thermo-optically tunable silicon photonic crystal light modulator,” Optics Letters. 35(21): p.3613 (2010).
35. Koch, B. R., et al., “Mode-locked silicon evanescent lasers,” Optics Express. 15(18): p.11225 (2007).
36. Wang, Z., et al., “Novel light source integration approaches for silicon photonics,” Laser & Photonics Reviews. 11(4): pp.1–21 (2017).
37. Sanna, S., and Schmidt, W. G., “Lithium niobate surfaces from a microscopic perspective,” Journal of Physics: Condensed Matter. 29(41): p.413001 (2017).
38. Boes, A., et al., “Status and potential of lithium niobate on insulator (LNOI) for photonic integrated circuits,” Laser & Photonics Reviews. 12(4): pp.1–19 (2018).
39. Alferness, R. C., “Titanium-diffused lithium niobate waveguide devices,” in Proceedings of the Sixth IEEE International Symposium on Applications of Ferroelectrics (1986): pp.4–6.
40. Griffiths, G. J., and Esdaile, R. J., “Analysis of titanium diffused planar optical waveguides in lithium niobate,” IEEE Journal of Quantum Electronics. 20(2): pp.149–159 (1984).
41. Arvidsson, G., et al., “Processing of titanium-diffused lithium niobate waveguide devices and waveguide characterization,” Thin Solid Films. 126(3–4): pp.177–184 (1985).
42. Harvey, G. T., et al., “The photorefractive effect in titanium indiffused lithium niobate optical directional couplers at 1.3 μm,” IEEE Journal of Quantum Electronics. 22(6): pp.939–946 (1986).
43. Poberaj, G., et al., “Ion-sliced lithium niobate thin films for active photonic devices,” Optical Materials. 31(7): pp.1054–1058 (2009).
44. Levy, M., et al., “Fabrication of single-crystal lithium niobate films by crystal ion slicing,” Applied Physics Letters. 73(16): pp.2293–2295 (1998).
45. Kiselev, D. A., et al., “Effect of annealing on the structure and phase composition of thin electro-optical lithium niobate films,” Inorganic Materials. 50(4): pp.419–422 (2014).
46. Scrymgeour, D. A., et al., “Crystal ion slicing of domain microengineered electro-optic devices on lithium niobate,” Integrated Ferroelectrics. 41(1–4): pp.35–42 (2001).
47. Rabiei, P., and Gunter, P., “Optical and electro-optical properties of submicrometer lithium niobate slab waveguides prepared by crystal ion slicing and wafer bonding,” Applied Physics Letters. 85(20): pp.4603–4605 (2004).
48. Ramadan, T. A., et al., “Electro-optic modulation in crystal-ion-sliced z-cut LiNbO3 thin films,” Applied Physics Letters. 76(11): pp.1407–1409 (2000).
49. Ding, R., et al., “Design and characterization of a 30-GHz bandwidth low-power silicon traveling-wave modulator,” Optics Communications. 321: pp.124–133 (2014).
50. Sun, Z., et al., “Optical modulators with 2D layered materials,” Nature Photonics. 10(4): pp.227–238 (2016).
51. Mahmoud, M., et al., “Lithium niobate electro-optic racetrack modulator etched in Y-cut LNOI platform,” IEEE Photonics Journal. 10(1): pp.1–10 (2018).
52. Mahmoud, M., et al., “Lithium niobate on insulator (LNOI) grating couplers,” in Conference on Lasers and Electro-Optics (CLEO), p. SW4I.7 (2015).
53. Wang, C., et al., “Monolithic lithium niobate photonic circuits for Kerr frequency comb generation and modulation,” Nature Communications. 10(1): pp.1–6 (2019).
54. Bazzan, M., and Sada, C., “Optical waveguides in lithium niobate: Recent developments and applications,” Applied Physics Reviews. 2(4): p.041301 (2015).
55. Wang, M., et al., “Perspectives of thin-film lithium niobate and electro-optic polymers for high-performance electro-optic modulation,” Journal of Materials Chemistry C. 11(33): pp.11107–11122 (2023).
56. Da, N. J., Optical Modulation in Lithium Niobate and Barium Titanate Thin Films, Ph.D. dissertation (National University of Singapore, 2022).
57. Shih, C. C., and Yariv, A., “A theoretical model of the linear electro-optic effect,” Journal of Physics C: Solid State Physics. 15(4): pp.825–846 (1982).
58. Boynton, N., et al., “A heterogeneously integrated silicon photonic/lithium niobate traveling wave electro-optic modulator,” Optics Express. 28(2): p.1868 (2020).
59. Li, M., et al., “Lithium niobate photonic-crystal electro-optic modulator,” Nature Communications. 11(1): pp.1–8 (2020).
60. Guenter, P., Electro-optic and Photorefractive Materials (Springer Berlin Heidelberg, 1986).
61. Saleh, B. E. A., and Teich, M. C., Fundamentals of Photonics, 1st ed. (John Wiley & Sons, 1991).
62. Noguchi, K., “Lithium niobate modulators,” in Broadband Optical Modulators: Science, Technology, and Applications, pp.151–172 (2012).
63. Bahl, I., et al., Microstrip Lines and Slotlines (Artech House, 2013).
64. Chen, H., Development of an 80 Gbit/s InP-based Mach-Zehnder Modulator, Ph.D. dissertation (Technische Universität Berlin, 2007).
65. Zhu, D., et al., “Integrated photonics on thin-film lithium niobate,” Advances in Optics and Photonics. 13(2): pp. 242–352 (2021).
66. Knowledge Base. Retrieved on April 13, 2025, from https://optics.ansys.com/hc/en-us/sections/360005021794-Solver-physics.
67. Wu, Q., et al., “Simulation design of thin film lithium niobate electro-optic modulator with bimetallic layer electrodes,” Optoelectronics Letters. 20(6): pp. 339–345 (2024).
68. Weigel, P. O., et al., “Design of high-bandwidth, low-voltage and low-loss hybrid lithium niobate electro-optic modulators,” Journal of Physics: Photonics. 3(1): p. 012001 (2020).
69. Patel, D., Design, analysis, and performance of a silicon photonic traveling wave Mach-Zehnder modulator, Ph.D. dissertation (McGill University, 2014).
70. Liu, X., et al., “Sub-terahertz bandwidth capacitively-loaded thin-film lithium niobate electro-optic modulators based on an undercut structure,” Optics Express. 29(25): pp. 41798–41807 (2021).
71. Alferness, R., et al., “Velocity-matching techniques for integrated optic traveling wave switch/modulators,” IEEE Journal of Quantum Electronics. 20(3): pp. 301– 309 (1984).
72. Tofini, A., Ring resonator/modulator simulation automation and substrate scattering analysis for applications in integrated silicon photonic circuits, Ph.D. dissertation (University of British Columbia, 2023).
73. Mercante, A. J., et al., “110 GHz CMOS compatible thin film LiNbO3 modulator on silicon,” Optics Express. 24(14): pp. 15590–15595 (2016).
74. Reed, G. T. and A. P. Knights, Silicon Photonics: An Introduction, (John Wiley & Sons, 2004).
75. Hunsperger, R. G., Integrated Optics, (Springer, 1995).
76. Xu, M. and X. Cai, “Advances in integrated ultra-wideband electro-optic modulators,” Optics Express. 30: pp. 7253–7274 (2022).
77. Liu, K., et al., “Review and perspective on ultrafast wavelength-size electro-optic modulators,” Laser Photonics Reviews. 9: pp. 172–194 (2015).
78. Lipson, M., “Compact electro-optic modulators on a silicon chip,” IEEE Journal of Selected Topics in Quantum Electronics. 12: pp. 1520–1526 (2006).
79. Amin, R., et al., “Active material, optical mode and cavity impact on nanoscale electro-optic modulation performance,” Nanophotonics. 7: pp. 455–472 (2017).
80. Qi, Y. and Y. Li, “Integrated lithium niobate photonics,” Nanophotonics. 9: pp. 1287–1320 (2020).
81. Zhu, D., et al., “Integrated photonics on thin-film lithium niobate,” Advances in Optics and Photonics. 13: pp. 242–352 (2021).
82. Lin, J., et al., “Advances in on-chip photonic devices based on lithium niobate on insulator,” Photonics Research. 8: pp. 1910–1936 (2020).
83. Jia, Y., et al., “Ion-cut lithium niobate on insulator technology: recent advances and perspectives,” Applied Physics Reviews. 8: pp. 011307 (2021).
84. Sun, D., et al., “Microstructure and domain engineering of lithium niobate crystal films for integrated photonic applications,” Light: Science & Applications. 9: p. 197 (2020).
85. Liu, Y., et al., “Low Vπ thin-film lithium niobate modulator fabricated with photolithography,” Optics Express. 29: pp. 6320–6329 (2021).
86. Wang, M., et al., “Thin-film lithium niobate electro-optic modulator on a D-shaped fiber,” Optics Express. 28: pp. 21464–21473 (2020).
87. Jin, M., et al., “Efficient electro-optical modulation on thin-film lithium niobate,” Optics Letters. 46: pp. 1884–1887 (2021).
88. Yu, Z., and X. Sun, “Gigahertz acousto-optic modulation and frequency shifting on etchless lithium niobate integrated platform,” ACS Photonics. 8: pp. 798–803 (2021).
89. Zhang, J., et al., “Ultra-compact electro-optic modulator based on etchless lithium niobate photonic crystal nanobeam cavity,” Optics Express. 30: pp. 20839–20846 (2022).
90. Zhang, P., et al., “High-speed electro-optic modulator based on silicon nitride loaded lithium niobate on an insulator platform,” Optics Letters. 46: pp. 5986– 5989 (2021).
91. Jin, S., et al., “LiNbO3 thin-film modulators using silicon nitride surface ridge waveguides,” IEEE Photonics Technology Letters. 28: pp. 736–739 (2016).
92. Weigel, P. O., et al., “Bonded thin film lithium niobate modulator on a silicon photonics platform exceeding 100 GHz 3-dB electrical modulation bandwidth,” Optics Express. 26: pp. 23728–23739 (2018).
93. Weigel, P. O., et al., “Design of high-bandwidth, low-voltage and low-loss hybrid lithium niobate electro-optic modulators,” Journal of Physics: Photonics. 3: pp. 012001 (2021).
94. Shin, J. H., et al., “Conductor loss of capacitively loaded slow wave electrodes for high-speed photonic devices,” Journal of Lightwave Technology. 29(1): pp. 48–52 (2011).
95. Patel, D., et al., “Design, analysis, and transmission system performance of a 41 GHz silicon photonic modulator,” Optics Express. 23(11): pp. 14263–14287 (2015).
96. Shin, J. H., et al., “Novel T-rail electrodes for substrate removed low-voltage high- speed GaAs/AlGaAs electrooptic modulators,” IEEE Transactions on Microwave Theory and Techniques. 53(2): pp. 636–643 (2005).
97. Kiziloglu, K., et al., “Experimental analysis of transmission line parameters in high-speed GaAs digital circuit interconnects,” IEEE Transactions on Microwave Theory and Techniques. 39(8): pp. 1361–1367 (1991).
98. Frickey, D. A., “Conversions between S, Z, Y, H, ABCD, and T parameters which are valid for complex source and load impedances,” IEEE Transactions on Microwave Theory and Techniques. 42(2): pp. 205–211 (1994).
99. 董澳庆, 基于薄膜铌酸锂的异质集成型电光调制器研究, 碩士學位論文 (電 子科技大學, 2024).
100.陈诺, 基于薄膜铌酸锂的高效电光调制机理及调制器设计, 博士學位論文 (浙江大學, 2024).
101.李珩, 硅基薄膜铌酸锂马赫-曾德调制器研究, 博士學位論文 (華中科技大學, 2024).
102. Li, G. L., et al. “Analysis of segmented traveling-wave optical modulators.” Journal of Lightwave Technology. 22(7): pp. 1789–1796 (2004).
103. Liu, H., et al. “High-efficiency lithium niobate electro-optic modulator with barium titanate cladding on quartz.” Photonics. 12(2): p. 157 (2025).
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99039-
dc.description.abstract隨著光通訊系統傳輸速率不斷提升,具備高頻寬、低功耗與高調制效率之電光調制器需求日益增加。本研究提出一種基於薄膜型鈮酸鋰 (Lithium Niobate on Insulator,LNOI) 之新型馬赫詹德調制器設計,採用狹縫波導 (Slot Waveguide) 結構,並於上方包覆高介電常數材料鈦酸鋇 (Barium Titanate, BTO) 與二氧化矽 (Silicon dioxide, SiO2) 形成複合包覆層,結合下潛式金屬電極以增強電場與光場之交互作用,藉此提升電光調制效率並拓展頻寬。
本研究首先透過 Lumerical 模擬平台進行模態分析與電場模擬,萃取有效折射率與相位變化,進一步計算調制效率 (𝑉π𝐿) 為 0.999 V·cm。接著以 RLGC 模型與傳輸線理論推導射頻參數,分析結構於 1–200 GHz 頻段內之阻抗匹配、傳播速度匹配與傳輸損耗,並量化射頻損耗對頻寬限制之影響。此外,藉由 INTERCONNECT 建立等效電路模型,模擬 NRZ 與 PAM4 調制格式下之眼圖, 評估其高速傳輸表現與消光比 (Extinction Ratio, ER)。
模擬結果顯示,本設計於 3 mm 調制長度下可達 191 GHz 的電光頻寬,並於 448 Gbps 資料速率下仍具良好眼圖開口,展現極佳的頻寬潛力與調制品質。與其他文獻中典型 LNOI 結構比較,本研究設計同時具備低 𝑉π𝐿、高頻寬與可接受之傳輸損耗,為未來應用於資料中心與矽光子平台整合之高效能電光調制器提 供可行方案。
zh_TW
dc.description.abstractWith the increasing demands for high-speed and high-efficiency data transmission in optical communication systems, lithium niobate (LN)-based electro-optic modulators have attracted significant attention due to their superior modulation bandwidth and low drive voltage enabled by the Pockels effect. In this work, we propose and numerically demonstrate a high-performance thin-film lithium niobate (LNOI) Mach-Zehnder modulator (MZM) incorporating a slot waveguide structure, a composite cladding layer composed of high-permittivity Barium Titanate (BTO) and silicon dioxide (SiO2), and a sunken electrode configuration.
Through multiphysics simulations using the Lumerical platform, we extract the phase modulation efficiency and determine a half-wave voltage-length product (𝑉π𝐿) of 0.999 V·cm. The RLGC transmission line model is then applied to analyze frequency- dependent microwave properties-including impedance, group velocity, and attenuation- across the 1–200 GHz range. We quantify both the velocity mismatch and microwave loss limitations on modulation bandwidth. Subsequently, compact model parameters are used in INTERCONNECT to construct a complete modulator circuit, and time- domain eye diagram simulations are performed for both NRZ and PAM4 signaling formats.
The proposed design achieves a 3-dB EO bandwidth of 191 GHz for a 3-mm modulation length, with a clear eye opening observed at 112 Gbps under PAM4 modulation. Compared to representative state-of-the-art LNOI modulators in the literature, our device simultaneously exhibits a low 𝑉π𝐿 , wide bandwidth, and acceptable insertion loss, demonstrating strong potential for integration in future high- speed silicon photonics and data center applications.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-21T16:09:09Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-08-21T16:09:09Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents致謝 .............................................................................................................................. I
中文摘要 ..................................................................................................................... II ABSTRACT................................................................................................................III
目次 ........................................................................................................................... IV
圖次 .......................................................................................................................... VII
表次 ........................................................................................................................... XI
第 1 章 緒論 ...........................................................................................................1
1.1 研究背景與動機 ...........................................................................................1
1.2 論文架構 .......................................................................................................3
第 2 章 背景理論與數值方法 ...............................................................................4
2.1 基礎理論 .......................................................................................................4
2.1.1 馬克斯威爾方程式 (Maxwell’s Equations) .........................................4
2.1.2 波動方程式 (Wave Equations) .............................................................5
2.1.3 電光調制器 (Electric-Optic Modulator)...............................................6
2.1.4 鈮酸鋰薄膜 (Thin-film Lithium Niobate) ............................................8
2.1.5 線性電光效應 (Electro-Optic Effect).................................................11
2.1.6 折射率橢球 (Index ellipsoid) .............................................................13
2.1.7 傳輸線 (Transmission Line) 的等效模型 (RLGC model)................17
2.1.8 調制器的效能指數 (Figure of Merit, FoM) .......................................20
2.2 數值方法 .....................................................................................................22
2.2.1 載子傳輸求解器 (Charge Transport Solver)......................................23
2.2.2 有限元素特徵模態法 (Finite Element Eigenmode Method, FEEM) .23
2.2.3 有限差分特徵模態 (Finite Difference Eigenmode, FDE) 求解器....24
第3章 文獻回顧 .....................................................................................................27
3.1 基於蝕刻狹縫與超薄矽膜之高性能鈮酸鋰薄膜電光調制器 ..................27
3.2 具下潛式電極結構之鈮酸鋰薄膜調制器之設計與性能分析 ..................29
3.3 具低半波電壓長度積之寬頻鈮酸鋰-鈦酸鋇混合型調制器最佳化設計..31
3.4 具高介電常數包覆層之高效率鈮酸鋰薄膜電光調制器 ..........................33
第4章 鈮酸鋰薄膜電光調制器 .............................................................................35
4.1 元件設計流程 .............................................................................................35
4.2 元件結構與原理分析 .................................................................................36
4.2.1 狹縫波導結構 (Slot Waveguide)........................................................37
4.2.2 下潛式電極結構 (Sunken Electrode) .................................................40
4.2.3 包覆層材料 (Cladding Material) ........................................................43
4.2.4 複合型包覆層 (Cladding Material: Composite Structures) ................47
4.2.5 電極結構設計 (Electrode Structure Design) ......................................52
4.3 電性模擬 (Electrical Simulation)................................................................62
4.4 光學模擬 (Optical Simulation) ...................................................................63
4.4.1 調制性能指標 (Modulation Metrics) .................................................65
4.5 射頻傳輸線之特性模擬 (RF Transmission Line Properties Simulation) ...72
4.5.1 RLGC 參數.........................................................................................72
4.5.2 群折射率 (Group Index).....................................................................78
4.5.3 射頻損耗 (RF Loss) ...........................................................................80
4.5.4 阻抗匹配 (Impedance Matching) .......................................................82
4.5.5 3-dB 頻寬 (3-dB bandwidth) .............................................................84
4.6 電路模擬 (Circuit Simulation)....................................................................87
4.7 與參考文獻中的馬赫-詹德型調制器效能比較 .........................................91
第5章 結語與未來展望 .........................................................................................92
5.1 結語 .............................................................................................................92
5.2 未來展望 .....................................................................................................92
參考文獻 ....................................................................................................................94
-
dc.language.isozh_TW-
dc.subject鈮酸鋰薄膜zh_TW
dc.subject電光調制器zh_TW
dc.subject馬赫詹德干涉儀zh_TW
dc.subjectLNOIzh_TW
dc.subject鈦酸鋇包覆層zh_TW
dc.subject射頻損耗zh_TW
dc.subject狹縫波導zh_TW
dc.subject阻抗匹配zh_TW
dc.subject傳播速度匹配zh_TW
dc.subject眼圖zh_TW
dc.subjectVelocity Matchingen
dc.subjectLithium Niobateen
dc.subjectElectro-Optic Modulatoren
dc.subjectMach-Zehnder Interferometeren
dc.subjectLNOIen
dc.subjectBTO Claddingen
dc.subjectSlot Waveguideen
dc.subjectImpedance Matchingen
dc.subjectEye Diagramen
dc.subjectRF Lossen
dc.title高性能馬赫詹德行波電極型鈮酸鋰薄膜電光調制器zh_TW
dc.titleHigh-Performance Thin-film Lithium Niobate Mach-Zehnder Electro-Optic Modulator with Traveling-wave Electrodesen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee林建中;樊俊遠zh_TW
dc.contributor.oralexamcommitteeChien-Chung Lin;Chun-Yuan Fanen
dc.subject.keyword鈮酸鋰薄膜,電光調制器,馬赫詹德干涉儀,LNOI,鈦酸鋇包覆層,射頻損耗,狹縫波導,阻抗匹配,傳播速度匹配,眼圖,zh_TW
dc.subject.keywordLithium Niobate,Electro-Optic Modulator,Mach-Zehnder Interferometer,LNOI,BTO Cladding,Slot Waveguide,Impedance Matching,Velocity Matching,RF Loss,Eye Diagram,en
dc.relation.page100-
dc.identifier.doi10.6342/NTU202500270-
dc.rights.note未授權-
dc.date.accepted2025-08-04-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept光電工程學研究所-
dc.date.embargo-liftN/A-
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
  未授權公開取用
13.04 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved