請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99031完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 黃宇廷 | zh_TW |
| dc.contributor.advisor | Yu-tin Huang | en |
| dc.contributor.author | 張昱騏 | zh_TW |
| dc.contributor.author | Yu-Chi Chang | en |
| dc.date.accessioned | 2025-08-21T16:07:23Z | - |
| dc.date.available | 2025-08-22 | - |
| dc.date.copyright | 2025-08-21 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-08-01 | - |
| dc.identifier.citation | [1] N. Arkani-Hamed, Y. Bai, S. He and G. Yan, Scattering Forms and the Positive Geometry of Kinematics, Color and the Worldsheet, JHEP 05 (2018) 096, [1711.09102].
[2] N. Arkani-Hamed, S. He and T. Lam, Stringy canonical forms, JHEP 02 (2021) 069, [1912.08707]. [3] N. Arkani-Hamed, S. He, G. Salvatori and H. Thomas, Causal diamonds, cluster polytopes and scattering amplitudes, JHEP 11 (2022) 049, [1912.12948]. [4] N. Arkani-Hamed, Q. Cao, J. Dong, C. Figueiredo and S. He, Hidden zeros for particle/string amplitudes and the unity of colored scalars, pions and gluons, JHEP 10 (2024) 231, [2312.16282]. [5] N. Arkani-Hamed, Q. Cao, J. Dong, C. Figueiredo and S. He, Scalar-Scaffolded Gluons and the Combinatorial Origins of Yang-Mills Theory, 2401.00041. [6] N. Arkani-Hamed, Q. Cao, J. Dong, C. Figueiredo and S. He, Nonlinear Sigma model amplitudes to all loop orders are contained in the Tr(Φ3) theory, Phys. Rev. D 110 (2024) 065018, [2401.05483]. [7] N. Arkani-Hamed and C. Figueiredo, All-order splits and multi-soft limits for particle and string amplitudes, 2405.09608. [8] Q. Cao, J. Dong, S. He and C. Shi, A universal splitting of tree-level string and particle scattering amplitudes, Phys. Lett. B 856 (2024) 138934, [2403.08855]. [9] Q. Cao, J. Dong, S. He, C. Shi and F. Zhu, On universal splittings of tree-level particle and string scattering amplitudes, JHEP 09 (2024) 049, [2406.03838]. [10] N. Arkani-Hamed, C. Figueiredo and G. N. Remmen, Open string amplitudes: singularities, asymptotics and new representations, JHEP 04 (2025) 039, [2412.20639]. [11] N. Arkani-Hamed, H. Frost, G. Salvatori, P.-G. Plamondon and H. Thomas, All Loop Scattering As A Counting Problem, 2309.15913. [12] J. V. Backus and L. Rodina, Emergence of Unitarity and Locality from Hidden Zeros at One-Loop, 2503.03805. [13] L. Rodina, Hidden Zeros Are Equivalent to Enhanced Ultraviolet Scaling, and Lead to Unique Amplitudes in Tr(ϕ3) Theory, Phys. Rev. Lett. 134 (2025) 031601, [2406.04234]. [14] C. Bartsch, T. V. Brown, K. Kampf, U. Oktem, S. Paranjape and J. Trnka, Hidden amplitude zeros from the double-copy map, Phys. Rev. D 111 (2025) 045019, [2403.10594]. [15] Y. Li, D. Roest and T. ter Veldhuis, Hidden Zeros in Scaffolded General Relativity and Exceptional Field Theories, 2403.12939. [16] Y. Li, T. Wang, T. Brauner and D. Roest, Diagrammatic Derivation of Hidden Zeros and Exact Factorisation of Pion Scattering Amplitudes, 2412.14858. [17] Y. Zhang, On the new factorizations of Yang-Mills amplitudes, JHEP 02 (2025) 074, [2412.15198]. [18] H. Huang, Y. Yang and K. Zhou, Note on hidden zeros and expansions of tree-level amplitudes, 2502.07173. [19] Q. Cao, J. Dong, S. He and F. Zhu, Superstring amplitudes meet surfaceology, 2504.21676. [20] Z. Koba and H. B. Nielsen, Reaction amplitude for n mesons: A Generalization of the Veneziano-Bardakci-Ruegg-Virasora model, Nucl. Phys. B 10 (1969) 633–655. [21] K. Bardakci and H. Ruegg, Reggeized resonance model for the production amplitude, Phys. Lett. B 28 (1968) 342–347. [22] H.-M. Chan and S. T. Tsou, Explicit construction of the n-point function in the generalized veneziano model, Phys. Lett. B 28 (1969) 485–488. [23] D. J. Gross, Factorization and the generalized veneziano model with satellites, Nucl. Phys. B 13 (1969) 467–476. [24] A. D’Adda, S. Sciuto, R. D’Auria and F. Gliozzi, Zeros of dual resonant amplitudes, Nuovo Cim. A 5 (1971) 421–432. [25] S. Rychkov, EPFL Lectures on Conformal Field Theory in D>= 3 Dimensions. SpringerBriefs in Physics. 1, 2016, 10.1007/978-3-319-43626-5. [26] Y.-t. Huang, O. Schlotterer and C. Wen, Universality in string interactions, JHEP 09 (2016) 155, [1602.01674]. [27] V. A. Kostelecky, O. Lechtenfeld, S. Samuel, D. Verstegen, S. Watamura and D. Sahdev, The Six Fermion Amplitude in the Superstring, Phys. Lett. B 183 (1987) 299–303. [28] S. De, A. Pokraka, M. Skowronek, M. Spradlin and A. Volovich, Surfaceology for colored Yukawa theory, JHEP 09 (2024) 160, [2406.04411]. [29] C. Cheung, D. O’Connell and B. Wecht, BCFW Recursion Relations and String Theory, JHEP 09 (2010) 052, [1002.4674]. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99031 | - |
| dc.description.abstract | 本文透過弦論的曲線積分表示式來探討其振幅的零點結構。首先我們指出,在玻色弦理論中,迅子振幅的曲線積分表示式與動量位移後的Tr(ϕ^3)振幅完全一致。將曲線進行骨架建構法(scaffold)操作,可對應到在世界面上進行算子積展開(OPE)極限,進而得到高激發態的振幅。在此圖像下,我們證明n點、階數N的弦論振幅會同時具有兩種零點結構:一為與n點迅子振幅相同的零點;二為在骨架建構法(scaffold)操作過程中引入的y變數所對應的零點,而這些額外的零點可追溯至其骨架建構 (scaffold)前的(2^N)n 點迅子振幅中。
此外,應用相同方法於超弦中的超迅子振幅,可揭示開弦超弦理論中的新型零點,這些可視為超對稱性的展現。最後,我們分析四點與六點的超膠子振幅,成功識別其零點結構,並由骨架建構法(scaffold)操作重建出超楊–米爾斯理論。我們亦探討彩色費米子振幅的場論極限,並從曲線積分形式還原其結構。 | zh_TW |
| dc.description.abstract | In this paper, we study the zeros of string theory utilizing its curve-integral representation. Firstly, we note that for bosonic strings the tachyon amplitude in curve-integral representation is identical to the kinematic shifted Tr( ϕ ^3) amplitude. Scaffolding is then equivalent to taking the OPE limit of vertex operators on the string world-sheet, which yields amplitude of higher excitations. Using this picture, we derive that the n-point level-N scattering amplitude shares the same set of zeros as the n-point tachyon amplitude, along with additional zeros associated with the scaffolding y-variables, which are inherited from its pre-scaffold image, namely the (2^N)n-point tachyon amplitude. Doing the same for the super-tachyon amplitude, exposes new zeros for the open superstring, which can be viewed as the avatar of supersymmetry. Finally we also consider the gluino amplitude at four and six points, identifying its zero and recovering super Yang-Mills via scaffolding. Finally we consider the field theory limit of colored fermion amplitudes from the curve-integral form. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-21T16:07:23Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-08-21T16:07:23Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員審定書 i
Acknowledgements iii 摘要 v Abstract vii Contents ix List of Figures xi Chapter 1 Introduction 1 Chapter 2 Lightning review of curve-integral representation Trϕ3. 7 2.1 Fatgraphs, Curve Words, and F -Polynomials 9 2.2 Integral Representation and Scalelessness 15 Chapter 3 Curve-integral representation for bosonic string and scaffolding 19 3.1 From tachyon to Yang-Mills amplitudes 21 3.2 From Yang-Mills to level-2 amplitudes 24 3.3 Zeros of gluon amplitudes 29 3.4 Zeros of the level-2 amplitudes 36 Chapter 4 Superstring I: Super-tachyon seed 41 4.1 Curve-integral representation and its zeros 42 4.2 Scaffolding Super Yang-Mills and its zeros 45 Chapter 5 Superstring II: Gluino seed 53 5.1 Curve-integral representation and its zeros 53 5.2 From gluino to Yang-Mills amplitudes 62 Chapter 6 Conclusion and outlook 65 References 67 Appendix A — The proof of the relation between the F −polynomials and the amputated F−polynomials 71 Appendix B — Scaffolding super Yang-Mills on correlators 75 | - |
| dc.language.iso | en | - |
| dc.subject | 超弦理論 | zh_TW |
| dc.subject | 弦論振福 | zh_TW |
| dc.subject | 骨架建構法 | zh_TW |
| dc.subject | 振幅零點 | zh_TW |
| dc.subject | 曲線積分表示式 | zh_TW |
| dc.subject | Curve-integral representation | en |
| dc.subject | Zeros of the amplitude | en |
| dc.subject | Scaffolding construction | en |
| dc.subject | Superstring theory | en |
| dc.subject | String amplitude | en |
| dc.title | (超)弦論中所有零點之研究 | zh_TW |
| dc.title | All zeros of (super)String Theory | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 川合光;勞倫修·羅迪納 | zh_TW |
| dc.contributor.oralexamcommittee | Hikaru Kawai;Laurentiu Rodina | en |
| dc.subject.keyword | 弦論振福,超弦理論,曲線積分表示式,振幅零點,骨架建構法, | zh_TW |
| dc.subject.keyword | String amplitude,Superstring theory,Curve-integral representation,Zeros of the amplitude,Scaffolding construction, | en |
| dc.relation.page | 77 | - |
| dc.identifier.doi | 10.6342/NTU202502900 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2025-08-05 | - |
| dc.contributor.author-college | 理學院 | - |
| dc.contributor.author-dept | 物理學系 | - |
| dc.date.embargo-lift | 2025-08-22 | - |
| 顯示於系所單位: | 物理學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 3.42 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
