Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99028
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor黃建璋zh_TW
dc.contributor.advisorJian-Jang Huangen
dc.contributor.author張智翔zh_TW
dc.contributor.authorZhi-Xiang Zhangen
dc.date.accessioned2025-08-21T16:06:43Z-
dc.date.available2025-08-22-
dc.date.copyright2025-08-21-
dc.date.issued2025-
dc.date.submitted2025-08-02-
dc.identifier.citation1. Flack, T.J., B.N. Pushpakaran, and S.B. Bayne, GaN technology for power electronic applications: a review. Journal of Electronic Materials, Jun. 2016. 45: p. 2673-2682.
2. Pushpakaran, B.N., A.S. Subburaj, and S.B. Bayne, Commercial GaN-based power electronic systems: A review. Journal of electronic materials, Nov. 2020. 49: p. 6247-6262.
3. Tian, Z., et al. Overview of GaN HEMT technology for high frequency applications. in 2023 11th International Conference on Power Electronics and ECCE Asia (ICPE 2023-ECCE Asia). 2023. IEEE.
4. Xiong, Y., M. Sadek, and R. Chu, Recent advances in GaN-based power devices and integration. Semiconductor Science and Technology, 2025.
5. Jones, E.A., F.F. Wang, and D. Costinett, Review of commercial GaN power devices and GaN-based converter design challenges. IEEE J. Emerg. Sel. Topics Power Electron., Sep. 2016. 4(3): p. 707-719.
6. Alves, L.F., et al. SIC power devices in power electronics: An overview. in 2017 Brazilian Power Electronics Conference (COBEP). 2017. IEEE.
7. Ho, S.-Y., et al., Suppression of current collapse in enhancement mode GaN-based HEMTs using an AlGaN/GaN/AlGaN double heterostructure. IEEE Trans. Electron Devices, Apr. 2017. 64(4): p. 1505-1510.
8. Yang, J.-X., et al., Deep Source Metal Trenches in GaN-On-Si HEMTs for Relieving Current Collapse. IEEE J. Electron Devices Soc., May 2021. 9: p. 557-563.
9. Su, L.-Y., F. Lee, and J.J. Huang, Enhancement-mode GaN-based high-electron mobility transistors on the Si substrate with a P-type GaN cap layer. IEEE Trans. Electron Devices, Feb. 2014. 61(2): p. 460-465.
10. Kuzuhara, M., J.T. Asubar, and H. Tokuda, AlGaN/GaN high-electron-mobility transistor technology for high-voltage and low-on-resistance operation. Japanese Journal of Applied Physics, 2016. 55(7): p. 070101.
11. Wang, L., et al. Paper Title The Breakdown Voltage of AlGaN/GaN HEMT is Restricted to The Structure Parameters of The Device: A Study Based on TCAD. in 2018 19th International Conference on Electronic Packaging Technology (ICEPT). 2018. IEEE.
12. Khadar, R.A., et al., Fully vertical GaN-on-Si power MOSFETs. IEEE Electron Device Letters, 2019. 40(3): p. 443-446.
13. Islam, N., et al., Reliability, applications and challenges of GaN HEMT technology for modern power devices: A review. Crystals, 2022. 12(11): p. 1581.
14. Çiçek, O. and Y. Badali, A Review: Breakdown voltage enhancement of GaN semiconductors based high electron mobility transistors. IEEE Transactions on Device and Materials Reliability, 2024.
15. Chowdhury, S. and U.K. Mishra, Lateral and vertical transistors using the AlGaN/GaN heterostructure. IEEE Transactions on Electron Devices, 2013. 60(10): p. 3060-3066.
16. Zhang, Y., A. Dadgar, and T. Palacios, Gallium nitride vertical power devices on foreign substrates: A review and outlook. Journal of Physics D: Applied Physics, 2018. 51(27): p. 273001.
17. Liu, S., et al., Comprehensive design of device parameters for GaN vertical trench MOSFETs. IEEE Access, 2020. 8: p. 57126-57135.
18. Langpoklakpam, C., et al., Vertical GaN MOSFET power devices. Micromachines, 2023. 14(10): p. 1937.
19. Kizilyalli, I. and O. Aktas, Characterization of vertical GaN p–n diodes and junction field-effect transistors on bulk GaN down to cryogenic temperatures. Semicond. Sci. Technol., Dec. 2015. 30(12): p. 124001.
20. Yang, C., et al., GaN vertical-channel junction field-effect transistors with regrown p-GaN by MOCVD. IEEE Trans. Electron Devices, Oct. 2020. 67(10): p. 3972-3977.
21. Shibata, D., et al. 1.7 kV/1.0 mΩcm2 normally-off vertical GaN transistor on GaN substrate with regrown p-GaN/AlGaN/GaN semipolar gate structure. in Proc. IEEE Int. Electron Devices Meeting (IEDM). Dec. 2016. San Francisco, CA, USA.
22. Ji, D., et al., 880 V/2.7 mΩ⋅cm2 MIS Gate Trench CAVET on Bulk GaN Substrates. IEEE Electron Device Letters, Jun. 2018. 39(6): p. 863-865.
23. Ji, D., et al. First report of scaling a normally-off in-situ oxide, GaN interlayer based vertical trench MOSFET (OG-FET). in Proc. 2017 75th Annu. Device Res. Conf. (DRC). Jun. 2017. South Bend, IN, USA.
24. Ji, D., et al., Large-area in-situ oxide, GaN interlayer-based vertical trench MOSFET (OG-FET). IEEE Electron Device Letters, May 2018. 39(5): p. 711-714.
25. Sun, M., et al., High-performance GaN vertical fin power transistors on bulk GaN substrates. IEEE Electron Device Letters, 2017. 38(4): p. 509-512.
26. Zhang, Y., et al. 1200 V GaN vertical fin power field-effect transistors. in Proc. IEEE Int. Electron Devices Meeting (IEDM). Dec. 2017. San Francisco, CA, USA.
27. Liu, C., R.A. Khadar, and E. Matioli, GaN-on-Si quasi-vertical power MOSFETs. IEEE Electron Device Letters, Jan. 2017. 39(1): p. 71-74.
28. Zhu, R., et al., Effects of p-GaN body doping concentration on the ON-state performance of vertical GaN trench MOSFETs. IEEE Electron Device Letters, Jul. 2021. 42(7): p. 970-973.
29. Barman, K., et al., GaN Vertical Transistors with Staircase Channels for High-Voltage Applications. Materials, Jan. 2023. 16(2): p. 582.
30. Chu, Y.-C., et al., Performance Comparisons of GaN Vertical Transistors with Sidewalls Treated by TMAH and H3PO4 Solutions. IEEE Electron Device Letters, Oct. 2024. 45(10): p. 1744-1747.
31. Otake, H., et al., GaN-based trench gate metal oxide semiconductor field effect transistors with over 100 cm2/(V s) channel mobility. Japanese Journal of Applied Physics, 2007. 46(7L): p. L599.
32. Otake, H., et al., Vertical GaN-based trench gate metal oxide semiconductor field-effect transistors on GaN bulk substrates. Applied physics express, 2008. 1(1): p. 011105.
33. Oka, T., et al., 1.8 mΩ·cm2 vertical GaN-based trench metal–oxide–semiconductor field-effect transistors on a free-standing GaN substrate for 1.2-kV-class operation. Applied Physics Express, 2015. 8(5): p. 054101.
34. Li, R., et al., 600 V/1.7 Ω Normally-Off GaN Vertical Trench Metal- Oxide-Semiconductor Field-Effect Transistor. IEEE Electron Device Letters, Nov. 2016. 37(11): p. 1466-1469.
35. Gupta, C., et al., OG-FET: An In-Situ Oxide, GaN Interlayer-Based Vertical Trench MOSFET. IEEE Electron Device Letters, 2016. 37(12): p. 1601-1604.
36. Gupta, C., et al., In situ oxide, GaN interlayer-based vertical trench MOSFET (OG-FET) on bulk GaN substrates. IEEE Electron Device Letters, 2017. 38(3): p. 353-355.
37. Gupta, C., et al., First demonstration of AlSiO as gate dielectric in GaN FETs; applied to a high performance OG-FET. IEEE Electron Device Letters, 2017. 38(11): p. 1575-1578.
38. Liu, C., R.A. Khadar, and E. Matioli, Vertical GaN-on-Si MOSFETs with monolithically integrated freewheeling Schottky barrier diodes. IEEE Electron Device Letters, Jul. 2018. 39(7): p. 1034-1037.
39. Ji, D., et al., Improved dynamic Ron of GaN vertical trench MOSFETs (OG-FETs) using TMAH wet etch. IEEE Electron Device Letters, 2018. 39(7): p. 1030-1033.
40. Liu, J., et al. 1.2 kV vertical GaN fin JFETs with robust avalanche and fast switching capabilities. in Proc. IEEE Int. Electron Devices Meeting (IEDM). Dec. 2020. San Francisco, CA, USA.
41. Khadar, R.A., et al., Quasi-vertical GaN-on-Si reverse blocking power MOSFETs. Applied Physics Express, 2021. 14(4): p. 046503.
42. Tang, W., et al., Effects of the stepped sidewall morphology on the ON-state performance for vertical GaN trench-gate MOSFETs. Applied Physics Express, 2022. 15(7): p. 076502.
43. Zhu, R., et al., GaN quasi-vertical trench MOSFETs grown on Si substrate with ON-current exceeding 1 A. Applied Physics Express, 2022. 15(12): p. 121004.
44. Wen, X., et al., High Current Density Trench CAVET on Bulk GaN Substrates with Low-Temperature GaN Suppressing Mg Diffusion. Crystals, 2023. 13(4): p. 709.
45. Zhou, J., et al., Comparative analysis of the GaN nonpolar plane morphology by wet treatment and its effect on electrical properties in trench MOSFET. ACS Applied Materials & Interfaces, 2023. 15(21): p. 26159-26165.
46. Kamiński, M., et al., Vertical GaN Trench‐MOSFETs Fabricated on Ammonothermally Grown Bulk GaN Substrates. physica status solidi (a), 2024. 221(21): p. 2400077.
47. Zhang, Y., et al., Dynamic Reliability Assessment of Vertical GaN Trench MOSFETs With Thick Bottom Dielectric. IEEE Transactions on Device and Materials Reliability, 2024. 24(3): p. 358-364.
48. Peng, K., S. Eskandari, and E. Santi. Characterization and modeling of SiC MOSFET body diode. in Proc. IEEE Appl. Power Electron. Conf. Expo. (APEC). Mar. 2016. Long Beach, CA, USA.
49. Hou, X., D. Boroyevich, and R. Burgos. Characterization on latest-generation SiC MOSFET's body diode. in Proc. IEEE 4th Workshop on Wide Bandgap Power Devices and Applications (WiPDA). Nov. 2016. Albuquerque, NM, USA.
50. Lin, D.-J., et al., Normally-off AlGaN/GaN HEMTs with a low reverse conduction turn-on voltage. IEEE Access, Sep. 2023. 11: p. 98452-98457.
51. Sun, B., Does gan have a body diode? - understanding the third quadrant operation of gan. App. Rep. SNOAA36; Texas Instruments: Dallas, TX, USA, 2019.
52. Ma, Y., et al., GaN Vertical MOSFETs With Monolithically Integrated Freewheeling Merged pn-Schottky Diodes (MPS-MOS) for 1.2-kV Applications. IEEE Trans. Electron Devices, Aug. 2024. 71(8): p. 4570-4577.
53. Tanaka, N., et al., 50 A vertical GaN Schottky barrier diode on a free-standing GaN substrate with blocking voltage of 790 V. Applied Physics Express, Jul. 2015. 8(7): p. 071001.
54. Li, W., et al., Design and realization of GaN trench junction-barrier-Schottky-diodes. IEEE Trans. Electron Devices, Apr. 2017. 64(4): p. 1635-1641.
55. Sun, T., et al. Vertical GaN power transistor with embedded fin-shaped diode for high performance power conversion. in Proc. IEEE 15th Int. Conf. Solid-State & Integr. Circuit Technol. (ICSICT). Nov. 2020. Chengdu, China.
56. Sun, T., et al., Vertical GaN Power MOSFET with Integrated Fin-Shaped Diode for Reverse Conduction. Nanoscale Research Letters, Aug. 2022. 17(1): p. 78.
57. Deng, S., et al., High-performance vertical GaN field-effect transistor with an integrated self-adapted channel diode for reverse conduction. Chinese Physics B, Jul. 2023. 32(7): p. 078503.
58. Xie, X., et al., Improvement of reverse conduction characteristic and single event effect for a novel vertical GaN field effect transistor with an integrated MOS-channel diode. Microelectronics Journal, Feb. 2024. 144: p. 106091.
59. Oka, T., et al., Vertical GaN-based trench metal oxide semiconductor field-effect transistors on a free-standing GaN substrate with blocking voltage of 1.6 kV. Applied Physics Express, 2014. 7(2): p. 021002.
60. Yamamoto, A., et al., Enhancement‐Mode AlGaN/GaN Vertical Trench Metal–Insulator–Semiconductor High‐Electron‐Mobility Transistors with a High Drain Current Fabricated Using the AlGaN Regrowth Technique. physica status solidi (a), 2020. 217(7): p. 1900622.
61. Kozak, J.P., et al., Stability, reliability, and robustness of GaN power devices: A review. IEEE Transactions on Power Electronics, 2023. 38(7): p. 8442-8471.
62. Shao, H., et al., Design strategy and working principle of GaN vertical trench gate MOSFETs with p-type shielding rings. Japanese Journal of Applied Physics, 2024. 63(4): p. 044001.
63. Beckmann, C., et al., Depletion- and enhancement- mode p-channel MISHFET based on GaN/AlGaN single heterostructures on sapphire substrates. IEEE J. Electron Devices Soc., Mar. 2023. 11: p. 248-255.
64. Zhu, J., et al. Threshold voltage shift and interface/border trapping mechanism in Al2O3/AlGaN/GaN MOS-HEMTs. in Proc. IEEE Int. Rel. Phys. Symp. (IRPS). Mar. 2018. Phoenix, AZ, USA.
65. Maity, N., et al., Analysis of flatband voltage for MOS devices using high-K dielectric materials. Procedia Materials Science, 2014. 5: p. 1198-1204.
66. Tadmor, L., et al., Effects of post metallization annealing on Al2O3 atomic layer deposition on n-GaN. Semicond. Sci. Technol., 2022. 38(1): p. 015006.
67. Schilirò, E., et al., Comparing post-deposition and post-metallization annealing treatments on Al2O3/GaN capacitors for different metal gates. AIP Advances, 2024. 14(10).
68. Lok, R., Annealing and radiation effects on electrical properties of ALD-grown Al2O3 MOSCAPs: insights from C–V and G–V measurements. Journal of Materials Science: Materials in Electronics, 2025. 36(15): p. 1-19.
69. Penumatcha, A.V., S. Swandono, and J.A. Cooper, Limitations of the High-Low C-V Technique for MOS Interfaces With Large Time Constant Dispersion. IEEE transactions on electron devices, 2013. 60(3): p. 923-926.
70. Sabui, G., et al., Modeling and simulation of bulk gallium nitride power semiconductor devices. AIP Advances, May 2016. 6(5): p. 055006.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99028-
dc.description.abstract本論文著重於具體溝槽結構之半垂直式氮化鎵溝槽閘極金氧半場效電晶體進行製程開發與電性分析。藉由採用體溝槽結構,可強化閘極對通道區的控制能力,並有效降低元件於反向導通狀態下之導通電壓與阻抗,以提升元件性能與穩定性。
本研究製作具體溝槽與無體溝槽之元件,並進行電流–電壓與電容–電壓特性量測。實驗結果指出,體溝槽可有效降低臨界電壓、改善次臨界擺幅,並減緩閘極電壓正反掃描後所產生之遲滯現象;電容–電壓特性分析亦說明界面陷阱密度有所降低。進一步比較不同體溝槽尺寸對元件電性之影響,實驗結果顯示,雖導通電流略有下降,但在臨界電壓、次臨界擺幅與遲滯效應方面,隨尺寸增加而顯著改善。透過元件模擬分析亦證實,體溝槽有助於閘極所誘發電場的橫向擴散,電場分佈得以延展至更深層區域,緩解集中於閘極氧化層邊緣的電場強度,提升場控均勻性,進而降低界面陷阱與遲滯現象。
此外,本研究亦探討第三象限操作下之反向導通量測,結果顯示體溝槽結構有助於改善反向導通機制,使導通電流提升三個數量級,展現優異反向導通表現。綜合實驗與模擬結果,體溝槽結構於提升元件性能與穩定操作方面展現高度潛力,具後續應用與設計參考價值。
zh_TW
dc.description.abstractThis work investigates the fabrication and electrical performance of quasi-vertical GaN trench-gate metal-oxide-semiconductor field-effect transistors (MOSFETs) with a body trench structure. By adopting the body trench design, gate control over the channel region is enhanced, and both the conduction voltage and resistance during reverse conduction are reduced, thereby improving device performance and stability.
Devices with and without the body trench were fabricated, and their electrical characteristics were evaluated through current–voltage (I–V) and capacitance–voltage (C–V) measurements. The experimental findings demonstrate that introducing a body trench leads to a lower threshold voltage (VTH), improved subthreshold swing (SS), and reduced hysteresis (ΔVTH) between forward and reverse gate sweeps. Capacitance–voltage analysis also shows a significant reduction in interface trap density (Dit). The impact of varying body trench dimensions on device characteristics was also analyzed. Results show that although increased trench size slightly decreases the on-state current, it provides better performance in threshold voltage, subthreshold swing, and hysteresis suppression. Simulation analysis further confirms that the body trench facilitates lateral spreading of the gate-induced electric field, allowing the field to extend into deeper into the p-GaN layer. This redistribution mitigates electric field crowding at the gate oxide edge, leading to enhanced field uniformity, suppressed interface traps, and reduced hysteresis effects.
Moreover, third-quadrant reverse conduction measurements also demonstrate that the body trench significantly improves the reverse conduction mechanism, increasing the conduction current by approximately three orders of magnitude and exhibiting excellent reverse conduction characteristics. Based on experimental and simulation results, the body trench structure shows strong potential for improving device performance and operational stability, offering valuable reference for future applications and design.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-21T16:06:43Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-08-21T16:06:43Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員審定書 II
致謝 III
中文摘要 IV
ABSTRACT V
CONTENTS VII
LIST OF FIGURES IX
LIST OF TABLES XV
Chapter 1 Introduction 1
1.1 Background of Vertical GaN MOSFETs 1
1.1.1 Overview of Lateral and Vertical GaN Devices 1
1.1.2 Mechanisms of Reverse Conduction in Vertical GaN MOSFETs 7
1.1.3 Prior Research on GaN Devices with Body Trench Structures 14
1.2 Research Motivation 16
1.3 Thesis Outline 18
Chapter 2 Fabrication of Vertical MOSFETs with Body Trench Structures 20
2.1 Epitaxial Layer Structure 20
2.2 Design of Body Trench Structure and Device Layout 21
2.3 Fabrication Process of the Device 25
Chapter 3 Electrical Characterization of Vertical GaN MOSFETs 31
3.1 Introduction 31
3.2 Measurement Setup 32
3.2.1 Direct Current I–V Measurement 32
3.2.2 Capacitance–Voltage Measurement 33
3.3 Transfer and Output Characteristics 34
3.4 Reverse Conduction Characteristics and Equivalent Circuit Analysis 40
3.5 Capacitance–Voltage Measurements and Interface Trap Analysis 45
3.6 Influence of Body Trench Dimension Scaling 50
3.6.1 Structural Design Considerations for Body Trench 50
3.6.2 Fabrication Adjustments and Post-Metallization Annealing 53
3.6.3 TLM Analysis of Contact Resistance across Fabrication Runs 55
3.6.4 Effect of Body Trench Dimensions on Electrical Characteristics 59
3.7 Summary 73
Chapter 4 TCAD Simulation of Electric Field and Current Distribution 75
4.1 Introduction 75
4.2 Setup of TCAD Simulation 76
4.2.1 Device Structure, Material Parameters, and Meshing 76
4.2.2 Physical Models and Bias Conditions 81
4.3 Electric Field Distribution Analysis 83
4.4 Current Density Distribution Analysis 87
Chapter 5 Conclusion and Future Work 90
5.1 Conclusion 90
5.2 Future Work 92
Reference 93
-
dc.language.isoen-
dc.subject垂直式金氧半場效電晶體zh_TW
dc.subject氮化鎵zh_TW
dc.subject反向導通zh_TW
dc.subject界面陷阱密度zh_TW
dc.subject次臨界擺幅zh_TW
dc.subject臨界電壓遲滯zh_TW
dc.subject體溝槽zh_TW
dc.subjectthreshold voltage hysteresisen
dc.subjectreverse conductionen
dc.subjectvertical MOSFETsen
dc.subjectGaNen
dc.subjectsubthreshold swingen
dc.subjectinterface trap densityen
dc.subjectbody trenchen
dc.title具體溝槽結構之半垂直式氮化鎵溝槽閘極金氧半場效電晶體之電性分析zh_TW
dc.titleElectrical Characterization of Quasi-Vertical Gallium Nitride Trench Gate Metal-Oxide-Semiconductor Field-Effect Transistors with a Body Trench Structureen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee吳育任;吳肇欣;賴韋志zh_TW
dc.contributor.oralexamcommitteeYuh-Renn Wu;Chao-Hsin Wu;Wei-Chih Laien
dc.subject.keyword氮化鎵,垂直式金氧半場效電晶體,體溝槽,臨界電壓遲滯,次臨界擺幅,界面陷阱密度,反向導通,zh_TW
dc.subject.keywordGaN,vertical MOSFETs,body trench,threshold voltage hysteresis,subthreshold swing,interface trap density,reverse conduction,en
dc.relation.page98-
dc.identifier.doi10.6342/NTU202503217-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2025-08-06-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept光電工程學研究所-
dc.date.embargo-lift2025-08-22-
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
5.7 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved