Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 森林環境暨資源學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99025
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor丁宗蘇zh_TW
dc.contributor.advisorTzung-Su Dingen
dc.contributor.author許里至zh_TW
dc.contributor.authorLee-Chih Sheuen
dc.date.accessioned2025-08-21T16:05:59Z-
dc.date.available2025-08-22-
dc.date.copyright2025-08-21-
dc.date.issued2025-
dc.date.submitted2025-08-04-
dc.identifier.citation中央研究院生物多樣性研究中心(2025年8月1日)。臺灣魚類資料庫。https://fishdb.sinica.edu.tw/
水利署(2015)。河川情勢調查作業要點。行政院經濟部水利署。
孔麒源(2006)。屏東縣萬安溪台灣石𩼧之棲地利用與生殖生態[碩士論文,國立屏東科技大學野生動物保育研究所]。臺灣博碩士論文知識加值系統。
沈世傑(1993)。臺灣魚類誌。國立臺灣大學動物學系。
周銘泰、高瑞卿、張瑞宗、廖竣(2020)。臺灣淡水及河口魚蝦圖鑑。晨星出版社 。
胡哲瑋(2011)。石門水庫集水區大漢溪上游支流與下游主流河段臺灣石魚賓之生殖生物學與環境因子比較研究 [碩士論文,國立臺灣大學漁業科學研究所]。臺灣博碩士論文知識加值系統。
張明雄(1994)。大甲溪中、下游魚類群聚研究[博士論文,國立臺灣大學動物學系]。臺灣博碩士論文知識加值系統。
莊明德、周文杰、曾友聖(2016)。河川棲地分類方法之研究-以烏溪大旗橋河段為例。台灣生物多樣性研究, 18(2), 157–168。
許嘉恩(1991)。桶后溪石𩼧之生殖生物學研究[碩士論文,國立臺灣大學動物學系]。臺灣博碩士論文知識加值系統。
許智勛(2024)。從利害關係人之立場、行為與互動探討生物多樣性保育與地方工程之環境衝突[碩士論文,國立臺灣大學森林環境暨資源學系]。臺灣博碩士論文知識加值系統。
陳兼善、于名振(1986)。台灣脊椎動物誌(上、中冊)。台灣商務印書館 。
陳義雄、方力行(1999)。台灣淡水及河口魚類誌。國立海洋生物博物館籌備處。
陳義雄、張詠青(2005)。臺灣淡水魚類原色圖鑑(第1冊)。水產出版社 。
陳義雄(2020)。瀕危淡水魚種的繁養殖保種規劃與族群生態調查研究(109 林發-09.1-保-27(1)期末報告)。行政院農業委員會林務局。
農業部(2023年10月19日)。公告修正陸域野生動物保育類名錄(農授林字第1121707137號)。行政院農業部。https://www.fa.gov.tw/view.php?theme=wildnews&id=794

楊芷毓(2011)。石門水庫集水區湳仔溝溪之臺灣馬口魚族群生態學研究[碩士論文,國立臺灣大學漁業科學研究所]。臺灣博碩士論文知識加值系統。
熊文俊(1999)。台灣馬口魚繁養殖及環境生物學研究[博士論文,國立臺灣大學動物學研究所]。臺灣博碩士論文知識加值系統。
劉奇璋(1996)。哈盆溪花鰍之生殖與生態學研究[碩士論文,國立臺灣大學動物學系]。臺灣博碩士論文知識加值系統。
劉奇璋、廖德裕(2023)。新竹林區管理處飯島氏銀鮈族群生態調查與保育行動計畫。行政院農業委員會林務局新竹林區管理處。
劉奇璋、張惟哲、張秉宏、許里至(2023)。保育類飯島氏銀鮈域外繁殖保種計畫。臺北市立動物園。
Aguilar-Santana, F. A., Schmitter-Soto, J. J., Lucano-Ramírez, G., Avila-Poveda, O. H., & Arellano-Martínez, M. (2024). Morphochromatic spectrum through gonad development stages of the razor surgeonfish, Prionurus laticlavius (Valenciennes, 1846) (Actinopterygii: Acanthuriformes). Journal of Fish Biology, 104(5), 1433–1444. https://doi.org/10.1111/jfb.15685
Al Mahmud, N., Rahman, H. M. H., Mostakim, G. M., Khan, M. G. Q., Shahjahan, M., Lucky, N. S., & Islam, M. S. (2016). Cyclic variations of gonad development of an air-breathing fish, Channa striata in the lentic and lotic environments. Fisheries and Aquatic Sciences, 19(1), 5. https://doi.org/10.1186/s41240-016-0005-0
Albert, J. S., Destouni, G., Duke-Sylvester, S. M., Magurran, A. E., Oberdorff, T., Reis, R. E., Winemiller, K. O., & Ripple, W. J. (2021). Scientists' warning to humanity on the freshwater biodiversity crisis. Ambio, 50(1), 85–94.https://doi.org/10.1007/s13280-020-01318-8
Arthington, A. H., Dulvy, N. K., Gladstone, W., & Winfield, I. J. (2016). Fish conservation in freshwater and marine realms: Status, threats and management. Aquatic Conservation: Marine and Freshwater Ecosystems, 26(5), 838–857. https://doi.org/10.1002/aqc.2712
Barbarossa, V., Schmitt, R. J. P., Huijbregts, M. A. J., Zarfl, C., King, H., & Schipper, A. M. (2020). Impacts of current and future large dams on the geographic range connectivity of freshwater fish worldwide. Proceedings of the National Academy of Sciences of the United States of America, 117(7), 3648–3655. https://doi.org/10.1073/pnas.1912776117
Beevi, K., & Ramachandran, A. (2005). Sex ratio in Puntius vittatus Day in the fresh water bodies of Ernakulam district, Kerala. Zoos' Print Journal, 20. https://doi.org/10.11609/JoTT.ZPJ.1316.1989-90
Birnie-Gauvin, K., Berthelsen, C., Larsen, T., Aarestrup, K. (2023). The physiological costs of reproduction in a capital breeding fish. Physiological and Biochemical Zoology, 96(1), 40-52
Byeon, H.-K. (2012). Population ecology of Squalidus japonicus coreanus (Cyprinidae) in the Namhan River, Korea. Korean Journal of Environment and Ecology, 26(3), 367–373.
Byeon, H.-K. (2021). Ecological characteristics of Korean gudgeon, Squalidus multimaculatus in Cheokgwa Stream, Korea. Korean Journal of Environment and Ecology, 35(6), 601–608.
Carlson, A. K., Taylor, W. W., Kinnison, M. T., Sullivan, S. M. P., Weber, M. J., Melstrom, R. T., Venturelli, P. A., Wuellner, M. R., Newman, R. M., Hartman, K. J., Zydlewski, G. B., DeVries, D. R., Gray, S. M., Infante, D. M., Pegg, M. A., & Harrell, R. M. (2019). Threats to freshwater fisheries in the United States: Perspectives and investments of state fisheries administrators and agricultural experiment station directors. Fisheries, 44(6), 276–287.https://doi.org/10.1002/fsh.10238
Chen, I. S. (2009). Threatened fishes of the world: Squalidus iijimae (Oshima, 1919) (Cyprinidae). Environmental Biology of Fishes, 86(1), 143–144.https://doi.org/10.1007/s10641-008-9355-5
Chen, I. S., & Chang, Y. C. (2007). Taxonomic revision and mitochondrial sequence evolution of the cyprinid genus Squalidus (Teleostei: Cyprinidae) in Taiwan with description of a new species. Raffles Bulletin of Zoology, 14, 69–76.
Cooper, A. R., Infante, D. M., Daniel, W. M., Wehrly, K. E., Wang, L. Z., & Brenden, T. O. (2017). Assessment of dam effects on streams and fish assemblages of the conterminous USA. Science of the Total Environment, 586, 879–889. https://doi.org/10.1016/j.scitotenv.2017.02.067
Cooper, A. R., Infante, D. M., Wehrly, K. E., Wang, L. Z., & Brenden, T. O. (2016). Identifying indicators and quantifying large-scale effects of dams on fishes. Ecological Indicators, 61, 646–657.https://doi.org/10.1016/j.ecolind.2015.10.016
Dahlke, F. T., Wohlrab, S., Butzin, M., & Pörtner, H.-O. (2020). Thermal bottlenecks in the life cycle define climate vulnerability of fish. Science, 369(6499), 65–70. https://doi.org/10.1126/science.aaz3658
Dinh, Q. M., Nguyen, T. H. D., Truong, N. T., & Nguyen-Ngoc, L. (2022). Factors regulating growth pattern and condition factor of an amphibious fish living in the Mekong Delta. PeerJ, 10, e13060. https://doi.org/10.7717/peerj.13060
Encina, L.、Granado-Lorencio, C. (1997). Seasonal changes in condition, nutrition, gonad maturation and energy content in barbel, Barbus sclateri, inhabiting a fluctuating river. Environmental Biology of Fishes, 50(1), 75-84.https://doi.org/10.1023/A:1007381414397
Flores, A., Wiff, R., Ganias, K., & Marshall, C. T. (2019). Accuracy of gonadosomatic index in maturity classification and estimation of maturity ogive. Fisheries Research, 210, 50–62. https://doi.org/10.1016/j.fishres.2018.10.009
Fontoura, N. F., Ceni, G., Braun, A. S., & Marques, C. D. (2018). Defining the reproductive period of freshwater fish species using the gonadosomatic index: A proposed protocol applied to ten species of the Patos Lagoon basin. Neotropical Ichthyology, 16(2), e170006. https://doi.org/10.1590/1982-0224-20170006
Gallardo, B., Clavero, M., Sánchez, M. I., & Vilà, M. (2016). Global ecological impacts of invasive species in aquatic ecosystems. Global Change Biology, 22(1), 151–163. https://doi.org/10.1111/gcb.13004
Ganias, K., Lowerre-Barbieri, S. K., & Cooper, W. (2015). Understanding the determinate-indeterminate fecundity dichotomy in fish populations using a temperature dependent oocyte growth model. Journal of Sea Research, 96, 1–10. https://doi.org/10.1016/j.seares.2014.10.018
Ganivet, E. (2020). Growth in human population and consumption both need to be addressed to reach an ecologically sustainable future. Environment Development and Sustainability, 22(6), 4979–4998. https://doi.org/10.1007/s10668-019-00446-w
Gunderson, D. R. (1980). Using r-k selection theory to predict natural mortality. Canadian Journal of Fisheries and Aquatic Sciences, 37(12), 2266–2271. https://doi.org/10.1139/f80-272


Harikumar, S., Padmanabhan, K. G., John, P. A., & Kortmulder, K. (1994). Dry-season spawning in a cyprinid fish of southern India. Environmental Biology of Fishes, 39(2), 129–136. https://doi.org/10.1007/BF00004930
Hayatsu, M., Tago, K., & Saito, M. (2008). Various players in the nitrogen cycle: Diversity and functions of the microorganisms involved in nitrification and denitrification. Soil Science and Plant Nutrition, 54(1), 33–45.https://doi.org/10.1111/j.1747-0765.2007.00195.x
Hunter, J. R., Lo, N. C., & Leong, R. J. (1985). Batch fecundity in multiple spawning fishes. NOAA Technical Report NMFS, 36, 67–77.
Hunter, J. R., & Macewicz, B. (1980). Sexual maturity, batch fecundity, spawning frequency and temporal pattern of spawning for the northern anchovy Engraulis mordax, during the 1979 spawning season. California Cooperative Oceanic Fisheries Investigations Reports, 21, 139–149.
Hunter, J. R., Macewicz, B. J., Lo, N. C. H., & Kimbrell, C. A. (1992). Fecundity, spawning, and maturity of female dover sole Microstomus pacificus, with an evaluation of assumptions and precision. Fishery Bulletin, 90(1), 101–128.
Isaac, V. J. (1988). Synopsis of biological data on the whitemouth croaker: Micropogonias furnieri (Desmarest, 1823). Food & Agriculture Org.
Ito, T., & Hosoya, K. (2017). Re-examination of the syntypes of Candidia barbata (Teleostei: Cyprinidae). Ichthyological Research, 64(2), 256–260.https://doi.org/10.1007/s10228-016-0560-5
Jisr, N., Younes, G., Sukhn, C., & El-Dakdouki, M. H. (2018). Length–weight relationships and relative condition factor of fish inhabiting the marine area of the eastern Mediterranean city, Tripoli-Lebanon. Egyptian Journal of Aquatic Research, 44(4), 299–305. https://doi.org/10.1016/j.ejar.2018.11.004
Kamimura, Y., & Shoji, J. (2024). Highly structured habitats mitigate size- and growth-selective mortality of post-settlement juvenile fish. Fisheries Oceanography, 33(3), e12663. https://doi.org/10.1111/fog.12663
Kim, K.-M., Kwak, Y.-H., Kim, S.-Y., & Song, H.-Y. (2021). Morphological development of egg and larvae of Squalidus japonicus coreanus (Gobioninae). Korean Journal of Ichthyology, 33(4), 252–261.

Koca, H. U. (2002). The determination of gonadosomatic index and flesh productivity of scorpion fish (Scorpaena porcus Linne., 1758). Turkish Journal of Veterinary & Animal Sciences, 26(1), 61–64.
Kortet, R., Taskinen, J., Vainikka, A., & Ylönen, H. (2004). Breeding tubercles, papillomatosis and dominance behaviour of male roach (Rutilus rutilus) during the spawning period. Ethology, 110(8), 591–601. https://doi.org/10.1111/j.1439-0310.2004.01002.x
Kurobe, T., Hammock, B. G., Damon, L. J., Hung, T. C., Acuna, S., Schultz, A. A., & Teh, S. J. (2022). Reproductive strategy of delta smelt Hypomesus transpacificus and impacts of drought on reproductive performance. PLoS ONE, 17(3), e0264731. https://doi.org/10.1371/journal.pone.0264731
Lazo-Andrade, J., Guzmán-Rivas, F. A., Barría, P., & Urzúa, A. (2023). Variability in the energy reserves of swordfish (Xiphias gladius) of the southeastern Pacific Ocean: A temporal and intra-individual perspective. Marine Environmental Research, 190, 106081. https://doi.org/10.1016/j.marenvres.2023.106081
Liew, J. H., Tan, H. H., & Yeo, D. C. J. (2016). Dammed rivers: Impoundments facilitate fish invasions. Freshwater Biology, 61(9), 1421–1429.https://doi.org/10.1111/fwb.12781
Manubens, J., Comas, O., Valls, N., & Benejam, L. (2020). First captive breeding program for the endangered Pyrenean sculpin (Cottus hispaniolensis Bacescu-Mester, 1964). Water, 12(11), 2986. https://doi.org/10.3390/w12112986
Menezes, N. A., & Marinho, M. M. F. (2019). A new species of Tyttobrycon Eigenmann (Characiformes: Characidae: Stevardiinae) with comments on nuptial tubercles and gill gland in characiform fishes. PLoS ONE, 14(7), e0217915.https://doi.org/10.1371/journal.pone.0217915
Miki, M., Ohishi, N., Nakamura, E., Furumi, A., & Mizuhashi, F. (2018). Improved fixation of the whole bodies of fish by a double-fixation method with formalin solution and Bouin’s fluid or Davidson’s fluid. Journal of Toxicologic Pathology, 31(3), 201–206. https://doi.org/10.1293/tox.2018-0001
Monsees, H., Klatt, L., Kloas, W., & Wuertz, S. (2017). Chronic exposure to nitrate significantly reduces growth and affects the health status of juvenile Nile tilapia (Oreochromis niloticus) in recirculating aquaculture systems. Aquaculture Research, 48(7), 3482–3492. https://doi.org/10.1111/are.13174
Mousa, M. A. (2010). Induced spawning and embryonic development of Clarias gariepinus reared in freshwater ponds. Animal Reproduction Science, 119(1–2), 115–122. https://doi.org/10.1016/j.anireprosci.2009.12.014
Mozsár, A., Boros, G., Sály, P., Antal, L., & Nagy, S. A. (2015). Relationship between Fulton’s condition factor and proximate body composition in three freshwater fish species. Journal of Applied Ichthyology, 31(2), 315–320.https://doi.org/10.1111/jai.12658
Nanami, A., Sato, T., Kawabata, Y., & Okuyama, J. (2017). Spawning aggregation of white-streaked grouper Epinephelus ongus: Spatial distribution and annual variation in the fish density within a spawning ground. PeerJ, 5, e3000. https://doi.org/10.7717/peerj.3000
Nishimura, T., & Tanaka, M. (2014). Gonadal development in fish. Sexual Development, 8(5), 252–261. https://doi.org/10.1159/000364924
Önsoy, B., Tarkan, A. S., Filiz, H., & Bilge, G. (2011). Determination of the best length measurement of fish. North-Western Journal of Zoology, 7(1), 178–180.
Oshima, M. (1919). Contributions to the study of the fresh water fishes of the island of Formosa. Annals of the Carnegie Museum, 12, 169–328.https://doi.org/10.5962/p.34608
Ozaydin, O., Uçkun İlhan, D., Akalın, S., Leblebici, S., & Tosunoğlu, Z. (2007). Length–weight relationships of fishes captured from Izmir Bay, Central Aegean Sea. Journal of Applied Ichthyology, 23, 695–696. https://doi.org/10.1111/j.1439-0426.2007.00853.x
Parasiewicz, P., Belka, K., Łapińska, M., Ławniczak, K., Prus, P., Adamczyk, M., Buras, P., Szlakowski, J., Kaczkowski, Z., Krauze, K., O’Keeffe, J., Suska, K., Ligięza, J., Melcher, A., O’Hanley, J., Birnie-Gauvin, K., Aarestrup, K., Jones, P. E., & Jones, J. (2023). Over 200,000 kilometers of free-flowing river habitat in Europe is altered due to impoundments. Nature Communications, 14(1), 6289. https://doi.org/10.1038/s41467-023-40922-6
Park, K.-S., Hong, Y.-P., Choi, S.-S., & An, K.-G. (2005). The spawning behavior of Korean slender gudgeon, Squalidus gracilis majimae (Cypriniforms: Cyprinidae). Korean Journal of Ecology and Environment, 38(2), 207–216.


Payne, A. I. (1975). The reproductive cycle, condition and feeding in Barbus liberiensis, a tropical stream-dwelling cyprinid. Journal of Zoology, 176(2), 247–269. https://doi.org/10.1111/j.1469-7998.1975.tb03195.x
Peláez Rodríguez, E., Sarma, S. S. S., & Nandini, S. (2021). Morphotype-dependent feeding responses in the guppy Poecilia reticulata Peters, 1859 (Class: Actinopterygii) fed zooplankton. Aquaculture Research, 52(2), 666–677. https://doi.org/10.1111/are.14924
Person-Le Ruyet, J., & Boeuf, G. (1998). Ammonia, a potential toxic to fish: Applications to turbot. Bulletin Français de la Pêche et de la Pisciculture, (350–351), 393–412. https://doi.org/10.1051/kmae:1998013
Phillip, D. A. T. (1993). Reproduction and feeding of the mountain mullet, Agonostomus monticola, in Trinidad, West Indies. Environmental Biology of Fishes, 37(1), 47–55. https://doi.org/10.1007/BF00000711
Pimentel, D., Huang, X. W., Cordova, A., & Pimentel, M. (1997). Impact of population growth on food supplies and environment. Population and Environment, 19(1), 9–14. https://doi.org/10.1023/A:1024693414602
Polacik, M., Vrtilek, M., Reichard, M., Zak, J., Blazek, R., & Podrabsky, J. (2021). Embryo ecology: Developmental synchrony and asynchrony in the embryonic development of wild annual fish populations. Ecology and Evolution, 11(9), 4945–4956. https://doi.org/10.1002/ece3.7402
Pottier, G., Bargier, N., Bennevault, Y., Vigouroux, R., Azam, D., Marchand, F., Nevoux, M., & Roussel, J. M. (2022). Optimising electrofishing settings for shrimp and fish in shallow tropical streams. Fisheries Research, 256, 106457. https://doi.org/10.1016/j.fishres.2022.106457
Pottier, G., Beaumont, W. R., Marchand, F., Le Bail, P. Y., Azam, D., Rives, J., Vigouroux, R., & Roussel, J. M. (2020). Electrofishing in streams of low water conductivity but high biodiversity value: Challenges, limits and perspectives. Fisheries Management and Ecology, 27(1), 52–63. https://doi.org/10.1111/fme.12384
Preston, S. H. (1996). The effect of population growth on environmental quality. Population Research and Policy Review, 15(2), 95–108.https://doi.org/10.1007/BF00126129


Radhakrishnan, D. K., AkbarAli, I., Schmidt, B. V., John, E. M., Sivanpillai, S., & Vasunambesan, S. T. (2020). Improvement of nutritional quality of live feed for aquaculture: An overview. Aquaculture Research, 51(1), 1–17.https://doi.org/10.1111/are.14357
Ramírez-García, A., Moncayo-Estrada, R., González-Cárdenas, J. J., & Domínguez-Domínguez, O. (2021). Reproductive cycle of native viviparous fish species (Actinopterygii: Cyprinodontiformes: Goodeidae) in a subtropical Mexican lake. Neotropical Ichthyology, 19(4), e210105. https://doi.org/10.1590/1982-0224-2021-0105
Richter, I. A., Giacomini, H. C. A., De Kerckhove, D. T., Jackson, D., & Jones, N. E. (2022). Correcting for size bias in electrofishing removal samples. Ecological Modelling, 467, 109929. https://doi.org/10.1016/j.ecolmodel.2022.109929
Rinchard, J., & Kestemont, P. (1996). Comparative study of reproductive biology in single‐ and multiple‐spawner cyprinid fish. I. Morphological and histological features. Journal of Fish Biology, 49(5), 883–894.
Schaan, A. B., Giora, J., & Fialho, C. B. (2009). Reproductive biology of the Neotropical electric fish Brachyhypopomus gauderio (Teleostei: Hypopomidae) from southern Brazil. Neotropical Ichthyology, 7(4), 737–744. https://doi.org/10.1590/S1679-62252009000400023
Schakmann, M., & Korsmeyer, K. E. (2023). Fish swimming mode and body morphology affect the energetics of swimming in a wave-surge water flow. Journal of Experimental Biology, 226(6), jeb244739. https://doi.org/10.1242/jeb.244739
Selosse, P., & Rowland, S. (1990). Use of Common Salt to Treat Ichthyophthiriasis in Australian Warmwater Fishes. The Progressive Fish-culturist, 52, 124-127. https://doi.org/10.1577/1548-8640(1990)052<0124:UOCSTT>2.3.CO;2
Shahjahan, M., Kitahashi, T., & Ando, H. (2017). Temperature affects sexual maturation through the control of kisspeptin, kisspeptin receptor, GnRH and GtH subunit gene expression in the grass puffer during the spawning season. General and Comparative Endocrinology, 243, 138–145.https://doi.org/10.1016/j.ygcen.2016.11.012



Silva, F. F. G., Slotte, A., Johannessen, A., Kennedy, J., Kjesbu, O. S.(2013). Strategies for partition between body growth and reproductive investment in migratory and stationary populations of spring-spawning atlantic herring (clupea harengus l.). Fisheries Research, 138, 71-79.https://doi.org/https://doi.org/10.1016/j.fishres.2012.07.013
Snyder, D. E. (2003). Invited overview: Conclusions from a review of electrofishing and its harmful effects on fish. Reviews in Fish Biology and Fisheries, 13(4), 445–453. https://doi.org/10.1007/s11160-004-1095-9
Song, H.-Y., Ko, M.-H., Seo, I.-Y., Moon, S.-J., & Bang, I.-C. (2017). Morphological development of egg and larvae of Squalidus multimaculatus (Gobioninae). Korean Journal of Ichthyology, 29(1), 52–61.
Stephens, P. A., Boyd, I. L., McNamara, J. M., Houston, A. I. (2009). Capital breeding and income breeding: Their meaning, measurement, and worth. Ecology, 90(8), 2057-2067.
Stormer, J., Jensen, F. B., & Rankin, J. C. (1996). Uptake of nitrite, nitrate, and bromide in rainbow trout, Oncorhynchus mykiss: Effects on ionic balance. Canadian Journal of Fisheries and Aquatic Sciences, 53(9), 1943–1950. https://doi.org/10.1139/cjfas-53-9-1943
Tytell, E. D., Borazjani, I., Sotiropoulos, F., Baker, T. V., Anderson, E. J., & Lauder, G. V. (2010). Disentangling the functional roles of morphology and motion in the swimming of fish. Integrative and Comparative Biology, 50(6), 1140–1154. https://doi.org/10.1093/icb/icq057
van Rijn, J. (2013). Waste treatment in recirculating aquaculture systems. Aquacultural Engineering, 53, 49–56. https://doi.org/10.1016/j.aquaeng.2012.11.010
Voslárová, E., Pisteková, V., Svobodová, Z., & Bedánová, I. (2008). Nitrite toxicity to fish: Effects of subchronic exposure on fish growth. Acta Veterinaria Brno, 77(3), 455–460. https://doi.org/10.2754/avb200877030455
Wang, J. T., Liu, M. C., & Fang, L. S. (1995). The reproductive biology of an endemic cyprinid, Zacco pachycephalus, in Taiwan. Environmental Biology of Fishes, 43(2), 135–143. https://doi.org/10.1007/BF00002481
Warner, R. R. (1987). Female choice of sites versus mates in a coral reef fish, Thalassoma bifasciatum. Animal Behaviour, 35(5), 1470–1478.

West, G. (1990). Methods of assessing ovarian development in fishes: A review. Marine and Freshwater Research, 41(2), 199–222. https://doi.org/10.1071/MF9900199
Wiley, M. L., & Collette, B. B. (1970). Breeding tubercles and contact organs in fishes: Their occurrence, structure, and significance. Bulletin of the American Museum of Natural History, 143(3).
Williams, C. J., Frost, P. C., Morales-Williams, A. M., Larson, J. H., Richardson, W. B., Chiandet, A. S., & Xenopoulos, M. A. (2016). Human activities cause distinct dissolved organic matter composition across freshwater ecosystems. Global Change Biology, 22(2), 613–626. https://doi.org/10.1111/gcb.13094
Xu, H. G., Meng, X. X., Jia, L. L., Wei, Y. L., Sun, B., & Liang, M. Q. (2020). Tissue distribution of transcription for 29 lipid metabolism-related genes in Takifugu rubripes, a marine teleost storing lipid predominantly in liver. Fish Physiology and Biochemistry, 46(4), 1603–1619. https://doi.org/10.1007/s10695-020-00815-7
Yıldız, Y. (2024). The efficacy of salt treatment for Dactylogyrus extensus (Monogenea) infection in Carp (Cyprinus carpio). Aquatic Research, 7(1), 1-7https://doi.org/10.3153/ar24001
Yin, Y. H., Sameoto, J. A., Keith, D. M., & Flemming, J. M. (2022). Improving estimation of length–weight relationships using spatiotemporal models. Canadian Journal of Fisheries and Aquatic Sciences, 79(11), 1896–1910. https://doi.org/10.1139/cjfas-2021-0317
Zak, J., Roy, K., Dykova, I., Mraz, J., & Reichard, M. (2022). Starter feed for carnivorous species as a practical replacement of bloodworms for a vertebrate model organism in ageing, the turquoise killifish Nothobranchius furzeri. Journal of Fish Biology, 100(4), 894–908. https://doi.org/10.1111/jfb.15021
Zhu, S. M., & Chen, S. L. (1999). An experimental study on nitrification biofilm performances using a series reactor system. Aquacultural Engineering, 20(4), 245–259. https://doi.org/10.1016/S0144-8609(99)00019-9
Zohar, Y. (2021). Fish reproductive biology – Reflecting on five decades of fundamental and translational research. General and Comparative Endocrinology, 300, 113544. https://doi.org/10.1016/j.ygcen.2020.113544
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99025-
dc.description.abstract飯島氏銀鮈(Squalidus iijimae)為臺灣特有種初級淡水魚類,也是被農業部列為瀕臨絕種保育類的重要保育對象。飯島氏銀鮈目前僅於後龍溪流域存在原生族群,且近年於臺中市食水嵙溪雙翠水壩發現一個被引入族群。本種因受到棲地破壞及外來種入侵等影響,數量急遽減少,是亟需採取保育措施的淡水魚種。本研究有二個主要目的,其一為獲取飯島氏銀鮈的生殖生物學資料,包括性別、體長體重關係、肥滿度及生殖腺成熟度指數、孕卵數、卵徑頻度與繁殖季等。其二為建立人工養殖的標準方法,探討最適合飯島氏銀鮈之飼養水溫、水質條件、光照週期、餌料、飼養密度、水體大小等環境因素,並觀察種魚行為表現,確認出最適合飯島氏銀鮈生存的人工飼養環境,以做為未來保育及復育行動的依據,達到降低滅絕風險的結果。本研究以臺中市雙翠水壩的飯島氏銀鮈域外族群為研究樣本,利用釣魚法以每兩週採集15尾的方式,共取得480尾樣本,以解剖方式獲得上述數據,並另採集150尾種魚於人工環境飼養,得到生殖生物學以及人工養殖結果。研究結果顯示,可利用雄魚具第二性徵「追星」做為飯島氏銀鮈性別判斷標準。雄魚之體長體重關係式為W = 0.000006 × L3.2391,R2 = 0.9038,雌魚為W = 0.00002 × L2.9254,R2 = 0.9225。雄魚肥滿度介於0.802–1.035,雌魚則介於0.819–1.144,於8、9月最高,11至2月最低。雄魚生殖腺成熟度介於0.303–3.228,雌魚介於0.303–22.308。總孕卵數介於1,058–6,326顆,且包含發育階段不同之卵粒,為分次成熟型。基於以上生殖生物學資料,推測飯島氏銀鮈之繁殖期為4月至10月,9月為生殖高峰期,且為多次生殖型。飯島氏銀鮈的養殖須提供沒有含氮代謝物之良好水質環境,並謹慎控管魚類常見病原以避免感染。提供赤蟲、豐年蝦及含高蛋白質的人工飼料,待種魚肥滿度明顯增加後,自然配對或利用人工注射激素方式催產。本研究為國內極少數針對瀕臨絕種保育類淡水魚所進行之生殖生物學與人工繁養殖研究之一,不僅填補過去學界對該物種生殖資料的空白,亦為未來飯島氏銀鮈保育策略提供重要科學依據,亦可作為銀鮈屬其他種魚類的研究提供參考。zh_TW
dc.description.abstractSqualidus iijimae is an endemic primary freshwater fish of Taiwan and has been listed as an endangered species by the Ministry of Agriculture. Native populations are currently restricted to the Houlong River basin, while an introduced population has recently been discovered in the Shuangcui Dam of the Shishuike Stream in Taichung City. Due to habitat degradation and invasive species, the population has declined sharply, highlighting the urgent need for conservation. This study had two main objectives: (1) to investigate the reproductive biology of S. iijimae, including sex identification, length–weight relationships, condition factor, gonadosomatic index (GSI), fecundity, oocyte size distribution, and spawning season; and (2) to establish optimal artificial rearing conditions, including temperature, water quality, photoperiod, feeding regime, stocking density, and tank size, while monitoring behavior and reproductive performance. A total of 480 individuals were collected biweekly (n = 15) from the introduced population and dissected for data collection. An additional 150 broodstock were used for ex situ culture. Males exhibited nuptial tubercles as a reliable sex indicator. The length–weight equations were W = 0.000006 × L3.2391 (R2 = 0.9038) for males and W = 0.00002 × L2.9254 (R2 = 0.9225) for females. Condition factor peaked in August–September and was lowest from November to February. GSI ranged from 0.303–3.228 in males and 0.303–22.308 in females. Fecundity ranged from 1,058 to 6,326 oocytes, displaying asynchronous development. Spawning likely occurs from April to October, with a peak in September, indicating a multiple-spawning strategy. Artificial culture requires high water quality free from nitrogenous waste and disease control. Fish were fed bloodworms, brine shrimp, and high-protein pellets, with breeding induced by either natural pairing or hormone injection. This study provides the first comprehensive reproductive and captive breeding data for this endangered species, offering essential insights for conservation and serving as a reference for other Squalidus species.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-21T16:05:59Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-08-21T16:05:59Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents謝 辭 i
摘 要 ii
Abstract iv
目 次 vi
圖 次 vii
表 次 viii
前 言 1
一、飯島氏銀鮈的生態學 1
二、生殖生物對魚類研究的重要性 3
三、淡水魚域外保育 4
四、研究目的 6
材料與方法 8
一、研究地點 8
二、魚類生殖學資料 10
三、飯島氏銀鮈人工繁養殖 15
結 果 20
一、飯島氏銀鮈生殖學 20
二、域外人工繁養殖方法 34
討 論 38
一、飯島氏銀鮈生殖生物學特點 38
二、域外人工繁養殖方法 47
結論與建議 49
參考文獻 51
-
dc.language.isozh_TW-
dc.subject特有種淡水魚zh_TW
dc.subject飯島氏銀鮈zh_TW
dc.subject生殖週期zh_TW
dc.subject生殖生物學zh_TW
dc.subject人工養殖zh_TW
dc.subjectSqualidus iijimaeen
dc.subjectspawning seasonen
dc.subjectreproductive biologyen
dc.subjectendemic freshwater fishen
dc.subjectcaptive breedingen
dc.title飯島氏銀鮈(Squalidus iijimae)之生殖生物學研究zh_TW
dc.titleThe Study of Reproductive Biology of Squalidus iijimaeen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.coadvisor劉奇璋zh_TW
dc.contributor.coadvisorChi-Chang Liuen
dc.contributor.oralexamcommittee張明雄;黃世彬zh_TW
dc.contributor.oralexamcommitteeMing-Hsung Chang;Shih-Pin Huangen
dc.subject.keyword飯島氏銀鮈,特有種淡水魚,生殖生物學,生殖週期,人工養殖,zh_TW
dc.subject.keywordSqualidus iijimae,endemic freshwater fish,reproductive biology,spawning season,captive breeding,en
dc.relation.page61-
dc.identifier.doi10.6342/NTU202503475-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2025-08-07-
dc.contributor.author-college生物資源暨農學院-
dc.contributor.author-dept森林環境暨資源學系-
dc.date.embargo-lift2025-08-22-
顯示於系所單位:森林環境暨資源學系

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf2.57 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved