Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 生物機電工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99017
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor丁健芳zh_TW
dc.contributor.advisorChien-Fang Dingen
dc.contributor.author廖佑華zh_TW
dc.contributor.authorYou-Hua Liaoen
dc.date.accessioned2025-08-20T16:40:06Z-
dc.date.available2025-08-21-
dc.date.copyright2025-08-20-
dc.date.issued2025-
dc.date.submitted2025-08-14-
dc.identifier.citationAlajrami, Mahmoud A., and Samy S. Abu-Naser. 2020. 'Type of Tomato Classification Using Deep Learning', International Journal of Academic Pedagogical Research (IJAPR), 3: 21–25.
Ang, J. C., A. Mirzal, H. Haron, and H. N. A. Hamed. 2016. 'Supervised, Unsupervised, and Semi-Supervised Feature Selection: A Review on Gene Selection', IEEE/ACM Transactions on Computational Biology and Bioinformatics, 13: 971–89.
Ayuningtyas, Dewi, Esti Suryani, and Wiharto Wiharto. 2021. "Identification of Tomato Maturity Based on HIS Color Space Using The K-Nearest Neighbour Method." In 2021 International Conference on Artificial Intelligence and Computer Science Technology (ICAICST), 73–78.
Barbedo, Jayme Garcia Arnal. 2016. 'A review on the main challenges in automatic plant disease identification based on visible range images', Biosystems Engineering, 144: 52–60.
Begum, Ninja, and Manuj Kumar Hazarika. 2022. 'Maturity detection of tomatoes using transfer learning', Measurement: Food, 7.
Camelo, Andrés, and Perla Gómez. 2004. 'Comparison of color indexes for tomato ripening', Horticultura Brasileira - HORTIC BRAS, 22.
Chang, Y., X. Zhang, C. Wang, N. Ma, J. Xie, and J. Zhang. 2024. 'Fruit Quality Analysis and Flavor Comprehensive Evaluation of Cherry Tomatoes of Different Colors', Foods, 13.
Choi, K., G. Lee, Y. J. Han, and J. M. Bunn. 1995. 'Tomato Maturity Evaluation Using Color Image Analysis', Transactions of the ASAE, 38: 171–76.
Elhariri, Esraa, Nashwa El-Bendary, Mohamed Mostafa M. Fouad, Jan Platoš, Aboul Ella Hassanien, and Ahmed M. M. Hussein. 2014. 'Multi-class SVM Based Classification Approach for Tomato Ripeness.' in, Innovations in Bio-inspired Computing and Applications.
Fetzer, James H. 1990. 'What is Artificial Intelligence?' in James H. Fetzer (ed.), Artificial Intelligence: Its Scope and Limits (Springer Netherlands: Dordrecht).
Hasegawa, J., K. Mori, J. Toriwaki, H. Anno, and K. Katada. 1994. 'AUTOMATED EXTRACTION OF LUNG-CANCER LESIONS FROM MULTISLICE CHEST CT IMAGES BY USING 3-DIMENSIONAL IMAGE-PROCESSING', Systems and Computers in Japan, 25: 68–77.
Helgi Library. 2023. 'Which Country Produces the Most Tomatoes?'. Available at: https://www.helgilibrary.com/charts/which-country-produces-the-most-tomatoes/. Accessed 5 December 2024.
HerbaZest Editorial Team. 2025. 'The tomato is thought to be the second most popular vegetable in the world after potato, but behind its delicious flavor and culinary versatility lies a fascinating history, a great nutritional value, and wonderful medicinal properties.'. Available at: https://www.herbazest.com/herbs/tomato. Accessed 5 December 2024.
Idah, Peter, and Obafemi Obajemihi. 2014. 'Effects of Osmotic Pre-Drying Treatments, Duration and Drying Temperature on Some Nutritional Values of Tomato Fruit', Academic Research International, 5.
Kaelbling, Leslie Pack, Michael L Littman, and Andrew W Moore. 1996. 'Reinforcement learning: A survey', Journal of artificial intelligence research, 4: 237–85.
Kim, Taehyeong, Dae-Hyun Lee, Kyoung-Chul Kim, Taeyong Choi, and Jun Myoung Yu. 2022. 'Tomato Maturity Estimation Using Deep Neural Network', Applied Sciences, 13.
Kurina, A. B., A. E. Solovieva, I. A. Khrapalova, and A. M. Artemyeva. 2021. 'Biochemical composition of tomato fruits of various colors', Vavilovskii Zhurnal Genet Selektsii, 25: 514–27.
Kwan, R. K. S., A. C. Evans, and G. B. Pike. 1999. 'MRI simulation-based evaluation of image-processing and classification methods', Ieee Transactions on Medical Imaging, 18: 1085–97.
Li, Ping, Jishu Zheng, Peiyuan Li, Hanwei Long, Mai Li, and Lihong Gao. 2023. 'Tomato Maturity Detection and Counting Model Based on MHSA-YOLOv8', Sensors, 23: 6701.
Mahajan, Shveta, Amitava Das, and Harish Kumar Sardana. 2015. 'Image acquisition techniques for assessment of legume quality', Trends in Food Science & Technology, 42: 116–33.
Mahmoud, Nesma Talaat Abbas, Indrek Virro, A. G. M. Zaman, Tormi Lillerand, Wai Tik Chan, Olga Liivapuu, Kallol Roy, and Jüri Olt. 2024. 'Robust Object Detection Under Smooth Perturbations in Precision Agriculture', AgriEngineering, 6: 4570–84.
Mehra, Tanvi, Vinay Kumar, and Pragya Gupta. 2016. 'Maturity and disease detection in tomato using computer vision', 2016 Fourth International Conference on Parallel, Distributed and Grid Computing (PDGC): 399–403.
Ningsih, Lidya, and Putri Cholidhazia. 2022. 'Classification Of Tomato Maturity Levels Based on RGB And HSV Colors Using KNN Algorithm', RIGGS: Journal of Artificial Intelligence and Digital Business, 1: 25–30.
O'shea, Keiron, and Ryan Nash. 2015. 'An introduction to convolutional neural networks', arXiv preprint arXiv:1511.08458.
Schlüter, S., A. Sheppard, K. Brown, and D. Wildenschild. 2014. 'Image processing of multiphase images obtained via X- ray microtomography: A review', Water Resources Research, 50: 3615–39.
Singh, Priya, and Rajalakshmi Krishnamurthi. 2024. 'IoT-based real-time object detection system for crop protection and agriculture field security', Journal of Real-Time Image Processing, 21.
SpotCam. 2021. 'SpotCam Eva 2'. Available at: https://store.spotcam.com/products/spotcam-eva-2?srsltid=AfmBOorsQTB2F2R-_zr8EQ7Wo6a5-DBP2YfW2R_2vPgWpc6AcZsRCGgJ. Accessed 18 January 2025.
Wan, Peng, Arash Toudeshki, Hequn Tan, and Reza Ehsani. 2018. 'A methodology for fresh tomato maturity detection using computer vision', Computers and Electronics in Agriculture, 146: 43–50.
Zareiforoush, Hemad, Saeid Minaei, Mohammad Reza Alizadeh, and Ahmad Banakar. 2015. 'Potential Applications of Computer Vision in Quality Inspection of Rice: A Review', Food Engineering Reviews, 7: 321–45.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99017-
dc.description.abstract番茄是世界上重要的經濟作物之一,其成熟度判斷對於收穫時機的選擇和市場價值的提升具有關鍵作用,且其品質會直接影響銷售的數量以及其營養成分的重要因素。以一位消費者的角度來說,其成熟程度是衡量其品質的重要指標,因此,自動化的成熟度評估是一個至關重要的研究主題,因為其對確保優質產品的最佳產量有一定程度上的幫助,進而提高收入。本研究旨在運用深度學習與色彩空間轉換的技術來建構針對茄科作物成熟度判斷模型,並以番茄為實驗對象。我們採用 YOLOv11 偵測模型定位番茄,接著使用經 PyTorch 訓練以 ResNet-50 為基礎的模型並結合了色彩空間轉換上的應用並辨識其成熟程度。資料集涵蓋不同生長階段的番茄影像,影像涵蓋了未成熟、半成熟、成熟不同階段。並透過旋轉、縮放、對比變化以及亮度變化等擴增方式提升模型泛化能力。為提取更具判別力的色彩特徵,我們進行了 RGB 至 HSV與 CIELAB 色彩空間轉換。實驗結果顯示,模型表現優異且在成熟度分類上的準確率可達九成,色彩空間與深度學習整合可有效應用於智慧農業領域。zh_TW
dc.description.abstractTomatoes are a major global economic crop. Assessing their ripeness is crucial for selecting the optimal harvest time and increasing market value. Ripeness directly impacts quality, which in turn affects sales volume and nutritional content. From a consumer’s perspective, ripeness is a key indicator of quality. Therefore, automated ripeness assessment is a critical research topic, as it helps to ensure the best possible yield of high-quality products and, consequently, boosts revenue. This study aims to build a ripeness assessment model for solanaceous crops, using tomatoes as the subject, by leveraging deep learning and color space conversion techniques. We used the YOLOv11 detection model to locate tomatoes. Following this, we employed a PyTorch-trained ResNet-50-based model, which integrated color space conversion, to identify their ripeness level. The dataset includes images of tomatoes at different growth stages: unripe, semi-ripe, and ripe. We used data augmentation techniques like rotation, scaling, and adjustments to contrast and brightness to enhance the model's generalization ability. To extract more discriminative color features, we converted images from the RGB color space to both HSV and CIELAB. The experimental results show that the model performs exceptionally well, achieving a classification accuracy of over 90% for ripeness levels. This demonstrates that integrating color spaces with deep learning can be effectively applied in the field of smart agriculture.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-20T16:40:06Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-08-20T16:40:06Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員審定書 i
Acknowledgements ii
中文摘要 iii
Abstract iv
Table of Contents v
List of Figures viii
List of Tables xii
Chapter 1 Introduction 1
1.1 Background and motivation 1
1.2 Objectives 4
1.3 Thesis structure 4
Chapter 2 Literature review 6
2.1 Applications of computer vision in agriculture 6
2.2 Applications of deep learning in agricultural 14
2.3 Color space transformation for crop maturity assessment 21
2.4 Object detection in precision agriculture 27
2.5 Summary of the literature review 28
Chapter 3 Materials and methods 32
3.1 Implementation environment and tools 32
3.2 Data collection and description 37
3.2.1 Data sources 37
3.2.2 Dataset composition 42
3.2.3 Annotation and training methods 42
3.2.4 Data augmentation 45
3.3 Deep learning architecture with color space transformation 47
3.3.1 Yolov11-based tomato detection 47
3.3.2 Pytorch-based maturity classification 53
3.3.3 Color space transformation for maturity classification 58
Chapter 4 Results and discussion 60
4.1 Tomato detection performance with yolov11 60
4.1.1 Learning dynamics and convergence behavior 60
4.1.2 Confidence-based analysis 61
4.1.3 Confusion matrix and classification accuracy 66
4.1.4 Visual detection examples 68
4.2 Color space evaluation on maturity classification 69
4.2.1 RGB color space representation 70
4.2.2 HSV color space representation 75
4.2.3 CIELAB color space representation 80
4.3 Maturity classification accuracy 85
Chapter 5 Conclusions and future works 93
5.1 Conclusions 93
5.2 Future works 94
References 96
-
dc.language.isoen-
dc.subject深度學習zh_TW
dc.subject物件偵測zh_TW
dc.subject色彩空間轉換zh_TW
dc.subject茄科作物zh_TW
dc.subjectObject Detectionen
dc.subjectColor Space Transformationen
dc.subjectDeep Learningen
dc.subjectSolanaceae Cropsen
dc.title茄科作物成熟度分類模型的深度學習與色彩空間轉換研究zh_TW
dc.titleA Deep Learning Approach to Maturity Classification of Solanaceous Crops with Color Space Transformationen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee陳倩瑜;洪瑞慶zh_TW
dc.contributor.oralexamcommitteeChien-Yu Chen;Ray-Ching Hongen
dc.subject.keyword深度學習,物件偵測,色彩空間轉換,茄科作物,zh_TW
dc.subject.keywordDeep Learning,Object Detection,Color Space Transformation,Solanaceae Crops,en
dc.relation.page99-
dc.identifier.doi10.6342/NTU202504374-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2025-08-15-
dc.contributor.author-college生物資源暨農學院-
dc.contributor.author-dept生物機電工程學系-
dc.date.embargo-lift2030-08-10-
顯示於系所單位:生物機電工程學系

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
  未授權公開取用
8.86 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved