Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99006Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 林俊達 | zh_TW |
| dc.contributor.advisor | Guin-Dar Lin | en |
| dc.contributor.author | 郭天樞 | zh_TW |
| dc.contributor.author | Tian-Shu Gou | en |
| dc.date.accessioned | 2025-08-20T16:37:40Z | - |
| dc.date.available | 2025-08-21 | - |
| dc.date.copyright | 2025-08-20 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-08-13 | - |
| dc.identifier.citation | [1] Alexander S. Solntsev, Girish S. Agarwal, and Yuri S. Kivshar. Metasurfaces for quantum photonics. Nature Photonics, 15(5):327–336, 2021.
[2] Ephraim Shahmoon, Dominik S. Wild, Mikhail D. Lukin, and Susanne F. Yelin. Cooperative resonances in light scattering from two-dimensional atomic arrays. Phys. Rev. Lett., 118:113601, Mar 2017. [3] Jun Rui, David Wei, Antonio Rubio-Abadal, Simon Hollerith, Johannes Zeiher, Dan M. Stamper-Kurn, Christian Gross, and Immanuel Bloch. A subradiant optical mirror formed by a single structured atomic layer. Nature, 583(7816):369–374,2020. [4] A. Asenjo-Garcia, M. Moreno-Cardoner, A. Albrecht, H. J. Kimble, and D. E. Chang. Exponential improvement in photon storage fidelities using subradiance and “selective radiance” in atomic arrays. Phys. Rev. X, 7:031024, Aug 2017. [5] Freya Shah, Taylor L. Patti, Oriol Rubies-Bigorda, and Susanne F. Yelin. Quantum computing with subwavelength atomic arrays. Phys. Rev. A, 109:012613, Jan 2024. [6] J. Perczel, J. Borregaard, D. E. Chang, H. Pichler, S. F. Yelin, P. Zoller, and M. D. Lukin. Topological quantum optics in two-dimensional atomic arrays. Phys. Rev. Lett., 119:023603, Jul 2017 [7] R. Bekenstein, I. Pikovski, H. Pichler, E. Shahmoon, S. F. Yelin, and M. D. Lukin. Quantum metasurfaces with atom arrays. Nature Physics, 16(6):676–681, 2020. [8] R. H. Lehmberg. Radiation from an n-atom system. i. general formalism. Phys. Rev. A, 2:883–888, Sep 1970. [9] Zongping Gong Yuto Ashida and Masahito Ueda. Non-hermitian physics. Advances in Physics, 69(3):249–435, 2020. [10] Ramy El-Ganainy, Konstantinos G. Makris, Mercedeh Khajavikhan, Ziad H. Musslimani, Stefan Rotter, and Demetrios N. Christodoulides. Non-hermitian physics and pt symmetry. Nature Physics, 14(1):11–19, Jan 2018. [11] W D Heiss. The physics of exceptional points. Journal of Physics A: Mathematical and Theoretical, 45(44):444016, oct 2012. [12] Zin Lin, Hamidreza Ramezani, Toni Eichelkraut, Tsampikos Kottos, Hui Cao, and Demetrios N. Christodoulides. Unidirectional invisibility induced by PT -symmetric periodic structures. Phys. Rev. Lett., 106:213901, May 2011. [13] Weijian Chen, Şahin Kaya Özdemir, Guangming Zhao, Jan Wiersig, and Lan Yang. Exceptional points enhance sensing in an optical microcavity. Nature, 548(7666):192–196, Aug 2017. [14] Y. D. Chong, Li Ge, Hui Cao, and A. D. Stone. Coherent perfect absorbers: Time-reversed lasers. Phys. Rev. Lett., 105:053901, Jul 2010. [15] Hossein Hodaei, Mohammad-Ali Miri, Matthias Heinrich, Demetrios N. Christodoulides, and Mercedeh Khajavikhan. Parity-time-symmetric microring lasers. Science, 346(6212):975–978, 2014 [16] Hengyun Zhou, Chao Peng, Yoseob Yoon, Chia Wei Hsu, Keith A. Nelson, Liang Fu, John D. Joannopoulos, Marin Soljačić, and Bo Zhen. Observation of bulk fermi arc and polarization half charge from paired exceptional points. Science, 359(6379):1009–1012, 2018. [17] B. Zhen, C. W. Hsu, Y. Igarashi, L. Lu, I. Kaminer, A. Pick, S.-L. Chua, J. D. Joannopoulos, and M. Soljačić. Spawning rings of exceptional points out of dirac cones. Nature, 525:354–358, 2015. [18] A. Cerjan, S. Huang, M. Wang, K. P. Chen, Y. Chong, and M. C. Rechtsman. Experimental realization of a weyl exceptional ring. Nature Photonics, 13:623–628,2019. [19] Weilu Gao, Xinwei Li, Motoaki Bamba, and Junichiro Kono. Continuous transition between weak and ultrastrong coupling through exceptional points in carbon nanotube microcavity exciton–polaritons. Nature Photonics, 12(6):362–367, Jun 2018. [20] Rui Su, Eliezer Estrecho, Dąbrówka Biegańska, Yuqing Huang, Matthias Wurdack, Maciej Pieczarka, Andrew G. Truscott, Timothy C. H. Liew, Elena A. Ostrovskaya, and Qihua Xiong. Direct measurement of a non-hermitian topological invariant in a hybrid light-matter system. Science Advances, 7(45):eabj8905, 2021. [21] Dan S. Borgnia, Alex Jura Kruchkov, and Robert-Jan Slager. Non-hermitian boundary modes and topology. Phys. Rev. Lett., 124:056802, Feb 2020. [22] Kai Zhang, Zhesen Yang, and Chen Fang. Correspondence between winding numbers and skin modes in non-hermitian systems. Phys. Rev. Lett., 125:126402, Sep 2020 [23] Nobuyuki Okuma, Kohei Kawabata, Ken Shiozaki, and Masatoshi Sato. Topological origin of non-hermitian skin effects. Phys. Rev. Lett., 124:086801, Feb 2020. [24] Z. Gu, H. Wang, F. Schindler, C. H. Lee, Z. Yang, K. Y. Bliokh, F. Nori, and B. Zhang. Observation of non-hermitian topology and its bulk–edge correspondence in an active mechanical metamaterial. Nature Physics, 17:234–239, 2021. [25] Tobias Hofmann, Tobias Helbig, Frank Schindler, Nicole Salgo, Maria Brzezińska, Martin Greiter, Tobias Kiessling, and Ronny Thomale. Reciprocal skin effect and its realization in a topolectrical circuit. Phys. Rev. Research, 2:023265, 2020. [26] Hui Xue, Yahui Yang, Zhao Gao, Y. D. Chong, and Baile Zhang. Observation of an acoustic non-hermitian skin effect. Nature Communications, 13(1):2494, 2022. [27] K. v. Klitzing, G. Dorda, and M. Pepper. New method for high-accuracy determination of the fine-structure constant based on quantized hall resistance. Phys. Rev. Lett., 45(6):494–497, 1980. [28] D. C. Tsui, H. L. Stormer, and A. C. Gossard. Two-dimensional magnetotransport in the extreme quantum limit. Phys. Rev. Lett., 48(22):1559–1562, 1982. [29] C. L. Kane and E. J. Mele. Quantum spin hall effect in graphene. Phys. Rev. Lett., 95(22):226801, 2005. [30] M. Z. Hasan and C. L. Kane. Colloquium: Topological insulators. Rev. Mod. Phys., 82:3045–3067, 2010. [31] X.-L. Qi and S.-C. Zhang. Topological insulators and superconductors. Rev. Mod. Phys., 83:1057–1110, 2011 [32] Tomoki Ozawa, Hannah M. Price, Alberto Amo, Nathan Goldman, Mohammad Hafezi, Ling Lu, Mikael C. Rechtsman, David Schuster, Jonathan Simon, Oded Zilberberg, and Iacopo Carusotto. Topological photonics. Rev. Mod. Phys., 91(1):015006, 2019. [33] Shunyu Yao and Zhong Wang. Edge states and topological invariants of non-hermitian systems. Phys. Rev. Lett., 121:086803, Aug 2018. [34] V. M. Martinez Alvarez, J. E. Barrios Vargas, and L. E. F. Foa Torres. Non-hermitian robust edge states in one dimension: Anomalous localization and eigenspace condensation at exceptional points. Phys. Rev. B, 97:121401, Mar 2018. [35] F. K. Kunst, E. Edvardsson, J. C. Budich, and E. J. Bergholtz. Biorthogonal bulk-boundary correspondence in non-hermitian systems. Phys. Rev. Lett., 121:026808, Jul 2018. [36] Emil J. Bergholtz, Jan Carl Budich, and Flore K. Kunst. Exceptional topology of non-hermitian systems. Rev. Mod. Phys., 93(1):015005, Feb 2021. [37] Kei Yokomizo and Shuichi Murakami. Non-bloch band theory of non-hermitian systems. Phys. Rev. Lett., 123:066404, Aug 2019. [38] Yi-Cheng Wang, Jhih-Shih You, and H. H. Jen. A non-hermitian optical atomic mirror. Nature Communications, 13(1):4598, 2022. [39] J. Perczel, J. Borregaard, D. E. Chang, H. Pichler, S. F. Yelin, P. Zoller, and M. D. Lukin. Photonic band structure of two-dimensional atomic lattices. Phys. Rev. A, 96:063801, Dec 2017 [40] Robert J. Bettles, Ji ří Minář, Charles S. Adams, Igor Lesanovsky, and Beatriz Olmos. Topological properties of a dense atomic lattice gas. Phys. Rev. A, 96:041603, Oct 2017. [41] J. Perczel, J. Borregaard, D. E. Chang, S. F. Yelin, and M. D. Lukin. Topological quantum optics using atomlike emitter arrays coupled to photonic crystals. Phys. Rev. Lett., 124:083603, Feb 2020. [42] Lukas Novotny and Bert Hecht. Principles of Nano-Optics. Cambridge University Press, 2 edition, 2012. [43] H. A. Bethe. The electromagnetic shift of energy levels. Phys. Rev., 72:339–341, Aug 1947. [44] Kaizad Rustomji, Marc Dubois, Pierre Jomin, Stefan Enoch, Jérôme Wenger, C. Martijn de Sterke, and Redha Abdeddaim. Complete electromagnetic dyadic green function characterization in a complex environment—resonant dipole-dipole interaction and cooperative effects. Phys. Rev. X, 11:021004, Apr 2021. [45] Cristina Bena and Gilles Montambaux. Remarks on the tight-binding model of graphene. New Journal of Physics, 11(9):095003, sep 2009. [46] Weng Cho Chew. Waves and Fields in Inhomogeneous Media. IEEE Press Series on Electromagnetic Wave Theory. IEEE Press, Piscataway, NJ, revised edition, 1999. [47] Mauro Antezza and Yvan Castin. Spectrum of light in a quantum fluctuating periodic structure. Phys. Rev. Lett., 103:123903, Sep 2009. [48] Mauro Antezza and Yvan Castin. Fano-hopfield model and photonic band gaps for an arbitrary atomic lattice. Phys. Rev. A, 80:013816, Jul 2009 [49] Milton Abramowitz and Irene A. Stegun. Handbook of Mathematical Functions: With Formulas, Graphs, and Mathematical Tables. Dover Publications, New York, 1970. [50] Shun-Qing Shen. Minimal Lattice Model for Topological Insulators, pages 33–50. Springer Singapore, Singapore, 2017. [51] János K. Asbóth, László Oroszlány, and András Pályi. A Short Course on Topological Insulators: Band Structure and Edge States in One and Two Dimensions, volume 919 of Lecture Notes in Physics. Springer International Publishing, 2016. [52] Y. Aharonov and D. Bohm. Significance of electromagnetic potentials in the quantum theory. Phys. Rev., 115:485–491, Aug 1959. [53] A Yu Kitaev. Unpaired majorana fermions in quantum wires. Physics-Uspekhi, 44(10S):131, oct 2001. [54] Takahiro Fukui, Yasuhiro Hatsugai, and Hiroshi Suzuki. Chern numbers in discretized brillouin zone: Efficient method of computing (spin) hall conductances. Journal of the Physical Society of Japan, 74(6):1674–1677, 2005. [55] F. D. M. Haldane. Model for a quantum hall effect without landau levels: Condensed-matter realization of the ”parity anomaly”. Phys. Rev. Lett., 61:2015–2018, Oct 1988. [56] Xiao-Liang Qi, Yong-Shi Wu, and Shou-Cheng Zhang. Topological quantization of the spin hall effect in two-dimensional paramagnetic semiconductors. Phys. Rev. B, 74:085308, Aug 2006. [57] W. P. Su, J. R. Schrieffer, and A. J. Heeger. Solitons in polyacetylene. Phys. Rev. Lett., 42:1698–1701, Jun 1979. [58] W. P. Su, J. R. Schrieffer, and A. J. Heeger. Soliton excitations in polyacetylene. Phys. Rev. B, 22:2099–2111, Aug 1980. [59] Han-Ting Chen, Chia-Hsun Chang, and Hsien chung Kao. Connection between the winding number and the chern number. Chinese Journal of Physics, 72:50–68, 2021. [60] J. J. Sakurai and Jim Napolitano. Modern Quantum Mechanics. Cambridge University Press, 3 edition, 2020. [61] Michael P. Marder. Cohesion of Solids, chapter 11, pages 295–319. John Wiley and Sons, Ltd, 2010. [62] John Roe. Winding Around: The Winding Number in Topology, Geometry, and Analysis, volume 76 of Student Mathematical Library. American Mathematical Society, 2015. [63] J. Zak. Berry’s phase for energy bands in solids. Phys. Rev. Lett., 62:2747–2750,Jun 1989. [64] Carl M. Bender and Stefan Boettcher. Real spectra in non-hermitian hamiltonians having PT symmetry. Phys. Rev. Lett., 80:5243–5246, Jun 1998. [65] Zongping Gong, Yuto Ashida, Kohei Kawabata, Kazuaki Takasan, Sho Hi-gashikawa, and Masahito Ueda. Topological phases of non-hermitian systems. Phys. Rev. X, 8:031079, Sep 2018. [66] Huitao Shen, Bo Zhen, and Liang Fu. Topological band theory for non-hermitian hamiltonians. Phys. Rev. Lett., 120:146402, Apr 2018. [67] Zhesen Yang, A. P. Schnyder, Jiangping Hu, and Ching-Kai Chiu. Fermion doubling theorems in two-dimensional non-hermitian systems for fermi points and exceptional points. Phys. Rev. Lett., 126:086401, Feb 2021. [68] Naomichi Hatano and David R. Nelson. Localization transitions in non-hermitian quantum mechanics. Phys. Rev. Lett., 77:570–573, Jul 1996. [69] Naomichi Hatano and David R. Nelson. Vortex pinning and non-hermitian quantum mechanics. Phys. Rev. B, 56:8651–8673, Oct 1997. [70] Naomichi Hatano and David R. Nelson. Non-hermitian delocalization and eigen-functions. Phys. Rev. B, 58:8384–8390, Oct 1998. [71] Cui-Xian Guo, Chun-Hui Liu, Xiao-Ming Zhao, Yanxia Liu, and Shu Chen. Exact solution of non-hermitian systems with generalized boundary conditions: Size-dependent boundary effect and fragility of the skin effect. Phys. Rev. Lett., 127:116801, Sep 2021. [72] Suk-Geun Hwang and. Cauchy’s interlace theorem for eigenvalues of Hermitian matrices. The American Mathematical Monthly, 111(2):157–159, 2004. [73] Kohei Kawabata, Ken Shiozaki, Masahito Ueda, and Masatoshi Sato. Symmetry and topology in non-hermitian physics. Phys. Rev. X, 9:041015, Oct 2019. [74] Yong Xu, Sheng-Tao Wang, and L.-M. Duan. Weyl exceptional rings in a three-dimensional dissipative cold atomic gas. Phys. Rev. Lett., 118:045701, Jan 2017. [75] Charles Kittel. Introduction to Solid State Physics. Wiley, Hoboken, NJ, 8 edition, 2005 [76] M. Zahid Hasan and Charles L. Kane. Colloquium: Topological insulators. Reviews of Modern Physics, 82(4):3045–3067, 2010. [77] Qiuyan Zhou, Jien Wu, Zhenhang Pu, Jiuyang Lu, Xueqin Huang, Weiyin Deng, Manzhu Ke, and Zhengyou Liu. Observation of geometry-dependent skin effect in non-hermitian phononic crystals with exceptional points. Nature Communications, 14(1):4569, Jul 2023. [78] Wei Wang, Mengying Hu, Xulong Wang, Guancong Ma, and Kun Ding. Experimental realization of geometry-dependent skin effect in a reciprocal two-dimensional lattice. Phys. Rev. Lett., 131:207201, Nov 2023. [79] Kai Zhang, Zhesen Yang, and Chen Fang. Universal non-hermitian skin effect in two and higher dimensions. Nature Communications, 13(1):2496, May 2022. [80] Colin Scheibner, William T. M. Irvine, and Vincenzo Vitelli. Non-hermitian band topology and skin modes in active elastic media. Phys. Rev. Lett., 125:118001, Sep 2020. [81] Weiwei Zhu, Wei Xin Teo, Linhu Li, and Jiangbin Gong. Delocalization of topological edge states. Phys. Rev. B, 103:195414, May 2021. [82] Jiewei Cheng, Xiujuan Zhang, Ming-Hui Lu, and Yan-Feng Chen. Competition between band topology and non-hermiticity. Phys. Rev. B, 105:094103, Mar 2022. [83] Wei Wang, Xulong Wang, and Guancong Ma. Non-hermitian morphing of topological modes. Nature, 608(7921):50–55, 2022. [84] Kuldeep Suthar, Yi-Cheng Wang, Yi-Ping Huang, H. H. Jen, and Jhih-Shih You. Non-hermitian many-body localization with open boundaries. Phys. Rev. B, 106:064208, Aug 2022. [85] Ming Lu, Xiao-Xiao Zhang, and Marcel Franz. Magnetic suppression of non-hermitian skin effects. Phys. Rev. Lett., 127:256402, Dec 2021. [86] Chao Xu, Zhiqiang Guan, and Hongxing Xu. Controllable suppression of non-hermitian skin effects. Phys. Rev. B, 111:024201, Jan 2025. [87] L. C. Xie, H. C. Wu, X. Z. Zhang, L. Jin, and Z. Song. Two-dimensional anisotropic non-hermitian lieb lattice. Phys. Rev. B, 104:125406, Sep 2021. [88] Li-Wei Wang, Zhi-Kang Lin, and Jian-Hua Jiang. Non-hermitian topological phases and skin effects in kagome lattices. Phys. Rev. B, 108:195126, Nov 2023. [89] Charlie-Ray Mann, Thomas J. Sturges, Guillaume Weick, William L. Barnes, and Eros Mariani. Manipulating type-i and type-ii dirac polaritons in cavity-embedded honeycomb metasurfaces. Nature Communications, 9(1):2194, Jun 2018. [90] Juan Pablo Esparza and Vladimir Juričić. Exceptional magic angles in non-hermitian twisted bilayer graphene. Phys. Rev. Lett., 134:226602, Jun 2025. [91] Yingyi Huang. Exceptional topology in non-hermitian twisted bilayer graphene. Phys. Rev. B, 111:085120, Feb 2025. [92] Ipsita Mandal and Emil J. Bergholtz. Symmetry and higher-order exceptional points. Phys. Rev. Lett., 127:186601, Oct 2021. [93] Kohei Kawabata, Masatoshi Sato, and Ken Shiozaki. Higher-order non-hermitian skin effect. Phys. Rev. B, 102:205118, Nov 2020 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99006 | - |
| dc.description.abstract | 近年來,具有次波長間距的二維原子陣列在光與物質交互作用中展現出豐富的量子光學、拓撲與非厄米特物理現象。打破時間反演對稱性會產生拓撲非平庸的能帶結構,並伴隨穩定的邊界態出現,而打破旋轉對稱性則會產生非厄米特現象,如例外點(exceptional points, EPs)與非厄米特趨膚效應(non-Hermitian skin effect, NHSE)。然而,這兩種對稱性同時被破壞所導致的物理行為仍有待深入探討。本論文研究一個受晶格變形與外加磁場控制的二維原子陣列,原子之間透過長程偶極–偶極交互作用耦合。在固定原子間距的條件下,透過連續調變晶格幾何形狀(在蜂巢、方形與三角形晶格之間變形),我們觀察到在整個變形過程中例外點穩定出現。這些例外點在能帶空間中分隔具有不同陳數(Chern number)的拓撲相,其間由一個無能隙的中介相連接;當變形強度小於臨界值時,該中介相對於有限磁場仍具穩定性。例外點所對應的非平庸拓撲結構導致複數能譜繞行行為,進而產生非厄米特趨膚效應,使大量本徵態在系統邊界發生方向性局域,此現象對晶格幾何高度敏感。此外,我們發現同時具備拓撲性與非厄米特性的膚態–拓撲態(skin-topological modes)出現,並進一步證明磁場可抑制非厄米特趨膚效應,使本徵態的空間分布恢復對稱性。本研究揭示了非厄米特系統中的多樣相結構,並提供一種透過幾何與對稱性破缺來操控開放量子系統的新視角。 | zh_TW |
| dc.description.abstract | Recent advances in light–matter interactions in two-dimensional atomic arrays with subwavelength spacing have revealed rich phenomena in quantum optics, topology, and non-Hermitian physics. Breaking time reversal symmetry leads to topological bands with robust edge states, while breaking rotational symmetry gives rise to non-Hermitian phenomena such as exceptional points (EPs) and the non-Hermitian skin effect (NHSE). However, the consequences of breaking both symmetries simultaneously remain largely unexplored. This thesis investigates the system under continuous lattice deformation and magnetic fields, with long range dipole–dipole interactions. By smoothly tuning the lattice geometry between honeycomb, square, and triangular forms while maintaining fixed atomic spacing, we observe the emergence of EPs throughout the deformation process. These EPs separate topological phases with distinct Chern numbers via a gapless intermediate phase that remains stable under finite magnetic fields when the deformation is subcritical. The nontrivial topology of the EPs leads to complex spectral winding, which underlies the NHSE and causes directional localization of bulk eigenstates near the boundaries in a geometry-sensitive manner. We also identify skin-topological modes that combine features of non-Hermiticity and topology, and find that applying a magnetic field can suppress the skin effect by restoring spatial symmetry in the eigenstate profiles. These results reveal a rich non-Hermitian phase structure and offer new perspectives on controlling open quantum systems through geometry and symmetry breaking. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-20T16:37:40Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-08-20T16:37:40Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員審定書 i
謝辭 ii 摘要 iv Abstract v Contents vii List of Figures x Denotation xii Chapter 1 Introduction 1 1.1 Background and Motivation . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Chapter 2 Atomic Arrays 7 2.1 Light scattering theory . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.1.1 Free space dipole-dipole interaction . . . . . . . . . . . . . . . . . 10 2.1.2 Collective behavior of quantum emitters . . . . . . . . . . . . . . . 11 2.2 Two-dimensional atomic lattice . . . . . . . . . . . . . . . . . . . . 16 2.2.1 Infinite lattice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.2.2 Infinite summation . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.2.3 Light cone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 2.3 Atomic lattice in a semi-infinite ribbon . . . . . . . . . . . . . . . . 29 Chapter 3 Topology 34 3.1 Topological invariant . . . . . . . . . . . . . . . . . . . . . . . . . . 34 3.1.1 Berry phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 3.1.2 Chern Number and Fukui's method . . . . . . . . . . . . . . . . . . 37 3.2 Bulk-boundary correspondence . . . . . . . . . . . . . . . . . . . . 39 3.2.1 Finite SSH model . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 3.2.2 Bulk SSH model . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 3.2.3 Bulk-boundary correspondence in SSH model . . . . . . . . . . . . 48 Chapter 4 Non-Hermitian Physics 55 4.1 Exceptional point . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 4.1.1 Exceptional points and Parity-Time symmetry . . . . . . . . . . . . 56 4.1.2 Exceptional points and Dirac Points . . . . . . . . . . . . . . . . . 58 4.1.3 Vorticity of exceptional points . . . . . . . . . . . . . . . . . . . . 62 4.2 Non-Hermitian skin effect . . . . . . . . . . . . . . . . . . . . . . . 65 4.2.1 Non-Hermitian skin effect in Hatano-Nelson model . . . . . . . . . 65 4.2.2 Complex winding . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 Chapter 5 A non-Hermitian topological optical atomic mirror 77 5.1 Continuous lattice deformation . . . . . . . . . . . . . . . . . . . . . 77 5.2 Degeneracy and symmetry . . . . . . . . . . . . . . . . . . . . . . . 81 5.2.1 C4 rotational symmetry breaking . . . . . . . . . . . . . . . . . . . 82 5.2.2 Time-reversal symmetry breaking . . . . . . . . . . . . . . . . . . 90 5.2.3 Simultaneous symmetry breaking . . . . . . . . . . . . . . . . . . . 99 5.2.4 Phase transition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 5.3 Geometry dependent skin effect . . . . . . . . . . . . . . . . . . . . 105 5.3.1 Bulk properties of the ribbon geometry . . . . . . . . . . . . . . . . 107 5.3.2 Point-gap topology and skin modes . . . . . . . . . . . . . . . . . . 110 5.4 Competition between non-Hermiticity and topology . . . . . . . . . 117 5.4.1 Skin-topological modes . . . . . . . . . . . . . . . . . . . . . . . . 118 5.4.2 Magnetic suppression . . . . . . . . . . . . . . . . . . . . . . . . . 122 Chapter 6 Summary 125 參考文獻 128 | - |
| dc.language.iso | en | - |
| dc.subject | 原子陣列 | zh_TW |
| dc.subject | 偶極–偶極交互作用 | zh_TW |
| dc.subject | 例外點 | zh_TW |
| dc.subject | 非厄米特趨膚效應 | zh_TW |
| dc.subject | 非厄米特物理 | zh_TW |
| dc.subject | 拓撲 | zh_TW |
| dc.subject | 陳數 | zh_TW |
| dc.subject | 拓撲邊界態 | zh_TW |
| dc.subject | Chern number | en |
| dc.subject | Topological edge states | en |
| dc.subject | Atomic arrays | en |
| dc.subject | Dipole-dipole interaction | en |
| dc.subject | Exceptional point | en |
| dc.subject | Non-Hermitian skin effect | en |
| dc.subject | Non-Hermitian physics | en |
| dc.subject | Topology | en |
| dc.title | 非厄米特拓樸光學原子鏡 | zh_TW |
| dc.title | A Non-Hermitian Topological Optical Atomic Mirror | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.coadvisor | 任祥華;游至仕 | zh_TW |
| dc.contributor.coadvisor | Hsiang-Hua Jen;Jhih-Shih You | en |
| dc.contributor.oralexamcommittee | 陳俊嘉 | zh_TW |
| dc.contributor.oralexamcommittee | Chun-Chia Chen | en |
| dc.subject.keyword | 原子陣列,偶極–偶極交互作用,例外點,非厄米特趨膚效應,非厄米特物理,拓撲,陳數,拓撲邊界態, | zh_TW |
| dc.subject.keyword | Atomic arrays,Dipole-dipole interaction,Exceptional point,Non-Hermitian skin effect,Non-Hermitian physics,Topology,Chern number,Topological edge states, | en |
| dc.relation.page | 138 | - |
| dc.identifier.doi | 10.6342/NTU202504291 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2025-08-15 | - |
| dc.contributor.author-college | 理學院 | - |
| dc.contributor.author-dept | 物理學系 | - |
| dc.date.embargo-lift | N/A | - |
| Appears in Collections: | 物理學系 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| ntu-113-2.pdf Restricted Access | 12.66 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
