Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 化學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98998
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor姜昌明zh_TW
dc.contributor.advisorChang-Ming Jiangen
dc.contributor.author李易zh_TW
dc.contributor.authorYI LIen
dc.date.accessioned2025-08-20T16:35:46Z-
dc.date.available2025-08-21-
dc.date.copyright2025-08-20-
dc.date.issued2025-
dc.date.submitted2025-08-12-
dc.identifier.citation(1) Friedlingstein, P.; O'Sullivan, M.; Jones, M. W.; Andrew, R. M.; Gregor, L.; Hauck, J.; Le Quéré, C.; Luijkx, I. T.; Olsen, A.; Peters, G. P.; et al. Global Carbon Budget 2022. Earth Syst. Sci. Data 2022, 14 (11), 4811-4900.
(2) Dioxide, C. C. A. C. https://www.climate.gov/news-features/understanding-climate/climate-change-atmospheric-carbon-dioxide.
(3) Chart, N. B. R.-C. E. https://www.nrel.gov/pv/cell-efficiency.
(4) Wei, J.; Shao, Y.; Xu, J.; Yin, F.; Li, Z.; Qian, H.; Wei, Y.; Chang, L.; Han, Y.; Li, J.; et al. Sequential oxygen evolution and decoupled water splitting via electrochemical redox reaction of nickel hydroxides. Nat. Commun. 2024, 15 (1), 9012.
(5) Zhao, J.; Guo, Y.; Zhang, Z.; Zhang, X.; Ji, Q.; Zhang, H.; Song, Z.; Liu, D.; Zeng, J.; Chuang, C.; et al. Out-of-plane coordination of iridium single atoms with organic molecules and cobalt–iron hydroxides to boost oxygen evolution reaction. Nat. Nanotechnol. 2025, 20 (1), 57-66.
(6) Wang, Y.; Zhao, Y.; Liu, L.; Qin, W.; Liu, S.; Tu, J.; Qin, Y.; Liu, J.; Wu, H.; Zhang, D.; et al. Mesoporous Single Crystals with Fe-Rich Skin for Ultralow Overpotential in Oxygen Evolution Catalysis. Adv. Mater. 2022, 34 (20), 2200088.
(7) Wang, Z.; Goddard, W. A.; Xiao, H. Potential-dependent transition of reaction mechanisms for oxygen evolution on layered double hydroxides. Nat. Commun. 2023, 14 (1), 4228.
(8) Maiyalagan, T.; Jarvis, K. A.; Therese, S.; Ferreira, P. J.; Manthiram, A. Spinel-type lithium cobalt oxide as a bifunctional electrocatalyst for the oxygen evolution and oxygen reduction reactions. Nat. Commun. 2014, 5 (1), 3949.
(9) Hua, K.; Li, X.; Rui, Z.; Duan, X.; Wu, Y.; Yang, D.; Li, J.; Liu, J. Integrating Atomically Dispersed Ir Sites in MnCo2O4.5 for Highly Stable Acidic Oxygen Evolution Reaction. ACS Catal. 2024, 14 (5), 3712-3724.
(10) Chen, X.; Dai, W.; Bai, S.; Zhang, F.; Guo, J.; Zhao, C.; Zhang, Y.; Cui, C.; Huang, S. Dynamic activation of lattice oxygen in medium-entropy CoNiFe-based spinel oxides decorated with in situ formed alloy for efficient oxygen evolution reaction. New J. Chem. 2025, 10.1039/D5NJ00812C.
(11) Jin, H.; Liu, X.; An, P.; Tang, C.; Yu, H.; Zhang, Q.; Peng, H.-J.; Gu, L.; Zheng, Y.; Song, T.; et al. Dynamic rhenium dopant boosts ruthenium oxide for durable oxygen evolution. Nat. Commun. 2023, 14 (1), 354.
(12) Yamada, I.; Fujii, H.; Takamatsu, A.; Ikeno, H.; Wada, K.; Tsukasaki, H.; Kawaguchi, S.; Mori, S.; Yagi, S. Bifunctional Oxygen Reaction Catalysis of Quadruple Manganese Perovskites. Adv. Mater. 2017, 29 (4), 1603004.
(13) Miao, X.; Zhang, L.; Wu, L.; Hu, Z.; Shi, L.; Zhou, S. Quadruple perovskite ruthenate as a highly efficient catalyst for acidic water oxidation. Nat. Commun. 2019, 10 (1), 3809.
(14) Yao, J.; Gao, D.; Dong, Y.; Ran, J. High efficiency electrocatalyst of LaNiO3@LaCoO3 nanoparticles on oxygen-evolution reaction. FlatChem 2022, 33, 100371.
(15) Wei, R.; Fu, G.; Qi, H.; Liu, H. Tuning the high-entropy perovskite as efficient and reliable electrocatalysts for oxygen evolution reaction. RSC Adv. 2024, 14 (26), 18117-18125, 10.1039/D4RA02680B.
(16) Pan, Y.; Xu, X.; Zhong, Y.; Ge, L.; Chen, Y.; Veder, J.-P. M.; Guan, D.; O’Hayre, R.; Li, M.; Wang, G.; et al. Direct evidence of boosted oxygen evolution over perovskite by enhanced lattice oxygen participation. Nat. Commun. 2020, 11 (1), 2002.
(17) Liu, S.; Tang, Y.; Guo, C.; Liu, Y.; Tang, Z. Heterostructure of NiFe@NiCr-LDH for Active and Durable Oxygen Evolution Reactions in Alkaline Media. Materials 2023, 16 (8), 2968.
(18) Lin, Z.; Bu, P.; Xiao, Y.; Gao, Q.; Diao, P. β- and γ-NiFeOOH electrocatalysts for an efficient oxygen evolution reaction: an electrochemical activation energy aspect. J. Mater. Chem. A 2022, 10 (39), 20847-20855, 10.1039/D2TA04688A.
(19) Xu, D.; Gao, Y.; Qian, S.; Fan, Y.; Tian, J. Atomic-layered metal–organic framework on NiFe LDH for enhanced electrocatalytic oxygen evolution reaction. Green Chem. 2024, 26 (4), 2135-2142, 10.1039/D3GC03854H.
(20) Patiño López, J. J.; Vasquez-Montoya, M. F.; Velásquez, C. A.; Cartagena, S.; Montoya, J. F.; Martinez-Puente, M. A.; Ramírez, D.; Jaramillo, F. Self-Supported Spray-Coated NiFe-LDH Catalyst on a Stainless Steel Substrate for Efficient Oxygen Evolution Reaction. ACS Appl. Mater. Interfaces 2023, 15 (48), 56547-56555.
(21) Liang, J.; Shen, H.; Ma, Y.; Liu, D.; Li, M.; Kong, J.; Tang, Y.; Ding, S. Autogenous growth of the hierarchical V-doped NiFe layer double metal hydroxide electrodes for an enhanced overall water splitting. Dalton Trans. 2020, 49 (32), 11217-11225, 10.1039/D0DT01520B.
(22) Rozenberg, G. K.; Milner, A. P.; Pasternak, M. P.; Hearne, G. R.; Taylor, R. D. Experimental confirmation of a p-p intraband gap in Sr2FeO4. Phys. Rev. B 1998, 58 (16), 10283-10287.
(23) Slusar, T. V.; Cho, J.-C.; Lee, H.-R.; Kim, J.-W.; Yoo, S. J.; Bigot, J.-Y.; Yee, K.-J.; Kim, H.-T. Mott transition in chain structure of strained VO2 films revealed by coherent phonons. Sci. Rep. 2017, 7 (1), 16038.
(24) Avallone, G.; Fermin, R.; Lahabi, K.; Granata, V.; Fittipaldi, R.; Cirillo, C.; Attanasio, C.; Vecchione, A.; Aarts, J. Universal size-dependent nonlinear charge transport in single crystals of the Mott insulator Ca2RuO4. npj Quantum Mater. 2021, 6 (1), 91.
(25) Peng, H. Y.; Li, Y. F.; Lin, W. N.; Wang, Y. Z.; Gao, X. Y.; Wu, T. Deterministic conversion between memory and threshold resistive switching via tuning the strong electron correlation. Sci. Rep. 2012, 2 (1), 442.
(26) Ghijsen, J.; Tjeng, L. H.; van Elp, J.; Eskes, H.; Westerink, J.; Sawatzky, G. A.; Czyzyk, M. T. Electronic structure of Cu2O and CuO. Phys. Rev. B 1988, 38 (16), 11322-11330.
(27) Bisogni, V.; Catalano, S.; Green, R. J.; Gibert, M.; Scherwitzl, R.; Huang, Y.; Strocov, V. N.; Zubko, P.; Balandeh, S.; Triscone, J.-M.; et al. Ground-state oxygen holes and the metal–insulator transition in the negative charge-transfer rare-earth nickelates. Nat. Commun. 2016, 7 (1), 13017.
(28) Hepting, M.; Li, D.; Jia, C. J.; Lu, H.; Paris, E.; Tseng, Y.; Feng, X.; Osada, M.; Been, E.; Hikita, Y.; et al. Electronic structure of the parent compound of superconducting infinite-layer nickelates. Nat. Mater. 2020, 19 (4), 381-385.
(29) Meyers, D.; Mukherjee, S.; Cheng, J. G.; Middey, S.; Zhou, J. S.; Goodenough, J. B.; Gray, B. A.; Freeland, J. W.; Saha-Dasgupta, T.; Chakhalian, J. Zhang-Rice physics and anomalous copper states in A-site ordered perovskites. Sci. Rep. 2013, 3 (1), 1834.
(30) Foyevtsova, K.; Elfimov, I.; Rottler, J.; Sawatzky, G. A. LiNiO2 as a high-entropy charge- and bond-disproportionated glass. Phys. Rev. B 2019, 100 (16), 165104.
(31) Kuiper, P.; Kruizinga, G.; Ghijsen, J.; Sawatzky, G. A.; Verweij, H. Character of Holes in LixNi1-xO and Their Magnetic Behavior. Phys. Rev. Lett. 1989, 62 (2), 221-224.
(32) Sakai, E.; Tamamitsu, M.; Yoshimatsu, K.; Okamoto, S.; Horiba, K.; Oshima, M.; Kumigashira, H. Gradual localization of Ni 3d states in LaNiO3 ultrathin films induced by dimensional crossover. Phys. Rev. B 2013, 87 (7), 075132.
(33) Liao, Z.; Gauquelin, N.; Green, R. J.; Müller-Caspary, K.; Lobato, I.; Li, L.; Van Aert, S.; Verbeeck, J.; Huijben, M.; Grisolia, M. N.; et al. Metal–insulator-transition engineering by modulation tilt-control in perovskite nickelates for room temperature optical switching. Proceedings of the National Academy of Sciences 2018, 115 (38), 9515-9520.
(34) Abbate, M.; Zampieri, G.; Prado, F.; Caneiro, A.; Gonzalez-Calbet, J. M.; Vallet-Regi, M. Electronic structure and metal-insulator transition in LaNiO3-δ. Phys. Rev. B 2002, 65 (15), 155101.
(35) Zhou, G.; Jiang, F.; Zang, J.; Quan, Z.; Xu, X. Observation of Superconductivity in the LaNiO3/La0.7Sr0.3MnO3 Superlattice. ACS Appl. Mater. Interfaces 2018, 10 (2), 1463-1467.
(36) Huang, H.; Chang, Y.-C.; Huang, Y.-C.; Li, L.; Komarek, A. C.; Tjeng, L. H.; Orikasa, Y.; Pao, C.-W.; Chan, T.-S.; Chen, J.-M.; et al. Unusual double ligand holes as catalytic active sites in LiNiO2. Nat. Commun. 2023, 14 (1), 2112.
(37) Yun, T. G.; Heo, Y.; Bin Bae, H.; Chung, S.-Y. Elucidating intrinsic contribution of d-orbital states to oxygen evolution electrocatalysis in oxides. Nat. Commun. 2021, 12 (1), 824.
(38) Klaus, S.; Cai, Y.; Louie, M. W.; Trotochaud, L.; Bell, A. T. Effects of Fe Electrolyte Impurities on Ni(OH)2/NiOOH Structure and Oxygen Evolution Activity. The Journal of Physical Chemistry C 2015, 119 (13), 7243-7254.
(39) Trotochaud, L.; Young, S. L.; Ranney, J. K.; Boettcher, S. W. Nickel–Iron Oxyhydroxide Oxygen-Evolution Electrocatalysts: The Role of Intentional and Incidental Iron Incorporation. Journal of the American Chemical Society 2014, 136 (18), 6744-6753.
(40) Zhong, H.; Zhang, Q.; Yu, J.; Zhang, X.; Wu, C.; An, H.; Ma, Y.; Wang, H.; Zhang, J.; Zhang, Y.-W.; et al. Key role of eg* band broadening in nickel-based oxyhydroxides on coupled oxygen evolution mechanism. Nat. Commun. 2023, 14 (1), 7488.
(41) Kim, B.; Kabiraz, M. K.; Lee, J.; Choi, C.; Baik, H.; Jung, Y.; Oh, H.-S.; Choi, S.-I.; Lee, K. Vertical-crystalline Fe-doped β-Ni oxyhydroxides for highly active and stable oxygen evolution reaction. Matter 2021, 4 (11), 3585-3604.
(42) He, Z.-D.; Tesch, R.; Eslamibidgoli, M. J.; Eikerling, M. H.; Kowalski, P. M. Low-spin state of Fe in Fe-doped NiOOH electrocatalysts. Nat. Commun. 2023, 14 (1), 3498.
(43) Friebel, D.; Louie, M. W.; Bajdich, M.; Sanwald, K. E.; Cai, Y.; Wise, A. M.; Cheng, M.-J.; Sokaras, D.; Weng, T.-C.; Alonso-Mori, R.; et al. Identification of Highly Active Fe Sites in (Ni,Fe)OOH for Electrocatalytic Water Splitting. Journal of the American Chemical Society 2015, 137 (3), 1305-1313.
(44) Cheng, Z.; Zhu, J.; Xu, X.; Tan, Y.; Gao, Z.; Li, Q.; Liu, J.; Wang, L. Delafossite-based electrode materials: design, synthesis and their application in electrocatalysis. J. Mater. Chem. A 2025, 13 (7), 4794-4813, 10.1039/D4TA06862A.
(45) Kushwaha, P.; Sunko, V.; Moll, P. J. W.; Bawden, L.; Riley, J. M.; Nandi, N.; Rosner, H.; Schmidt, M. P.; Arnold, F.; Hassinger, E.; et al. Nearly free electrons in a 5d delafossite oxide metal. Sci. Adv. 2015, 1 (9), e1500692.
(46) Arnold, F.; Naumann, M.; Rosner, H.; Kikugawa, N.; Graf, D.; Balicas, L.; Terashima, T.; Uji, S.; Takatsu, H.; Khim, S.; et al. Fermi surface of PdCoO2 from quantum oscillations and electronic structure calculations. Phys. Rev. B 2020, 101 (19), 195101.
(47) Harada, T.; Ito, S.; Tsukazaki, A. Electric dipole effect in PdCoO2/β-Ga2O3 Schottky diodes for high-temperature operation. Sci. Adv. 2019, 5 (10), eaax5733.
(48) Wei, R.; Gong, P.; Zhao, M.; Tong, H.; Tang, X.; Hu, L.; Yang, J.; Song, W.; Zhu, X.; Sun, Y. Solution-Processable Epitaxial Metallic Delafossite Oxide Films. Adv. Funct. Mater. 2020, 30 (24), 2002375.
(49) Podjaski, F.; Weber, D.; Zhang, S.; Diehl, L.; Eger, R.; Duppel, V.; Alarcón-Lladó, E.; Richter, G.; Haase, F.; Fontcuberta i Morral, A.; et al. Rational strain engineering in delafossite oxides for highly efficient hydrogen evolution catalysis in acidic media. Nat. Catal. 2020, 3 (1), 55-63.
(50) Li, G.; Khim, S.; Chang, C. S.; Fu, C.; Nandi, N.; Li, F.; Yang, Q.; Blake, G. R.; Parkin, S.; Auffermann, G.; et al. In Situ Modification of a Delafossite-Type PdCoO2 Bulk Single Crystal for Reversible Hydrogen Sorption and Fast Hydrogen Evolution. ACS Energy Lett. 2019, 4 (9), 2185-2191.
(51) Cerqueira, T. F. T.; Lin, S.; Amsler, M.; Goedecker, S.; Botti, S.; Marques, M. A. L. Identification of Novel Cu, Ag, and Au Ternary Oxides from Global Structural Prediction. Chem. Mater. 2015, 27 (13), 4562-4573.
(52) Wei, R.; Tang, X.; Hu, L.; Yang, J.; Zhu, X.; Song, W.; Dai, J.; Zhu, X.; Sun, Y. Facile chemical solution synthesis of p-type delafossite Ag-based transparent conducting AgCrO2 films in an open condition. J. Mater. Chem. C 2017, 5 (8), 1885-1892, 10.1039/C6TC04848J.
(53) Xiong, D.; Wang, H.; Zhang, W.; Zeng, X.; Chang, H.; Zhao, X.; Chen, W.; Cheng, Y.-B. Preparation of p-type AgCrO2 nanocrystals through low-temperature hydrothermal method and the potential application in p-type dye-sensitized solar cell. J. Alloys Compd. 2015, 642, 104-110.
(54) Dong, X.-D.; Zhao, Z.-Y. Boosting and regulating solar energy conversion performance of delafossite AgFeO2 by spin polarization. J. Mater. Chem. A 2022, 10 (9), 4800-4816, 10.1039/D1TA10442J.
(55) Park, J. E.; Hu, Y.; Krizan, J. W.; Gibson, Q. D.; Tayvah, U. T.; Selloni, A.; Cava, R. J.; Bocarsly, A. B. Stable Hydrogen Evolution from an AgRhO2 Photocathode under Visible Light. Chem. Mater. 2018, 30 (8), 2574-2582.
(56) Gu, J.; Yan, Y.; Krizan, J. W.; Gibson, Q. D.; Detweiler, Z. M.; Cava, R. J.; Bocarsly, A. B. p-Type CuRhO2 as a Self-Healing Photoelectrode for Water Reduction under Visible Light. Journal of the American Chemical Society 2014, 136 (3), 830-833.
(57) Sheets, W. C.; Mugnier, E.; Barnabé, A.; Marks, T. J.; Poeppelmeier, K. R. Hydrothermal Synthesis of Delafossite-Type Oxides. Chem. Mater. 2006, 18 (1), 7-20.
(58) Monteiro, J. F. H. L.; Jurelo, A. R.; Siqueira, E. C. Raman spectroscopy of the superconductor CuCrO2 delafossite oxide. Solid State Commun. 2017, 252, 64-67.
(59) Taddee, C.; Kamwanna, T.; Amornkitbamrung, V. Characterization of transparent superconductivity Fe-doped CuCrO2 delafossite oxide. Appl. Surf. Sci. 2016, 380, 237-242.
(60) Prévot, M. S.; Li, Y.; Guijarro, N.; Sivula, K. Improving charge collection with delafossite photocathodes: a host–guest CuAlO2/CuFeO2 approach. J. Mater. Chem. A 2016, 4 (8), 3018-3026, 10.1039/C5TA06336A.
(61) Oh, Y.; Yang, W.; Tan, J.; Lee, H.; Park, J.; Moon, J. Photoelectrodes based on 2D opals assembled from Cu-delafossite double-shelled microspheres for an enhanced photoelectrochemical response. Nanoscale 2018, 10 (8), 3720-3729, 10.1039/C7NR07351H.
(62) Savva, A.; Papadas, I. T.; Tsikritzis, D.; Ioakeimidis, A.; Galatopoulos, F.; Kapnisis, K.; Fuhrer, R.; Hartmeier, B.; Oszajca, M. F.; Luechinger, N. A.; et al. Inverted Perovskite Photovoltaics Using Flame Spray Pyrolysis Solution Based CuAlO2/Cu–O Hole-Selective Contact. ACS Appl. Energy Mater. 2019, 2 (3), 2276-2287.
(63) Jiang, C.-M.; Reyes-Lillo, S. E.; Liang, Y.; Liu, Y.-S.; Liu, G.; Toma, F. M.; Prendergast, D.; Sharp, I. D.; Cooper, J. K. Electronic Structure and Performance Bottlenecks of CuFeO2 Photocathodes. Chem. Mater. 2019, 31 (7), 2524-2534.
(64) Jang, Y. J.; Park, Y. B.; Kim, H. E.; Choi, Y. H.; Choi, S. H.; Lee, J. S. Oxygen-Intercalated CuFeO2 Photocathode Fabricated by Hybrid Microwave Annealing for Efficient Solar Hydrogen Production. Chem. Mater. 2016, 28 (17), 6054-6061.
(65) Prévot, M. S.; Guijarro, N.; Sivula, K. Enhancing the Performance of a Robust Sol–Gel-Processed p-Type Delafossite CuFeO2 Photocathode for Solar Water Reduction. ChemSusChem 2015, 8 (8), 1359-1367.
(66) Kang, U.; Yoon, S. H.; Han, D. S.; Park, H. Synthesis of Aliphatic Acids from CO2 and Water at Efficiencies Close to the Photosynthesis Limit Using Mixed Copper and Iron Oxide Films. ACS Energy Lett. 2019, 4 (9), 2075-2080.
(67) Oh, Y.; Yang, W.; Tan, J.; Lee, H.; Park, J.; Moon, J. Boosting Visible Light Harvesting in p-Type Ternary Oxides for Solar-to-Hydrogen Conversion Using Inverse Opal Structure. Adv. Funct. Mater. 2019, 29 (17), 1900194.
(68) Xu, H.; Wu, R.; Zhang, J.-Y.; Han, W.; Chen, L.; Liang, X.; Haw, C. Y.; Mazzolini, P.; Bierwagen, O.; Qi, D.-C.; et al. Revealing the Electronic Structure and Optical Properties of CuFeO2 as a p-Type Oxide Semiconductor. ACS Appl. Electron. Mater. 2021, 3 (4), 1834-1841.
(69) Prévot, M. S.; Jeanbourquin, X. A.; Bourée, W. S.; Abdi, F.; Friedrich, D.; van de Krol, R.; Guijarro, N.; Le Formal, F.; Sivula, K. Evaluating Charge Carrier Transport and Surface States in CuFeO2 Photocathodes. Chem. Mater. 2017, 29 (11), 4952-4962.
(70) Hermans, Y.; Klein, A.; Sarker, H. P.; Huda, M. N.; Junge, H.; Toupance, T.; Jaegermann, W. Pinning of the Fermi Level in CuFeO2 by Polaron Formation Limiting the Photovoltage for Photochemical Water Splitting. Adv. Funct. Mater. 2020, 30 (10), 1910432.
(71) Husek, J.; Cirri, A.; Biswas, S.; Asthagiri, A.; Baker, L. R. Hole Thermalization Dynamics Facilitate Ultrafast Spatial Charge Separation in CuFeO2 Solar Photocathodes. The Journal of Physical Chemistry C 2018, 122 (21), 11300-11304.
(72) Sörgel, T.; Jansen, M. Ag3Ni2O4—A new stage-2 intercalation compound of 2H–AgNiO2 and physical properties of 2H–AgNiO2 above ambient temperature. J. Solid State Chem. 2007, 180 (1), 8-15.
(73) Wawrzyńska, E.; Coldea, R.; Wheeler, E. M.; Mazin, I. I.; Johannes, M. D.; Sörgel, T.; Jansen, M.; Ibberson, R. M.; Radaelli, P. G. Orbital Degeneracy Removed by Charge Order in Triangular Antiferromagnet AgNiO2. Phys. Rev. Lett. 2007, 99 (15), 157204.
(74) Pascut, G. L.; Coldea, R.; Radaelli, P. G.; Bombardi, A.; Beutier, G.; Mazin, I. I.; Johannes, M. D.; Jansen, M. Direct Observation of Charge Order in Triangular Metallic AgNiO2 by Single-Crystal Resonant X-Ray Scattering. Phys. Rev. Lett. 2011, 106 (15), 157206.
(75) Kang, J. S.; Lee, S. S.; Kim, G.; Lee, H. J.; Song, H. K.; Shin, Y. J.; Han, S. W.; Hwang, C.; Jung, M. C.; Shin, H. J.; et al. Valence and spin states in delafossite AgNiO2 and the frustrated Jahn-Teller system ANiO2 (A = Li, Na). Phys. Rev. B 2007, 76 (19), 195122.
(76) Gondolf, J.; Eremin, I. M.; Lechermann, F. Revisiting the metal-to-metal transition in 2H-AgNiO2. Europhys. Lett. 2023, 144 (3), 36003.
(77) Bityutskii, P. N.; Khitrova, V. I. Investigation of AgNiO2 and CoHO2 crystal structures. J. Struct. Chem. 1969, 9 (6), 921-925.
(78) Wichainchai, A.; Dordor, P.; Doumerc, J. P.; Marquestaut, E.; Pouchard, M.; Hagenmuller, P.; Ammar, A. On the electrical properties of polycrystalline delafossite-type AgNiO2. J. Solid State Chem. 1988, 74 (1), 126-131.
(79) Zhang, X.; Kong, L.; Xing, W.; Zhang, Y.; Yang, J.; Zhou, C.; Liu, H.; Yang, Z.; Zhu, W.; Wei, H. Highly Efficient Methanol Oxidation Reaction Achieved by Cobalt Doping in Delafossite AgNi1–xCoxO2 Solid Solution. ACS Appl. Energy Mater. 2022, 5 (10), 12485-12495.
(80) Svintsitskiy, D. A.; Lazarev, M. K.; Slavinskaya, E. M.; Fedorova, E. A.; Kardash, T. Y.; Cherepanova, S. V.; Boronin, A. I. Room temperature epoxidation of ethylene over delafossite-based AgNiO2 nanoparticles. Physical Chemistry Chemical Physics 2023, 25 (31), 20892-20902, 10.1039/D3CP01701J.
(81) Bagtache, R.; Brahimi, R.; Mahroua, O.; Boudjellal, L.; Abdmeziem, K.; Trari, M. Photoelectrochemical Study of the Delafossite AgNiO2 Nanostructure: Application to Hydrogen Production. J. Electrochem. Energy Convers. Storage 2020, 17 (3).
(82) Jiao, G.; Wei, Y.; Chen, D.; Liu, H.; Chen, L.; Zhu, W. An innovative p-type delafossite AgNiO2 nanoparticles gas sensor for detection of allyl mercaptan down to sub-ppm level. J. Alloys Compd. 2025, 1018, 179200.
(83) Tripathi, V. S. Hydrothermal Method for Synthesis of Materials. In Handbook on Synthesis Strategies for Advanced Materials : Volume-I: Techniques and Fundamentals, Tyagi, A. K., Ningthoujam, R. S. Eds.; Springer Singapore, 2021; pp 131-152.
(84) REACTOR, H. S. https://labonsale.com/product/hydrothermal-synthesis-reactor/.
(85) wavelength X-ray beam. (CC BY-NC; Ümit Kaya via LibreTexts), A. g. s. t. i. o. t. n. o. e. p. p. a. t. a. o. d. o. t. s. f. o. v. a. a. m. i. i. b. a. f. https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Physical_Chemistry_%28LibreTexts%29/31%3A_Solids_and_Surface_Chemistry/31.04%3A_The_Total_Scattering_Intensity_is_Related_to_the_Periodic_Structure_of_the_Electron_Density_in_the_Crystal.
(86) Cheng, X. Multiplet computation methods for core level X-ray spectroscopy of transition metal and rare earth elements; 2023.
(87) Ament, L. J. P.; van Veenendaal, M.; Devereaux, T. P.; Hill, J. P.; van den Brink, J. Resonant inelastic x-ray scattering studies of elementary excitations. Rev. Mod. Phys. 2011, 83 (2), 705-767.
(88) Chang, H.-W.; Chen, C. L.; Liou, S. Y. H.; Dong, C.-L. X-Ray Spectroscopic Analysis of Electronic Properties of One-Dimensional Nanostructured Materials. In Nanowire Electronics, Shen, G., Chueh, Y.-L. Eds.; Springer Singapore, 2019; pp 1-29.
(89) Pfaff, F.; Fujiwara, H.; Berner, G.; Yamasaki, A.; Niwa, H.; Kiuchi, H.; Gloskovskii, A.; Drube, W.; Gabel, J.; Kirilmaz, O.; et al. Raman and fluorescence contributions to the resonant inelastic soft x-ray scattering on LaAlO3/SrTiO3 heterostructures. Phys. Rev. B 2018, 97 (3), 035110.
(90) Olatomiwa, A. L.; Adam, T.; Edet, C. O.; Adewale, A. A.; Chik, A.; Mohammed, M.; Gopinath, S. C. B.; Hashim, U. Recent advances in density functional theory approach for optoelectronics properties of graphene. Heliyon 2023, 9 (3), e14279.
(91) Haverkort, M. W.; Zwierzycki, M.; Andersen, O. K. Multiplet ligand-field theory using Wannier orbitals. Phys. Rev. B 2012, 85 (16), 165113.
(92) Stavitski, E.; de Groot, F. M. F. The CTM4XAS program for EELS and XAS spectral shape analysis of transition metal L edges. Micron 2010, 41 (7), 687-694.
(93) drop, P. https://www.zensorrd.com/Article09.html.
(94) Bard, A. J.; Faulkner, L. R.; White, H. S. Electrochemical Methods: Fundamentals and Applications; Wiley, 2022.
(95) Okano, Y. Scanning Electron Microscopy. In Compendium of Surface and Interface Analysis, The Surface Science Society of, J. Ed.; Springer Singapore, 2018; pp 563-569.
(96) Chauhan, A. Deformation and damage mechanisms of ODS steels under high-temperature cyclic loading. Ph.D. thesis, Karlsruher Institut für Technologie (KIT), 2018. http://dx.doi.org/10.5445/IR/1000080339.
(97) Kohl, H. Transmission Electron Microscopy. In Encyclopedia of Nanotechnology, Bhushan, B. Ed.; Springer Netherlands, 2012; pp 2767-2780.
(98) Klinger, M. More features, more tools, more CrysTBox. J. Appl. Crystallogr. 2017, 50 (4), 1226-1234.
(99) Roble, M.; Rojas, S. D.; Wheatley, R.; Wallentowitz, S.; Cabrera, A. L.; Diaz-Droguett, D. E. Hydrothermal improvement for 3R-CuFeO2 delafossite growth by control of mineralizer and reaction atmosphere. J. Solid State Chem. 2019, 271, 314-325.
(100) Ravel, B.; Newville, M. ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. J. Synchrotron Radiat. 2005, 12 (4), 537-541.
(101) Salluzzo, M.; Ghiringhelli, G.; Brookes, N. B.; De Luca, G. M.; Fracassi, F.; Vaglio, R. Superconducting-insulator transition driven by out-of-plane carrier localization in Nd1.2Ba1.8Cu3O7+x ultrathin films. Phys. Rev. B 2007, 75 (5), 054519.
(102) Bukhtiyarov, V. I.; Hävecker, M.; Kaichev, V. V.; Knop-Gericke, A.; Mayer, R. W.; Schlögl, R. Atomic oxygen species on silver: Photoelectron spectroscopy and x-ray absorption studies. Phys. Rev. B 2003, 67 (23), 235422.
(103) Coldea, A. I.; Seabra, L.; McCollam, A.; Carrington, A.; Malone, L.; Bangura, A. F.; Vignolles, D.; van Rhee, P. G.; McDonald, R. D.; Sörgel, T.; et al. Cascade of field-induced magnetic transitions in a frustrated antiferromagnetic metal. Phys. Rev. B 2014, 90 (2), 020401.
(104) Mugiraneza, S.; Hallas, A. M. Tutorial: a beginner’s guide to interpreting magnetic susceptibility data with the Curie-Weiss law. Commun. Phys. 2022, 5 (1), 95.
(105) Nag, A.; Robarts, H. C.; Wenzel, F.; Li, J.; Elnaggar, H.; Wang, R.-P.; Walters, A. C.; García-Fernández, M.; de Groot, F. M. F.; Haverkort, M. W.; et al. Many-Body Physics of Single and Double Spin-Flip Excitations in NiO. Phys. Rev. Lett. 2020, 124 (6), 067202.
(106) Occhialini, C. A.; Tseng, Y.; Elnaggar, H.; Song, Q.; Blei, M.; Tongay, S. A.; Bisogni, V.; de Groot, F. M. F.; Pelliciari, J.; Comin, R. Nature of Excitons and Their Ligand-Mediated Delocalization in Nickel Dihalide Charge-Transfer Insulators. Phys. Rev. X 2024, 14 (3), 031007.
(107) Watson, N. I.; Keegan, M.; van den Bosch, B.; Yan, N.; Rothenberg, G. The Influence of Metal Impurities on NiOOH Electrocatalytic Activity in the Oxygen Evolution Reaction. ChemElectroChem 2024, 11 (13), e202400223.
(108) Rumble Jr., J. R.; Bickham, D. M.; Powell, C. J. The NIST x-ray photoelectron spectroscopy database. Surf. Interface Anal. 1992, 19 (1-12), 241-246.
(109) McMillan, J. A. Dissolution of AgO in Acid and Alkaline Media. Nature 1962, 195 (4841), 594-595.
(110) Dirkse, T. P.; Wiers, B. The Stability and Solubility of AgO in Alkaline Solutions. J. Electrochem. Soc. 1959, 106 (4), 284.
(111) Huang, Z.-W.; Yang, S.-H.; Wu, Z.-Y.; Hsu, H.-C. Performance Comparison between the Nanoporous NiOx Layer and NiOx Thin Film for Inverted Perovskite Solar Cells with Long-Term Stability. ACS Omega 2021, XXXX.
(112) Yang, Y.; Tao, Q.; Srinivasan, G.; Takoudis, C. Cyclic Chemical Vapor Deposition of Nickel Ferrite Thin Films Using Organometallic Precursor Combination. ECS J. Solid State Sci. Technol. 2014, 3, P345-P352.
(113) Joo, J.; Kim, J.; Kim, J. W.; Ocon, J. D.; Lee, J. K.; Chang, W.; Lee, J. Ultrahigh purification in concentrated NaOH by electrowinning for solar cell application. Sep. Purif. Technol. 2015, 145, 24-28.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98998-
dc.description.abstract在電化學水分解中,析氧反應(oxygen evolution reaction, OER)相比於析氫反應需要更高的過電位,因此開發高效的 OER 電催化劑是很重要的研究課題。過渡金屬氧化物因其在地殼中豐富的含量和在鹼性電解液中的穩定性而成為有前景的OER電催化劑。Fe 摻雜的 NiOOH 和其他 Ni(III)氧化物(如LaNiO3 和 LiNiO2)皆展現了其頂尖的OER 催化活性,並且證明其性能與電子結構密切相關。在本研究中,我們通過水熱法合成純相的2H-AgNiO2 粉末,並探討其電子結構與 OER 催化性能。在O K-edge X-ray吸收光譜中觀察到了負電荷轉移材料中存在於O位點上存在的配體空穴(ligand hole)。Ni L-edge 共振非彈性 X-ray 散射(resonant inelastic X-ray scattering)的實驗結果與多重態晶體場/多重態配位場理論計算比對後發現, Ni位點的電子組態為3d8L最符合2H-AgNiO₂的情況,證實了2H-AgNiO₂具有負電荷轉移能量。2H-AgNiO2 本身並非良好的電催化劑,在 1 M NaOH 溶液中表現出大於 500 mV 的過電位(η10mA)。然而,向電解液中加入Fe(III)後,η10mA與Tafel slope會大幅下降。我們先在1 M NaOH 溶液中進行OER後再轉移到有加入Fe(III)的電解液中進行反應,發現效能會比直接在加入Fe的電解液中進行OER有更高的活性,η10mA最低可以來到237 mV。根據電子顯微鏡影像與X-ray光電子能譜的結果,2H-AgNiO2在1 M NaOH 溶液中進行OER的過程會沿者ab-plane產生侵蝕的痕跡並改變表面的化學組成,而在1 M NaOH 溶液中加入Fe(III)並吸附在2H-AgNiO2表面則會阻止侵蝕的現象發生。在不同的電解液條件下調控2H-AgNiO2表面的侵蝕與Fe(III)吸附行為是OER效率與活性提升的關鍵。zh_TW
dc.description.abstractIn electrochemical water splitting, the oxygen evolution reaction (OER) requires a higher overpotential than the hydrogen evolution reaction (HER). Therefore, developing efficient OER electrocatalysts is a key research focus. Transition metal oxides (TMOs) are promising candidates for OER electrocatalysts due to their abundance and stability in alkaline electrolytes. Among TMOs, Fe-doped NiOOH and other Ni(III) oxides such as LaNiO3 and LiNiO2 show excellent OER activities, which are strongly linked to their electronic structure. This study explores the electronic structure and OER performance of 2H-AgNiO2, a semi-metallic compound with a hexagonal delafossite structure. Pure 2H-AgNiO2 powder was synthesized via a hydrothermal method. O K-edge X-ray absorption spectroscopy revealed ligand holes at oxygen sites, attributable to a negative charge-transfer character. Ni L-edge resonant inelastic X-ray scattering (RIXS), combined with multiplet theory simulation, showed that the Ni sites adopt a 3d8L configuration, indicative of a negative charge-transfer energy. The pristine 2H-AgNiO2 is a poor OER catalyst with an overpotential η10mA over 500 mV in 1 M NaOH electrolyte. However, adding Fe(III) into the electrolyte significantly lowers η10mA and the Tafel slope. Intentional aging 2H-AgNiO2 in Fe-free 1 M NaOH before switching to Fe-containing electrolyte reduces η10mA to 237 mV. Microscopy and XPS results show that OER in NaOH etches grooves along the ab-plane and alters surface composition. Surface-adsorbed Fe(III) was found to inhibit further etching of the 2H-AgNiO2 surface. Therefore, controlling surface etching and Fe adsorption is crucial for improving the OER activity of 2H-AgNiO2.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-20T16:35:46Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-08-20T16:35:46Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents目次
謝辭 i
中文摘要 ii
Abstract iii
目次 v
圖次 vii
表次 xii
縮寫對照表 xiii
第一章 緒論 1
1.1. 研究動機 1
1.2. OER機制與電催化劑介紹 4
1.3. Ni(III)化合物電子結構與其OER效率之關聯 7
1.4. Delafossite晶體結構的家族成員 11
1.5. AgNiO2的物理化學特性與催化應用 16
第二章 實驗方法與原理 19
2.1. 以水熱法合成2H-AgNiO2粉末 19
2.2. X-ray繞射結構鑒定 21
2.3. X-ray吸收光譜與共振非彈性X-ray散射 25
2.4. 密度泛函理論計算與多重態理論計算 31
2.5. X-ray光電子能譜學 37
2.6. 電化學分析 40
2.7. 掃描式與穿透式電子顯微鏡成像 44
2.8. 化學藥品列表 49
第三章 2H-AgNiO2的合成與結構鑒定 50
3.1. 水熱合成條件與XRD結構鑒定 50
3.2. SEM與TEM形貌分析 53
3.3. Ni K-edge與Ag K-edge EXAFS配位結構分析 56
第四章 2H-AgNiO2電子結構分析 59
4.1. 2H-AgNiO2之Ag M-edge, Ni L-edge與O K-edge X-ray吸收光譜 59
4.2. 2H-AgNiO2之磁性測量 62
4.3. 2H-AgNiO2之Ni L-edge XAS/RIXS實驗結果 64
4.4. 2H-AgNiO2之Ni L-edge RIXS實驗與多重態理論計算結果比較 67
第五章 2H-AgNiO2電化學性能與材料形貌變化 74
5.1. OER性能表現 74
5.2. 電化學後的表面形貌改變 78
5.3. 電化學後的XPS與XAS分析 83
5.4. 電化學後的TEM影像與元素分析 89
5.5. 反應前後電解液的ICP-MS分析 92
第六章 結論 95
參考文獻 96
-
dc.language.isozh_TW-
dc.subject共振非彈性共振X-ray散射zh_TW
dc.subject負電荷轉移材料zh_TW
dc.subject鐵雜質zh_TW
dc.subject析氧反應zh_TW
dc.subject多重態計算zh_TW
dc.subjectmultiplet calculationen
dc.subjectoxygen evolution reactionen
dc.subjectiron impurityen
dc.subjectresonant inelastic X-ray scatteringen
dc.subjectnegative charge transfer materialsen
dc.title2H-AgNiO2電子結構與透過表面修飾調控析氧反應活性zh_TW
dc.titleThe Electronic Structure of 2H-AgNiO2 and the Modulation of its OER Activity through Surface Modificationen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee周必泰;陳俊顯;陳嘉晉zh_TW
dc.contributor.oralexamcommitteePi-Tai Chou;Chun-Hsien Chen;Chia-Chin Chenen
dc.subject.keyword負電荷轉移材料,共振非彈性共振X-ray散射,多重態計算,析氧反應,鐵雜質,zh_TW
dc.subject.keywordnegative charge transfer materials,resonant inelastic X-ray scattering,multiplet calculation,oxygen evolution reaction,iron impurity,en
dc.relation.page110-
dc.identifier.doi10.6342/NTU202504090-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2025-08-14-
dc.contributor.author-college理學院-
dc.contributor.author-dept化學系-
dc.date.embargo-lift2025-08-21-
Appears in Collections:化學系

Files in This Item:
File SizeFormat 
ntu-113-2.pdf
Access limited in NTU ip range
19.96 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved