Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98987Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 施博仁 | zh_TW |
| dc.contributor.advisor | Po-Jen Shih | en |
| dc.contributor.author | 姚振榮 | zh_TW |
| dc.contributor.author | Cheng-Jung Yao | en |
| dc.date.accessioned | 2025-08-20T16:33:06Z | - |
| dc.date.available | 2025-08-21 | - |
| dc.date.copyright | 2025-08-20 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-08-15 | - |
| dc.identifier.citation | 1. Marshall, B. and J.R. Warren, UNIDENTIFIED CURVED BACILLI IN THE STOMACH OF PATIENTS WITH GASTRITIS AND PEPTIC ULCERATION. The Lancet, 1984. 323(8390): p. 1311-1315.
2. Bardhan, P.K., Epidemiological features of Helicobacter pylori infection in developing countries. Clin Infect Dis, 1997. 25(5): p. 973-8. 3. Schistosomes, liver flukes and Helicobacter pylori. IARC Monogr Eval Carcinog Risks Hum, 1994. 61: p. 1-241. 4. Kuo, Y.T., et al., Primary antibiotic resistance in Helicobacter pylori in the Asia-Pacific region: a systematic review and meta-analysis. Lancet Gastroenterol Hepatol, 2017. 2(10): p. 707-715. 5. Lopes-de-Campos, D., et al., Delivering amoxicillin at the infection site - a rational design through lipid nanoparticles. Int J Nanomedicine, 2019. 14: p. 2781-2795. 6. Andrade Del Olmo, J., et al., Biocompatible hyaluronic acid-divinyl sulfone injectable hydrogels for sustained drug release with enhanced antibacterial properties against Staphylococcus aureus. Mater Sci Eng C Mater Biol Appl, 2021. 125: p. 112102. 7. Mégraud, F., H pylori antibiotic resistance: prevalence, importance, and advances in testing. Gut, 2004. 53(9): p. 1374-84. 8. Nägele, E. and R. Moritz, Structure elucidation of degradation products of the antibiotic amoxicillin with ion trap MS(n) and accurate mass determination by ESI TOF. J Am Soc Mass Spectrom, 2005. 16(10): p. 1670-6. 9. Barzegar-Jalali, M., et al., Kinetic analysis of drug release from nanoparticles. J Pharm Pharm Sci, 2008. 11(1): p. 167-77. 10. Yang, J.C., C.W. Lu, and C.J. Lin, Treatment of Helicobacter pylori infection: current status and future concepts. World J Gastroenterol, 2014. 20(18): p. 5283-93. 11. Kwack, W., et al., High Dose Ilaprazole/Amoxicillin as First-Line Regimen for Helicobacter pylori Infection in Korea. Gastroenterol Res Pract, 2016. 2016: p. 1648047. 12. Khutoryanskiy, V.V., Advances in mucoadhesion and mucoadhesive polymers. Macromol Biosci, 2011. 11(6): p. 748-64. 13. Thanou, M., J.C. Verhoef, and H.E. Junginger, Chitosan and its derivatives as intestinal absorption enhancers. Adv Drug Deliv Rev, 2001. 50 Suppl 1: p. S91-101. 14. Yang, S.J., et al., Folic acid-conjugated chitosan nanoparticles enhanced protoporphyrin IX accumulation in colorectal cancer cells. Bioconjug Chem, 2010. 21(4): p. 679-89. 15. Lin, Y.H., et al., Genipin-cross-linked fucose-chitosan/heparin nanoparticles for the eradication of Helicobacter pylori. Biomaterials, 2013. 34(18): p. 4466-79. 16. Fernandes, M., et al., Modulation of stability and mucoadhesive properties of chitosan microspheres for therapeutic gastric application. Int J Pharm, 2013. 454(1): p. 116-24. 17. Adebisi, A.O. and B.R. Conway, Lectin-conjugated microspheres for eradication of Helicobacter pylori infection and interaction with mucus. Int J Pharm, 2014. 470(1-2): p. 28-40. 18. Di Cola, E., et al., Novel O/W nanoemulsions for nasal administration: Structural hints in the selection of performing vehicles with enhanced mucopenetration. Colloids Surf B Biointerfaces, 2019. 183: p. 110439. 19. Murthy, A., et al., Self-assembled lecithin-chitosan nanoparticles improve the oral bioavailability and alter the pharmacokinetics of raloxifene. Int J Pharm, 2020. 588: p. 119731. 20. Majcher, M.J., et al., In situ-gelling starch nanoparticle (SNP)/O-carboxymethyl chitosan (CMCh) nanoparticle network hydrogels for the intranasal delivery of an antipsychotic peptide. J Control Release, 2021. 330: p. 738-752. 21. Boroumand, H., et al., Chitosan-Based Nanoparticles Against Viral Infections. Front Cell Infect Microbiol, 2021. 11: p. 643953. 22. Murano, E., Use of natural polysaccharides in the microencapsulation techniques. Journal of Applied Ichthyology, 1998. 14(3-4): p. 245-249. 23. Cohen, S., et al., The pharmacokinetics of, and humoral responses to, antigen delivered by microencapsulated liposomes. Proc Natl Acad Sci U S A, 1991. 88(23): p. 10440-4. 24. Hari, P.R., T. Chandy, and C.P. Sharma, Chitosan/calcium alginate microcapsules for intestinal delivery of nitrofurantoin. J Microencapsul, 1996. 13(3): p. 319-29. 25. Yang, S.J., et al., Alginate-folic acid-modified chitosan nanoparticles for photodynamic detection of intestinal neoplasms. Biomaterials, 2011. 32(8): p. 2174-82. 26. Ye, H., J. Cheng, and K. Yu, In situ reduction of silver nanoparticles by gelatin to obtain porous silver nanoparticle/chitosan composites with enhanced antimicrobial and wound-healing activity. Int J Biol Macromol, 2019. 121: p. 633-642. 27. Wang, Q., et al., In situ pore-forming alginate hydrogel beads loaded with in situ formed nano-silver and their catalytic activity. Phys Chem Chem Phys, 2016. 18(18): p. 12610-5. 28. Dai, X., et al., Thiazolium-derivative functionalized silver nanocomposites for suppressing bacterial resistance and eradicating biofilms. New Journal of Chemistry, 2018. 42(2): p. 1316-1325. 29. Chen, H., et al., A novel wound dressing based on a Konjac glucomannan/silver nanoparticle composite sponge effectively kills bacteria and accelerates wound healing. Carbohydr Polym, 2018. 183: p. 70-80. 30. Song, J., et al., Nano-silver in situ hybridized collagen scaffolds for regeneration of infected full-thickness burn skin. J Mater Chem B, 2015. 3(20): p. 4231-4241. 31. Gao, Y., et al., Decorating CdTe QD-Embedded Mesoporous Silica Nanospheres with Ag NPs to Prevent Bacteria Invasion for Enhanced Anticounterfeit Applications. ACS Appl Mater Interfaces, 2015. 7(18): p. 10022-33. 32. GhavamiNejad, A., et al., Mussel-Inspired Electrospun Nanofibers Functionalized with Size-Controlled Silver Nanoparticles for Wound Dressing Application. ACS Appl Mater Interfaces, 2015. 7(22): p. 12176-83. 33. Phan, T.T.V., et al., Roles of Chitosan in Green Synthesis of Metal Nanoparticles for Biomedical Applications. Nanomaterials (Basel), 2021. 11(2). 34. Huang, H. and X. Yang, Synthesis of chitosan-stabilized gold nanoparticles in the absence/presence of tripolyphosphate. Biomacromolecules, 2004. 5(6): p. 2340-6. 35. Nate, Z., et al., Green synthesis of chitosan capped silver nanoparticles and their antimicrobial activity. MRS Advances, 2018. 3(42): p. 2505-2517. 36. Martínez-Castañón, G.A., et al., Synthesis and antibacterial activity of silver nanoparticles with different sizes. Journal of Nanoparticle Research, 2008. 10(8): p. 1343-1348. 37. Greenhalgha, R., et al., Antimicrobial strategies to reduce polymer biomaterial infections and their economic implications and considerations. Int Biodeterior Biodegrad, 2019. 136: p. 1–14. 38. Das Ghatak, P., et al., A surfactant polymer dressing potentiates antimicrobial efficacy in biofilm disruption. Sci Rep, 2018. 8: p. 873. 39. Mouro, C., et al., Designing new antibacterial wound dressings: Development of a dual layer cotton material coated with poly(vinyl alcohol)/chitosan nanofibers incorporating Agrimonia eupatoria L. extract. Molecules, 2020. 26: p. 83. 40. Ye, H., et al., In situ reduction of silver nanoparticles by gelatin to obtain porous silver nanoparticle/chitosan composites with enhanced antimicrobial and wound-healing activity. Int J Biol Macromol, 2019. 121: p. 633–642. 41. Valle, K.Z.M., et al., Natural film based on pectin and allantoin for wound healing: Obtaining, characterization, and rat model. Biomed Res Int, 2020. 2020: p. 6897497. 42. Vakilian, S., et al., A competitive nature-derived multilayered scaffold based on chitosan and alginate for full-thickness wound healing. Carbohydr Polym, 2021. 262: p. 117921. 43. Bahadoran, M., et al., Development of a polyvinyl alcohol/sodium alginate hydrogel-based scaffold incorporating bFGF-encapsulated microspheres for accelerated wound healing. Sci Rep, 2020. 10: p. 7342. 44. Hong, T., et al., Applications of infrared spectroscopy in polysaccharide structural analysis: Progress, challenge and perspective. Food Chem X, 2021. 12: p. 100168. 45. Bano, I., et al., Chitosan: A potential biopolymer for wound management. Int J Biol Macromol, 2017. 102: p. 380–383. 46. Wang, Q., et al., In situ pore-forming alginate hydrogel beads loaded with in situ formed nano-silver and their catalytic activity. Phys Chem Chem Phys, 2016. 18(18): p. 12610–12615. 47. Dai, X., et al., Thiazolium-derivative functionalized silver nanocomposites for suppressing bacterial resistance and eradicating biofilms. New J Chem, 2018. 42: p. 1316–1325. 48. Chen, H., et al., A novel wound dressing based on a konjac glucomannan/silver nanoparticle composite sponge effectively kills bacteria and accelerates wound healing. Carbohydr Polym, 2018. 183: p. 70–80. 49. Hu, M., et al., Zinc oxide/silver bimetallic nanoencapsulated in PVP/PCL nanofibres for improved antibacterial activity. Artif Cells Nanomed Biotechnol, 2018. 46: p. 1248–1257. 50. Li, Z.-W., et al., The cellular and molecular mechanisms underlying silver nanoparticle/chitosan oligosaccharide/poly(vinyl alcohol) nanofiber-mediated wound healing. J Biomed Nanotechnol, 2017. 13(1): p. 17–34. 51. Choi, Y., et al., Interface-controlled synthesis of heterodimeric silver-carbon nanoparticles derived from polysaccharides. ACS Nano, 2014. 8(11): p. 11377–11385. 52. Xu, P., et al., Magnetic separable chitosan microcapsules decorated with silver nanoparticles for catalytic reduction of 4-nitrophenol. J Colloid Interface Sci, 2017. 507: p. 353–359. 53. Zhang, J., et al., Preparation and structural analysis of nano-silver loaded poly(styrene-co-acrylic acid) core-shell nanospheres with defined shape and composition. Nanomaterials, 2017. 7(9): 234. 54. Perez-Diaz, M., et al., Anti-biofilm activity of chitosan gels formulated with silver nanoparticles and their cytotoxic effect on human fibroblasts. Mater Sci Eng C, 2016. 60: p. 317–323. 55. Song, J., et al., Nano-silver in situ hybridized collagen scaffolds for regeneration of infected full-thickness burn skin. J Mater Chem B, 2015. 3(21): p. 4231–4241. 56. Gao, Y., et al., Decorating CdTe QD-embedded mesoporous silica nanospheres with Ag NPs to prevent bacteria invasion for enhanced anticounterfeit applications. ACS Appl Mater Interfaces, 2015. 7(17): p. 10022–10033. 57. Ghavami Nejad, A., et al., Mussel-inspired electrospun nanofibers functionalized with size-controlled silver nanoparticles for wound dressing application. ACS Appl Mater Interfaces, 2015. 7(22): p. 12176–12183. 58. Phan, T.T.V., et al., Roles of chitosan in green synthesis of metal nanoparticles for biomedical applications. Nanomaterials, 2021. 11(2): 273. 59. Huang, H. and X. Yang, Synthesis of chitosan-stabilized gold nanoparticles in the absence/presence of tripolyphosphate. Biomacromolecules, 2004. 5(6): p. 2340–2346. 60. Nate, Z., et al., Green synthesis of chitosan capped silver nanoparticles and their antimicrobial activity. MRS Adv, 2018. 3(45): p. 2505–2517. 61. Venkatesham, M., et al., A novel green one-step synthesis of silver nanoparticles using chitosan: Catalytic activity and antimicrobial studies. Appl Nanosci, 2014. 4(1): p. 113–119. 62. Martinez-Castanon, G.A., et al., Synthesis and antibacterial activity of silver nanoparticles with different sizes. J Nanopart Res, 2008. 10(8): p. 1343–1348. 63. Bourguignon, L.Y., Matrix hyaluronan-activated CD44 signaling promotes keratinocyte activities and improves abnormal epidermal functions. Am J Pathol, 2014. 184(7): p. 1912–1919. 64. Sahana, T.G. and P.D. Rekha, Biopolymers: Applications in wound healing and skin tissue engineering. Mol Biol Rep, 2018. 45(6): p. 2857–2867. 65. Graca, M.F.P., et al., Hyaluronic acid-based wound dressings: A review. Carbohydr Polym, 2020. 241: p. 116364. 66. Zerbinati, N., et al., Chemical and mechanical characterization of hyaluronic acid hydrogel cross-linked with polyethylene glycol and its use in dermatology. Dermatol Ther, 2020. 33: p. e13747. 67. Bohn, J.A., and J.N. BeMiller, (1→3)-β-d-glucans as biological response modifiers: A review of structure-functional activity relationships. Carbohydr Polym, 1995. 28: p. 3–14. 68. Sherwood, E.R., et al., Glucan stimulates production of antitumor cytolytic/cytostatic factor(s) by macrophages. J Biol Response Mod, 1986. 5: p. 504–526. 69. Browder, W., et al., Beneficial effect of enhanced macrophage function in the trauma patient. Ann Surg, 1990. 211: p. 605–612. 70. Pretus, H.A., et al., Isolation, physicochemical characterization and preclinical efficacy evaluation of soluble scleroglucan. J Pharmacol Exp Ther, 1991. 257: p. 500–510. 71. Williams, J.D., et al., Glucan-based macrophage stimulators. A review of their anti-infective potential. Clin Immunother, 1996. 5: p. 392–399. 72. Jantova, S., et al., Biological properties of a novel coladerm-beta glucan membrane. In vitro assessment using human fibroblasts. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub, 2015. 159: p. 67–76. 73. Falanga, V., Growth factors and wound healing. J Dermatol Surg Oncol, 1993. 19: p. 711–714. 74. Canama, G.J.C., et al., Synthesis of chitosan-silver nanocomposite and its evaluation as an antibacterial coating for mobile phone glass protectors. ACS Omega, 2023. 8: p. 17699–17711. 75. Yang, S.J., et al., Cisplatin-loaded gold nanoshells mediate chemo-photothermal therapy against primary and distal lung cancers growth. Biomed Pharmacother, 2023. 158: p. 114146. 76. Zheng, C., et al., Study on hemostatic effect and mechanism of starch-based nano-microporous particles. Int J Biol Macromol, 2021. 179: p. 507–518. 77. Costantini, E., et al., Evaluation of cell migration and cytokines expression changes under the radiofrequency electromagnetic field on wound healing in vitro model. Int J Mol Sci, 2022. 23: p. 2205. 78. Zhou, D., et al., Preparation of chitin-amphipathic anion/quaternary ammonium salt ecofriendly dressing and its effect on wound healing in mice. Int J Nanomed, 2018. 13: p. 4157–4169. 79. Dou, Z., et al., Probiotic-functionalized silk fibroin/sodium alginate scaffolds with endoplasmic reticulum stress-relieving properties for promoted scarless wound healing. ACS Appl Mater Interfaces, 2023. 15: p. 6297–6311. 80. Zhuang, Y., et al., Antibacterial activity of copper-bearing 316L stainless steel for the prevention of implant-related infection. J Biomed Mater Res B Appl Biomater, 2020. 108: p. 484–495. 81. Li, Q., et al., Silver inlaid with gold nanoparticle/chitosan wound dressing enhances antibacterial activity and porosity, and promotes wound healing. Biomacromolecules, 2017. 18: p. 3766–3775. 82. Mondal, P., et al., Synthesis and characterization of 1H-imidazole-4,5-dicarboxylic acid-functionalized silver nanoparticles: Dual colorimetric sensors of Zn2+ and homocysteine. ACS Omega, 2022. 7: p. 33423–33431. 83. Parmar, A., et al., Novel biogenic silver nanoparticles as invigorated catalytic and antibacterial tool: A cleaner approach towards environmental remediation and combating bacterial invasion. Mater Chem Phys, 2019. 238: p. 121861. 84. Meng, Y., A sustainable approach to fabricating Ag nanoparticles/PVA hybrid nanofiber and its catalytic activity. Nanomaterials, 2015. 5: p. 1124–1135. 85. Fouad, H., et al., Green synthesis of AgNP-ligand complexes and their toxicological effects on Nilaparvata lugens. J Nanobiotechnol, 2021. 19: p. 318. 86. Yin, I.X., et al., The antibacterial mechanism of silver nanoparticles and its application in dentistry. Int J Nanomed, 2020. 15: p. 2555–2562. 87. Paomephan, P., et al., Insight into the antibacterial property of chitosan nanoparticles against Escherichia coli and Salmonella Typhimurium and their application as vegetable wash disinfectant. Food Control, 2018. 86: p. 294–301. 88. Pan, C., et al., Preparation of nanoparticle by ionic cross-linked emulsified chitosan and its antibacterial activity. Colloids Surf A, 2019. 568: p. 362–370. 89. Jeon, Y.J., et al., Antimicrobial effect of chitooligosaccharides produced by bioreactor. Carbohydr Polym, 2001. 44: p. 71–76. 90. No, H.K., et al., Antibacterial activity of chitosans and chitosan oligomers with different molecular weights. Int J Food Microbiol, 2002. 74: p. 65–72. 91. Hosseinnejad, M., and S.M. Jafari, Evaluation of different factors affecting antimicrobial properties of chitosan. Int J Biol Macromol, 2016. 85: p. 467–475. 92. Gilli, R., et al., FTIR studies of sodium hyaluronate and its oligomers in the amorphous solid phase and in aqueous solution. Carbohydr Res, 1994. 263: p. 315–326. 93. Zielke, C., et al., Interaction between cereal β-glucan and proteins in solution and at interfaces. Colloids Surf B Biointerfaces, 2018. 162: p. 256–264. 94. Horkay, F., et al., Ions in hyaluronic acid solutions. J Chem Phys, 2009. 131: p. 184902. 95. Denzinger, M., et al., Hemocompatibility of different burn wound dressings. Wound Repair Regen, 2019. 27: p. 470–476. 96. Pasaribu, K.M., et al., Characterization of bacterial cellulose-based wound dressing in different order impregnation of chitosan and collagen. Biomolecules, 2020. 10: p. 1511. 97. Ohno, N., et al., Enhancement of clot formation of human plasma by beta-glucans. J Pharmacobiodyn, 1990. 13: p. 525–532. 98. Chan, L.W., et al., PolySTAT-modified chitosan gauzes for improved hemostasis in external hemorrhage. Acta Biomater, 2016. 31: p. 178–185. 99. Hidalgo, E., and C. Dominguez, Study of cytotoxicity mechanisms of silver nitrate in human dermal fibroblasts. Toxicol Lett, 1998. 98: p. 169–179. 100. Qing, Y., et al., Potential antibacterial mechanism of silver nanoparticles and the optimization of orthopedic implants by advanced modification technologies. Int J Nanomed, 2018. 13: p. 3311–3327. 101. Meikle, T.G., et al., Preparation, characterization, and antimicrobial activity of cubosome-encapsulated metal nanocrystals. ACS Appl Mater Interfaces, 2020. 12: p. 6944–6954. 102. Chapa Gonzalez, C., et al., Bactericidal activity of silver nanoparticles in drug-resistant bacteria. Braz J Microbiol, 2023. 54: p. 691–701. 103. Rahimi, M., et al., A novel bioactive quaternized chitosan and its silver-containing nanocomposites as a potent antimicrobial wound dressing: Structural and biological properties. Mater Sci Eng C, 2019. 101: p. 360–369. 104. Abu Elella, M.H., et al., Green synthesis of antimicrobial and antitumor N,N,N-trimethyl chitosan chloride/poly(acrylic acid)/silver nanocomposites. Int J Biol Macromol, 2018. 111: p. 706–716. 105. Li, J., et al., Preparation of thiolated chitosan/silver nanowire composite hydrogels with antimicrobial activity for obstetric wound care. Mater Lett, 2020. 280: Article 128497. 106. Wahid, F., et al., Synthesis and characterization of antibacterial carboxymethyl chitosan/ZnO nanocomposite hydrogels. Int J Biol Macromol, 2016. 88: p. 273–279. 107. Wahid, F., et al., Preparation, characterization and antibacterial applications of carboxymethyl chitosan/CuO nanocomposite hydrogels. Int J Biol Macromol, 2017. 101: p. 690–695. 108. El-Maadawy, M.W., et al., Preparation of carrageenan/chitosan-based (N,N,N-trimethyl chitosan chloride) silver nanocomposites as pH sensitive carrier for effective controlled curcumin delivery in cancer cells. OpenNano, 2022. 7: Article 100050. 109. Dubey, P., et al., PEGylated graphene oxide-based nanocomposite-grafted chitosan/polyvinyl alcohol nanofiber as an advanced antibacterial wound dressing. RSC Adv, 2016. 6(73): p. 69103–69116. 110. Marshall, B.J.; Warren, R.M. Unidentified curved bacilli in the stomach of patients with gastritis and peptic ulceration. Lancet 1984. 16, 1311-1315. 111. Bardhan, P.K. Epidemiological features of Helicobacter pylori infection in developing countries. Clin. Infect. Dis. 1997. 25, 973-978. 112. Schistosomes, liver flukes and Helicobacter pylori. IARC Monogr. Eval. Carcinog. Risks Hum. 1994. 61, 1-41. 113. Kuo, Y.T.; Liou, J.M.; El-Omar, E.M.; Wu, J.Y.; Leow, A.H.R.; Goh, K.L.; Das, R.; Lu, H.; Lin, J.T.; Tu, Y.K.; et al. Asian Pacific Alliance on Helicobacter and Microbiota. Primary antibiotic resistance in Helicobacter pylori in the Asia-Pacific region: A systematic review and meta-analysis. Lancet Gastroenterol. Hepatol. 2017. 2, 707-715. 114. Liou, J.M.; Fang, Y.J.; Chen, C.C.; Bair, M.J.; Chang, C.Y.; Lee, Y.C.; Chen, M.J.; Chen, C.C.; Tseng, C.H.; Hsu, Y.C.; et al. Taiwan Gastrointestinal Disease and Helicobacter Consortium. Concomitant, bismuth quadruple, and 14-day triple therapy in the firstline treatment of Helicobacter pylori: A multicentre, open-label, randomised trial. Lancet 2016. 388, 2355-2365. 115. Lopes-de-Campos, D.; Pinto, R.M.; Lima, S.A. C.; Santos, T.; Sarmento, B.; Nunes, C.; Reis, S. Delivering amoxicillin at the infection site—A rational design through lipid nanoparticles. Int. J. Nanomed. 2019. 14, 2781–2795. 116. Andrade Del Olmo, J.; Alonso, J.M.; Sáez Martínez, V.; Ruiz-Rubio, L.; Pérez González, R.; Vilas-Vilela, J.L.; Pérez-Álvarez, L. Biocompatible hyaluronic acid-divinyl sulfone injectable hydrogels for sustained drug release with enhanced antibacterial properties against Staphylococcus aureus. Mater. Sci. Eng. C Mater. Biol. Appl. 2021. 125, 112102. 117. Mégraud, F. H pylori antibiotic resistance: Prevalence, importance, and advances in testing. Gut 2004. 53, 1374–1384. 118. Nägele, E.; Moritz, R. Structure elucidation of degradation products of the antibiotic amoxicillin with ion trap MS(n) and accurate mass determination by ESI TOF. J. Am. Soc. Mass. Spectrom. 2005. 16, 1670–1676. 119. Barzegar-Jalali, M.; Adibkia, K.; Valizadeh, H.; Shadbad, M.R.; Nokhodchi, A.; Omidi, Y.; Mohammadi, G.; Nezhadi, S.H.; Hasan, M. Kinetic analysis of drug release from nanoparticles. J. Pharm. Pharm. Sci. 2008. 11, 167–177. 120. Yang, J.C.; Lu, C.W.; Lin, C.J. Treatment of Helicobacter pylori infection: Current status and future concepts. World J. Gastroenterol. 2014. 20, 5283–5293. 121. Kwack, W.; Lim, Y.; Lim, C.; Graham, D.Y. High Dose Ilaprazole/Amoxicillin as First-Line Regimen for Helicobacter pylori Infection in Korea. Gastroenterol. Res. Pract. 2016. 2016, 1648047. 122. Khutoryanskiy, V.V. Advances in mucoadhesion and mucoadhesive polymers. Macromol. Biosci. 2011. 11, 748–764. 123. Thanou, M.; Verhoef, J.C.; Junginger, H.E. Chitosan and its derivatives as intestinal absorption enhancers. Adv. Drug Deliv. Rev. 2001. 50 (Suppl. S1), S91–S101. 124. Yang, S.J.; Lin, F.H.; Tsai, K.C.; Wei, M.F.; Tsai, H.M.; Wong, J.M.; Shieh, M.J. Folic acid-conjugated chitosan nanoparticles enhanced protoporphyrin IX accumulation in colorectal cancer cells. Bioconjug. Chem. 2010. 21, 679–689. 125. Lin, Y.H.; Tsai, S.C.; Lai, C.H.; Lee, C.H.; He, Z.S.; Tseng, G.C. Genipin-cross-linked fucose-chitosan/heparin nanoparticles for the eradication of Helicobacter pylori. Biomaterials 2013. 34, 4466–4479. 126. Fernandes, M.; Gonçalves, I.C.; Nardecchia, S.; Amaral, I.F.; Barbosa, M.A.; Martins, M.C. Modulation of stability and mucoadhesive properties of chitosan microspheres for therapeutic gastric application. Int. J. Pharm. 2013. 454, 116–124. 127. Adebisi, A.O.; Conway, B.R. Lectin-conjugated microspheres for eradication of Helicobacter pylori infection and interaction with mucus. Int. J. Pharm. 2014. 470, 28–40. 128. Di Cola, E.; Cantu, L.; Brocca, P.; Rondelli, V.; Fadda, G.C.; Canelli, E.; Martelli, P.; Clementino, A.; Sonvico, F.; Bettini, R.; et al. Novel O/W nanoemulsions for nasal administration: Structural hints in the selection of performing vehicles with enhanced mucopenetration. Colloids Surf. B Biointerfaces 2019. 183, 110439. 129. Murthy, A.; Ravi, P.R.; Kathuria, H.; Vats, R. Self-assembled lecithin-chitosan nanoparticles improve the oral bioavailability and alter the pharmacokinetics of raloxifene. Int. J. Pharm. 2020. 588, 119731. 130. Majcher, M.J.; Babar,A.; Lofts, A.; Leung, A.; Li, X.; Abu-Hijleh, F.; Smeets, N.M.B.; Mishra, R.K.; Hoare, T. In situ-gelling starch nanoparticle (SNP)/O-carboxymethyl chitosan (CMCh) nanoparticle network hydrogels for the intranasal delivery of an antipsychotic peptide. J. Control Release 2021. 330, 738–752. 131. Boroumand, H.; Badie, F.; Mazaheri, S.; Seyedi, Z.S.; Nahand, J.S.; Nejati, M.; Baghi, H.B.; Abbasi-Kolli, M.; Badehnoosh, B.; Ghandali, M.; et al. Chitosan-Based Nanoparticles Against Viral Infections. Front. Cell Infect. Microbiol. 2021. 11, 643953. 132. Murano, E. Use of natural polysaccharides in the microencapsulation techniques. J. Appl. Ichthyol. 1998. 14, 245–249. 133. Cohen, S.; Bernstein, H.; Hewes, C.; Chow, M.; Langer, R. The pharmacokinetics of, and humoral responses to, antigen delivered by microencapsulated liposomes. Proc. Natl. Acad. Sci. USA 1991. 88, 10440–10444. 134. Hari, P.R.; Chandy, T.; Sharma, C.P. Chitosan/calcium alginate microcapsules for intestinal delivery of nitrofurantoin. J. Microencapsul. 1996. 13, 319–329. 135. Yang, S.J.; Lin, F.H.; Tsai, H.M.; Lin, C.F.; Chin, H.C.; Wong, J.M.; Shieh, M.J. Alginate-folic acid-modified chitosan nanoparticles for photodynamic detection of intestinal neoplasms. Biomaterials 2011. 32, 2174–2182. 136. Yang, S.J.; Huang, C.H.; Yang, J.C.; Wang, C.H.; Shieh, M.J. Residence Time-Extended Nanoparticles by Magnetic Field Improve the Eradication Efficiency of Helicobacter pylori. ACS Appl. Mater. Interfaces 2020. 12, 54316–54327. 137. Niaz, T.; Ihsan, A.; Abbasi, R.; Shabbir, S.; Noor, T.; Imran, M. Chitosan-albumin based core shell-corona nano-antimicrobials to eradicate resistant gastric pathogen. Int. J. Biol. Macromol. 2019. 138, 1006–1018. 138. Abruzzo, A.; Giordani, B.; Miti, A.; Vitali, B.; Zuccheri, G.; Cerchiara, T.; Luppi, B.; Bigucci, F. Mucoadhesive and mucopenetrating chitosan nanoparticles for glycopeptide antibiotic administration. Int. J. Pharm. 2021. 606, 120874. 139. Sonaje, K.; Chuang, E.Y.; Lin, K.J.; Yen, T.C.; Su, F.Y.; Tseng, M.T.; Sung, H.W. Opening of epithelial tight junctions and enhancement of paracellular permeation by chitosan: Microscopic, ultrastructural, and computed-tomographic observations. Mol. Pharm. 2012. 9, 1271–1279. 140. Yang, J.C.; Shun, C.T.; Chien, C.T.; Wang, T.H. Effective prevention and treatment of Helicobacter pylori infection using a combination of catechins and sialic acid in AGS cells and BALB/c mice. J. Nutr. 2008. 138, 2084–2090. 141. Li, P.; Chen, X.; Shen, Y.; Li, H.; Zou, Y.; Yuan, G.; Hu, P.; Hu, H. Mucus penetration enhanced lipid polymer nanoparticles improve the eradication rate of Helicobacter pylori biofilm. J. Control Release 2019. 300, 52–63. 142. Lopes, D.; Nunes, C.; Martins, M.C.; Sarmento, B.; Reis, S. Eradication of Helicobacter pylori: Past, present and future. J. Control Release 2014. 189, 169–186. 143. Chadha, R.; Kashid, N.; Jain, D.V. Kinetic studies of the degradation of an aminopenicillin antibiotic (amoxicillin trihydrate) in aqueous solution using heat conduction microcalorimetry. J. Pharm. Pharmacol. 2003. 55, 1495–1503. 144. Takeuchi, H.; Thongborisute, J.; Matsui, Y.; Sugihara, H.; Yamamoto, H.; Kawashima, Y. Novel mucoadhesion tests for polymers and polymer-coated particles to design optimal mucoadhesive drug delivery systems. Adv. Drug Deliv. Rev. 2005. 57, 1583–1594. 145. Ensign, L.M.; Cone, R.; Hanes, J. Oral drug delivery with polymeric nanoparticles: The gastrointestinal mucus barriers. Adv. Drug Deliv. Rev. 2012, 64, 557–570. 146. Lai, S.K.; Wang, Y.Y.; Hanes, J. Mucus-penetrating nanoparticles for drug and gene delivery to mucosal tissues. Adv. Drug Deliv. Rev. 2009. 61, 158–171. 147. Rabea, E.I.; Badawy, M.E.; Stevens, C.V.; Smagghe, G.; Steurbaut, W. Chitosan as antimicrobial agent: Applications and mode of action. Biomacromolecules 2003. 4, 1457–1465. 148. Rolinson, G.N. Forty years of beta-lactam research. J. Antimicrob. Chemother. 1998. 41, 589–603. 149. Arabski, M.; Kazmierczak, P.; Wisniewska-Jarosinska, M.; Poplawski, T.; Klupinska, G.; Chojnacki, J.; Drzewoski, J.; Blasiak, J. Interaction of amoxicillin with DNA in human lymphocytes and H. pylori-infected and non-infected gastric mucosa cells. Chem. Biol. Interact. 2005. 152, 13–24. 150. Li, P.Y.; Chang, Y.C.; Tzang, B.S.; Chen, C.C.; Liu, Y.C. Antibiotic amoxicillin induces DNA lesions in mammalian cells possibly via the reactive oxygen species. Mutat. Res. 2007. 629, 133–139. 151. Sinha, V.K.; De Buck, S.S.; Fenu, L.A.; Smit, J.W.; Nijsen, M.; Gilissen, R.A.; Van Peer, A.; Lavrijsen, K.; Mackie, C.E. Predicting oral clearance in humans: How close can we get with allometry? Clin. Pharmacokinet. 2008. 47, 35–45. 152. Tsai, M.H.; Peng, C.L.; Yang, S.J.; Shieh, M.J. Photothermal, Targeting, Theranostic Near-Infrared Nanoagent with SN38 against Colorectal Cancer for Chemothermal Therapy. Mol. Pharm. 2017. 14, 2766–2780. 153. Bayerdörffer, E.; Miehlke, S.; Mannes, G.A.; Sommer, A.; Höchter, W.; Weingart, J.; Heldwein, W.; Klann, H.; Simon, T.; Schmitt, W.; et al. Double-blind trial of omeprazole and amoxicillin to cure Helicobacter pylori infection in patients with duodenal ulcers. Gastroenterology 1995. 108, 1412–1417. 154. Shaikh, R.; Raj Singh, T.R.; Garland, M.J.; Woolfson, A.D.; Donnelly, R.F. Mucoadhesive drug delivery systems. J. Pharm. Bioallied Sci. 2011. 3, 89–100. 155. Cai, J.; Huang, H.; Song, W.; Hu, H.; Chen, J.; Zhang, L.; et al. Preparation and evaluation of lipid polymer nanoparticles for eradicating Helicobacter pylori biofilm and impairing antibacterial resistance in vitro. Int. J. Pharm. 2015, 495(2), 728–737. 156. Lin, Y.-H.; Lin, J.-H.; Chou, S.-C.; Chang, S.-J.; Chung, C.-C.; Chen, Y.-S.; et al. Berberine-loaded targeted nanoparticles as specific Helicobacter pylori eradication therapy: in vitro and in vivo study. Nanomedicine 2015, 10(1), 57–71. 157. Zou, Y.; Chen, X.; Sun, Y.; Li, P.; Xu, M.; Fang, P.; et al. Antibiotics-free nanoparticles eradicate Helicobacter pylori biofilms and intracellular bacteria. J. Control. Release 2022, 348, 370–385. 158. Arif, M.; Ahmad, R.; Sharaf, M.; Samreen, M.J.; Abdalla, M.; et al. Antibacterial and antibiofilm activity of mannose-modified chitosan/PMLA nanoparticles against multidrug-resistant Helicobacter pylori. Int. J. Biol. Macromol. 2022, 223, 418–432. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98987 | - |
| dc.description.abstract | 近來由於抗藥性細菌以及因感染造成的慢性傷口照護衍生費用的日漸增加,對現代醫療系統構成重大挑戰。以上問題通常需要具備局部釋放與持續療效的治療策略,以降低全身毒性並提升病患的用藥依從性。以上的醫療困境亟待解決,因此採用生物高分子所開發的奈米技術受到廣泛關注,藥物的定位釋放與組織再生方面更能展現解決現有問題的潛力。其中,幾丁聚醣作為一種天然、可生物降解且具良好黏附性的高分子材料便成發展奈米複合系統的多功能平台。
本研究強調幾丁聚醣奈米複合材料於兩種不同但互補的生物醫學應用中的潛力,突顯其作為一種具備生物相容性、可降解性與黏膜附著性的材料之多樣性。首先,研究合成了銀奈米粒子包覆於幾丁聚醣基質中的AgNPs-CHI,並進一步與β-1,3-葡聚醣及玻尿酸複合,製成AgNPs-CHI-Glu-HA,用作多功能傷口敷料。銀離子結合了幾丁聚醣所形成的生物複合材料展現出優異的生物相容性、血液相容性與促進凝血的特性,並可促進成纖維細胞遷移與傷口癒合,是有效組織再生的重要指標。儘管β-1,3-葡聚醣與HA的加入略微降低銀離子的擴散與抗菌效能,但其增強的安全性與組織修復效果使此權衡具有實際價值。 其次,為對抗具高度抗藥性的幽門螺旋桿菌(Helicobacter pylori)引起的腸胃道感染,本研究設計了包覆阿莫西林的幾丁聚醣–海藻酸鹽奈米粒 (CAANs)。此系統充分利用幾丁聚醣與海藻酸鹽的黏附特性,使奈米粒可停留於胃部黏膜表面並穿透黏液屏障,在胃酸環境中進行局部、持續性釋藥,有效避免游離態阿莫西林的酸性降解。體外試驗證實CAANs保留其抗菌活性,而體內實驗亦顯示其可延長胃部停留時間並顯著提高H. pylori 的根除率。 整體而言,這兩種策略展現出幾丁聚醣基材料可依照治療需求進行個體化設計,無論是作為金屬抗菌劑穩定劑以應用於傷口護理,抑或是保護並傳遞抗生素至胃腸道特定部位,其理化特性與生物功能的結合,使其成為次世代生物醫材的理想應用平台。在臨床應用上此一複合材料了我管對應於治療抗藥性細菌或是慢性傷口加速復原,皆展現高度應用潛力,並能有效降低系統性副作用。 | zh_TW |
| dc.description.abstract | Recently, the growing prevalence of antibiotic-resistant infections and the healthcare burden of chronic wounds have posed significant challenges to modern medical systems. These conditions often require localized and sustained therapeutic strategies that minimize systemic toxicity while improving patient compliance. In response, biopolymer-based nanotechnologies have attracted increasing attention for their potential to achieve targeted drug delivery and promote tissue regeneration. Among these materials, chitosan—a natural, biodegradable, and mucoadhesive polymer—has emerged as a versatile candidate for developing nanocomposite systems.
This study highlights two distinct yet complementary biomedical applications of chitosan-based nanocomposites, emphasizing its versatility as a biocompatible, degradable, and adhesive biomaterial. First, silver nanoparticles were synthesized within a chitosan matrix (AgNPs-CHI) and further integrated with β-1,3-glucan and HA to form AgNPs-CHI-Glu-HA, a multifunctional wound dressing. This composite demonstrated excellent biocompatibility, hemocompatibility, and hemostatic properties. It also promoted fibroblast migration and accelerated wound healing—key indicators of effective tissue regeneration. Although the incorporation of β-1,3-glucan and HA slightly limited the diffusion of silver ions and thus reduced peak antibacterial efficiency, the trade-off was compensated by enhanced biosafety and regenerative performance. Second, to combat gastrointestinal infections caused by highly antibiotic-resistant Helicobacter pylori, chitosan–alginate-based nanoparticles (CAANs) were developed to encapsulate amoxicillin. These nanoparticles leveraged the mucoadhesive properties of both alginate and chitosan to adhere to the gastric mucosal surface and diffuse through the mucus barrier. This targeted localization enabled sustained drug release in the harsh acidic gastric environment, where free-form amoxicillin would typically degrade. In vitro assays confirmed that the CAANs preserved their antimicrobial activity, while in vivo studies demonstrated extended gastric residence time and improved H. pylori eradication efficiency. In summary, these two approaches demonstrate how chitosan-based systems can be tailored to meet different therapeutic objectives—either by stabilizing metallic antimicrobials for wound treatment or by protecting and delivering antibiotics within the gastrointestinal tract. The integration of chitosan’s physicochemical versatility and biological functionality underscores its potential as a next-generation platform for biomedical applications, offering significant clinical promise in infection control and tissue repair with minimal systemic side effects. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-20T16:33:05Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-08-20T16:33:06Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | Outline
謝 誌 I 摘 要 II Abstract IV Outline VI List of Figures X List of Tables XII CHAPTER 1 BACKGROUND 1 CHAPTER 2 TOPIC: Fabrication of a β-1,3-Glucan/Hyaluronic Acid-Enhanced Chitosan–Silver Nanocomposite for Wound Healing Applications 4 2.1 Introduction 5 2.2 Materials and Methods 9 2.2.1 Materials 9 2.2.2 preparing of AgNPs-CHI 9 2.2.3 Preparing of AgNPs-CHI-Glu-HA 10 2.2.4 Assessment of AgNPs-CHI and AgNPs-CHI-Glu-HA 10 2.2.5 Assessment of cellular toxicity induced by AgNPs-CHI and AgNPs-CHI-Glu-HA composites 11 2.2.6 Evaluation of the hemocompatible properties of AgNPs-CHI and AgNPs-CHI-Glu-HA 12 2.2.7 Assessment of Blood Coagulation Time for AgNPs-CHI-Glu-HA Composite 13 2.2.8 Migration Rate Determination 14 2.2.9 Assessment of microbial inhibition in vitro 15 2.2.9.1 Co-culturing of bacterial strains 15 2.2.9.2 Diffusion method via wells on agar medium 16 2.2.9.3 Colony counting technique 16 2.2.10 Statistical Analysis 17 2.3 Results 17 2.3.1 Characterization of the AgNPs-CHI 17 2.3.2 AgNPs-CHI-Induced Bacterial Inhibition 22 2.3.3 Structural and Functional Assessment of AgNPs-CHI-Glu-HA 24 2.3.4 Enhanced Hemostatic and Hemocompatible Properties of Chitosan-Based Composite Dressing 26 2.3.5 AgNPs-CHI and AgNPs-CHI-Glu-HA-Mediated Cytotoxicity and Cell Migration 27 2.3.6 Chitosan and β-glucan Composites Modulate Antibacterial Effects via Electrostatic and Controlled Release Mechanisms 28 2.4 Discussions 30 2.5 Conclusions 40 CHAPTER 3 TOPIC: Prolonged Gastric Retention via Nanoparticles Enhances Eradication of Antibiotic-Resistant Helicobacter pylori 53 3.1 Introduction 54 3.2 Materials and Methods 57 3.2.1 Materials 57 3.2.2 CANs and CAANs Preparation 58 3.2.3 Assessment of CANs and CAANs 58 3.2.4 Release Profile in Vitro 60 3.2.5 Assessment of Adhesion and Penetration through Mucosal Barriers in Vitro 61 3.2.6 Suppression of Bacterial Proliferation In Vitro 62 3.2.7 Evaluation of Cellular Toxicity In Vitro 63 3.2.8 Gastrointestinal Localization of CAAN Nanoparticles 64 3.2.9 Evaluation of Drug Kinetics After a Single Dose 65 3.2.10 CAANs-Mediated H. pylori Clearance Evaluated In Vivo 65 3.2.11 Statistical Analysis 67 3.3 Results 67 3.3.1 Evaluation of CANs and CAANs Structure and Composition 67 3.3.2 CAANs Exhibit pH-Sensitive Amoxicillin Release Profiles 68 3.3.3 Suppression of Bacterial Expansion by CAANs 69 3.3.4 CAANs-Mediated Inhibition of Bacterial Proliferation In Vitro 71 3.3.5 Nanoparticle Encapsulation Alleviates Amoxicillin-Induced Cytotoxicity 72 3.3.6 CAANs Extend Amoxicillin Gastric Retention 73 3.3.7 CAANs Improve Amoxicillin Residence Time and Bioavailability 74 3.3.8 CAANs Enhance Amoxicillin Efficacy Against Resistant H. pylori 74 3.4 Discussions 76 3.5 Conclusions 78 CHAPTER 4. SUMMARY 90 Reference 94 Appendix 118 Published Paper 118 List of Figures Figure 2.1 Synthesis Mechanism and Biomedical Application of AgNPs-CHI-Glu-HA Nanocomposites for Infection Control and Wound Repair 42 Figure 2.2 Physicochemical Analysis of AgNPs-CHI: Influence of AgNO₃ Input and Incubation Duration 43 Figure 2.3 Structural and Surface Analysis of AgNPs-CHI Prepared with Different Chitosan Formulations. 44 Figure 2.4 Bactericidal Effects of AgNPs-CHI and AgNO₃ (100 ppm) on Escherichia coli and Staphylococcus aureus 45 Figure 2.5 Spectroscopic and Surface Charge Analyses of Chitosan–Silver and β-Glucan/HA-Based Nanocomposites. 46 Figure 2.6 Hemocompatibility and Hemostatic Performance of AgNPs-CHI-Based Composites. 47 Figure 2.7 Cytocompatibility and Wound Healing Promotion by AgNPs-CHI Composites. 50 Figure 2.8 Antibacterial Activity of AgNPs-CHI Composites Against E. coli and S. aureus. 51 Figure 3.1 Mechanistic Representation of CAANs: Mucus Penetration and Targeted Drug Release in the Gastric Environment 80 Figure 3.2 Characterization of Chitosan–Alginate Nanoparticles (CANs and CAANs) 81 Figure 3.3 pH-Responsive Release and Physicochemical Characteristics of CAANs 82 Figure 3.4 Mucus Adhesion and Penetration Behavior of CNs, CANs, and CAANs. 83 Figure 3.5 Antibacterial Efficacy of Free Amoxicillin and Nanoparticle Formulations Against H. pylori Strains with Varying MICs 84 Figure 3.6 Cytotoxicity of Free Amoxicillin, CANs, and CAANs on NIH/3T3 Cells 85 Figure 3.7 Biodistribution of ¹²³I-Amoxicillin and ¹²³I-CAANs Over Time Visualized by SPECT/CT Imaging in Mice 86 Figure 3.8 Comparative Pharmacokinetic Profiles of Free Amoxicillin and CAANs Following Oral Administration 87 List of Tables Table 2.1 Overview of Hemolytic Activity and Clotting Beginning Time (CBT) for Different Material Compositions 48 Table 2.2 Similar Studies Supporting Our Findings 49 Table 3.1 Comparative pharmacokinetic profiles of orally administered non-formulated amoxicillin and CAAN formulations. 88 Table 3.2 The in vivo efficacy of various therapeutic regimens against Helicobacter pylori strains exhibiting a minimum inhibitory concentration (MIC) of 0.016 μg/mL was assessed based on bacterial eradication rates. 88 Table 3.3 Evaluation of the therapeutic efficacy in vivo, based on the Helicobacter pylori clearance rates, was conducted using a bacterial strain characterized by a minimum inhibitory concentration (MIC) of 0.5 μg/mL under different treatment protocols. 89 | - |
| dc.language.iso | en | - |
| dc.subject | 奈米粒子 | zh_TW |
| dc.subject | 3-葡聚醣 | zh_TW |
| dc.subject | 幾丁聚醣 | zh_TW |
| dc.subject | β-1 | zh_TW |
| dc.subject | 幽門螺旋桿菌 | zh_TW |
| dc.subject | 阿莫西林 | zh_TW |
| dc.subject | amoxicillin | en |
| dc.subject | chitosan | en |
| dc.subject | nanoparticles | en |
| dc.subject | β-1 | en |
| dc.subject | Helicobacter pylori | en |
| dc.subject | 3-glucan | en |
| dc.title | 幾丁聚醣奈米複合材料之局部與系統性感染治療應用潛力 | zh_TW |
| dc.title | Therapeutic Potential of Chitosan-Based Nanocomposites for Localized and Systemic Infection Treatment | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 博士 | - |
| dc.contributor.oralexamcommittee | 楊台鴻;謝銘鈞;李亦淇;胡威文;姚俊旭 | zh_TW |
| dc.contributor.oralexamcommittee | Tai-Horng Young;Ming-Jium Shieh;I-Chi Lee;Wei-Wen Hu;Chun-Hsu Yao | en |
| dc.subject.keyword | 奈米粒子,幾丁聚醣,β-1,3-葡聚醣,阿莫西林,幽門螺旋桿菌, | zh_TW |
| dc.subject.keyword | nanoparticles,chitosan,β-1,3-glucan,amoxicillin,Helicobacter pylori, | en |
| dc.relation.page | 118 | - |
| dc.identifier.doi | 10.6342/NTU202504363 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2025-08-15 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 醫學工程學系 | - |
| dc.date.embargo-lift | N/A | - |
| Appears in Collections: | 醫學工程學研究所 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| ntu-113-2.pdf Restricted Access | 3.04 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
