請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98981完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 廖國偉 | zh_TW |
| dc.contributor.advisor | Kuo-Wei Liao | en |
| dc.contributor.author | 林秉諺 | zh_TW |
| dc.contributor.author | Ping-Yen Lin | en |
| dc.date.accessioned | 2025-08-20T16:31:37Z | - |
| dc.date.available | 2025-08-21 | - |
| dc.date.copyright | 2025-08-20 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-08-12 | - |
| dc.identifier.citation | 楊國鑫、彭逸蘋、郭治平、李威霖、汪俊彥、陳昭維、朱世文、白朝金 (2023)。 以物質點法探討光華崩塌地滑動面深度與地下水之影響。中華水土保持學報, 54(3),185-196。
彭逸蘋(2022)。以物質點法探討光華崩塌地滑動面深度與運動行為。國立臺灣大學工學院土木工程學系碩士論文。 農村發展及農村水保署資料管理平台大規模崩塌開放資料專區 (2024) 農村發展及農村水保署(2021)。 桃園市-復興區-T002(光華)大規模崩塌潛勢區應變措施階段報告。 吳昱葵(2020)。物質點法分析邊坡崩塌過程與運動機制:以貓空邊坡為例。國立臺灣大學工學院土木工程學系碩士論文。 陳語晞,陳嘉村,Thedy, J., 廖國偉(2023)。自適應克里金坡地穩定可靠度分析。地工技術,178,59-70。 李雅芬、李德河、紀雲曜 (2009),「機率式邊坡穩定分析方法之研究」,中國土木水利工程學刊,第21期,第1卷,第91-103頁。 林冠瑋、劉哲欣、張志新、郭賢立(2023)。利用邊坡活動性反演崩塌滑動面幾何型態。土木水利,50(5),27-31。 土石流及大規模崩塌防災資訊網 (2024) 農業部農村發展及水土保持署BigGIS巨量空間資訊系統 (2024) Anura3D MPM Software Tutorial Manual (2023) Jassim, I., Dieter, S., and Pieter, V. (2013) Two‐phase dynamic analysis by material point method. International journal for numerical and analytical methods in geomechanics ,37(15) 2502-2522. Soga, K., Alonso, E., Yerro, A., Kumar, K., and Bandara, S. (2016) Trends in large-deformation analysis of landslide mass movements with particular emphasis on the material point method. Géotechnique ,66(3),248-273. Conte, E., Pugliese, L and Troncone, A. (2020) Post-failure analysis of the Maierato landslide using the material point method. Engineering Geology, 277 (2020). Thedy, J., & Liao, K. W. (2023). “Adaptive Kriging Adopting PSO with Hollow-Hypersphere space in structural reliability assessment.” Probabilistic Engineering Mechanics, 103513 Christian, J. T., Ladd, C. C., and Baecher, G. B. (1994). “Reliability applied to slope stability analysis.” Journal of Geotechnical Engineering, 120(12), 2180−2207. Yerro, A., Soga, K., & Bray, J. (2019). Runout evaluation of Oso landslide with the material point method. Canadian Geotechnical Journal, 56(9), 1304-1317. Yerro, A., Alonso, E. E., & Pinyol, N. M. (2016). Run-out of landslides in brittle soils. Computers and Geotechnics, 80, 427-439. De Vaucorbeil, A., Nguyen, V. P., Sinaie, S., & Wu, J. Y. (2020). Material point method after 25 years: Theory, implementation, and applications. Advances in applied mechanics, 53, 185-398. Więckowski, Z. (2004). The material point method in large strain engineering problems. Computer methods in applied mechanics and engineering, 193(39-41), 4417-4438. Vanapalli, S. K., Fredlund, D. G., Pufahl, D. E., & Clifton, A. W. (1996). Model for the prediction of shear strength with respect to soil suction. Canadian geotechnical journal, 33(3), 379-392. Nguyen, T. S., Yang, K. H., Wu, Y. K., Teng, F., Chao, W. A., & Lee, W. L. (2022). Post-failure process and kinematic behavior of two landslides: case study and material point analyses. Computers and Geotechnics, 148, 104797. Andersen, S., & Andersen, L. (2010). Modelling of landslides with the material-point method. Computational Geosciences, 14, 137-147. Van Asch, T. W., Malet, J. P., van Beek, L. P., & Amitrano, D. (2007). Techniques, issues and advances in numerical modelling of landslide hazard. Bulletin de la Société géologique de France, 178(2), 65-88. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98981 | - |
| dc.description.abstract | 邊坡穩定性評估是山坡地治理與防災規劃的核心工作,其分析結果往往直接影響後續工程設計與現場監測策略。傳統上,學界與工程師多利用極限平衡法(Limit Equilibrium Method, LEM)或有限元素法(Finite Element Method, FEM)來計算安全係數,並據此判斷邊坡是否穩定。然而,這兩種方法皆無法全面再現邊坡從初始變形到破壞的整個運動過程。
為了克服此問題,本研究採用物質點法(Material Point Method, MPM)進行二維數值模擬,基於實地地質調查、既有文獻地層剖面與高解析度 DEM,建立物質點法模型,並提出「崩塌臨界位移」概念,作為坡面失效的判定門檻。接著透過 MPM 數值模擬分析主滑動面位移分佈,並據此制定伸縮計、傾斜管及 GPS 等監測儀器的最佳佈設策略,以確保關鍵區域能在變形初期即時掌握異動。 除此之外,也提出動態調整警戒門檻(20 mm/日至 40 mm/日)之建議,以兼顧實用性與應變效率。比較二維與三維模型在坡度(30.96°–34.44°)與長寬比條件下的相似度分析,則指出在特定 L/D 範圍內,二維模擬可在 5% 誤差內替代三維計算,從而在資源受限時提供快速模擬;當條件不適合時,則需採用三維模型以捕捉更全面的滑動機制。 本研究所提出的 MPM 模型構建流程、監測佈設策略、地下水位情境分析及二維/三維模型適用性比較,不僅為光華崩塌地的預警與應急決策提供了全面的技術框架,也將大幅提高現場監測與防災效率,為類似山坡地區的災害風險管理提供重要參考。 | zh_TW |
| dc.description.abstract | Slope stability assessment is fundamental to hillside management and disaster mitigation, directly informing engineering design and field monitoring strategies. Traditionally, Limit Equilibrium Method (LEM) and Finite Element Method (FEM) have been used to compute safety factors, but neither captures the full kinematic evolution from initial deformation to failure. To address this limitation, this study employs the Material Point Method (MPM) for two-dimensional numerical simulations. We integrate field geological surveys, published stratigraphic profiles, and high-resolution digital elevation models to build a detailed MPM representation of the Guanghua landslide site, introducing the concept of a “critical collapse displacement” as a failure threshold.
Using MPM, we analyze displacement distributions along the primary sliding surface and derive an optimized layout for extensometers, inclinometers, and GPS stations to ensure early detection of anomalous movements in high-risk zones. We also recommend dynamically adjusting the warning threshold from 20 mm/day to 40 mm/day to balance practical constraints with timely response. A comparative study of two- and three-dimensional models—across slopes of 30.96°–34.44° and varying length-to-width ratios—indicates that, within a specific “L/D range”, two-dimensional simulations can reproduce three-dimensional results within 5% error, enabling rapid screening when computational resources are limited; outside this range, three-dimensional modeling is necessary to capture the full sliding mechanism. Overall, the methodology presented—encompassing MPM model development, instrument deployment strategies, groundwater-level scenario analysis, and two- versus three-dimensional model applicability—provides a comprehensive technical framework for real-time warning and emergency decision-making at Guanghua and serves as a valuable reference for landslide risk management in analogous mountainous terrains. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-20T16:31:37Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-08-20T16:31:37Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 誌謝 i
摘要 ii Abstract iii 目次 v 圖次 viii 表次 xi 1. 第一章 前言 1 1.1 研究動機 1 1.2 研究目標 2 1.3 研究架構與流程 5 2. 第二章 文獻回顧與數值方法介紹 7 2.1 相關文獻回顧 7 2.1.1大規模崩塌相關研究 7 2.1.2 物質點法相關研究 8 2.1.3 國內、外物質點法應用案例 11 2.2 物質點法介紹 14 2.3 物質點法之控制方程式 15 2.3.1質量守恆方程式 16 2.3.2 動量方程式 17 2.3.3 邊界條件 17 2.3.4 弱解 (weak form) 18 2.4 物質點法之數值計算 19 2.4.1 離散化 19 2.4.2 計算內力 20 2.4.3 計算外力 21 2.5 物質點法運算流程 21 2.6 Anura3D 軟體介紹 24 2.7 機率式邊坡穩定分析 24 2.7.1 可靠度分析 25 3. 第三章 研究區域現況 27 3.1 光華崩塌地位置基本資料 27 3.2 地形基本資料 28 3.3 地質基本資料 30 3.4 光華崩塌地歷年災害資料 31 3.5 光華崩塌地現地監測設備 34 3.6 地質鑽探結果 36 4. 第四章 研究方法 40 4.1 挑選欲研究剖面 40 4.2建立二維邊坡幾何模型 42 4.3土壤參數 44 4.4邊界條件 45 4.5初始條件 47 4.6 網格設定 47 4.7 剖面B-B’剖面C-C’模型 49 4.8 三維模型的建立 58 4.9 邊坡可靠度分析-克里金代理模型 63 5. 第五章 數值模擬結果 70 5.1 數值模擬結果驗證 70 5.1.1 邊坡外型變化趨勢比對 70 5.1.2 現地監測資料比對 71 5.2 崩塌臨界位移 73 5.3 可靠度分析中的變數挑選 75 5.4 可靠度分析結果 79 5.4.1 挑選各剖面上的關注點 79 5.4.2 各關注點之分析結果 82 5.5 不同情境下的崩塌風險 86 5.6 監測儀器佈設之建議 89 5.7 崩塌警戒值之訂定策略 92 5.8 三維物質點法模擬結果 94 6. 第六章 結論與建議 111 7. 參考文獻 114 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 物質點法 | zh_TW |
| dc.subject | 大規模崩塌 | zh_TW |
| dc.subject | 不確定性 | zh_TW |
| dc.subject | 監測儀器 | zh_TW |
| dc.subject | 警戒值 | zh_TW |
| dc.subject | warning values | en |
| dc.subject | monitoring instruments | en |
| dc.subject | uncertainty | en |
| dc.subject | Material Point Method (MPM) | en |
| dc.subject | large-scale collapse | en |
| dc.title | 物質點法輔助崩塌監測預警系統-以光華崩塌地為例 | zh_TW |
| dc.title | Development of a Landslide Early Warning System Using the Material Point Method: A Case Study of the Guanghua Slope | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 范正成;陳瑞華 | zh_TW |
| dc.contributor.oralexamcommittee | Jen-Chen Fan;Rwey-Hua Cherng | en |
| dc.subject.keyword | 大規模崩塌,物質點法,警戒值,監測儀器,不確定性, | zh_TW |
| dc.subject.keyword | large-scale collapse,Material Point Method (MPM),warning values,monitoring instruments,uncertainty, | en |
| dc.relation.page | 116 | - |
| dc.identifier.doi | 10.6342/NTU202503727 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2025-08-14 | - |
| dc.contributor.author-college | 生物資源暨農學院 | - |
| dc.contributor.author-dept | 生物環境系統工程學系 | - |
| dc.date.embargo-lift | 2025-08-21 | - |
| 顯示於系所單位: | 生物環境系統工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf | 8.97 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
