Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電子工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98979
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林浩雄zh_TW
dc.contributor.advisorHao-Hsiung Linen
dc.contributor.author郭晏廷zh_TW
dc.contributor.authorYen-Ting Kuoen
dc.date.accessioned2025-08-20T16:31:06Z-
dc.date.available2025-08-21-
dc.date.copyright2025-08-20-
dc.date.issued2025-
dc.date.submitted2025-08-14-
dc.identifier.citationM. Masnadi-Shirazi, R. B. Lewis, V. Bahrami-Yekta, T. Tiedje, M. Chicoine, and P. Servati, "Bandgap and optical absorption edge of GaAs_(1-x) Bi_x alloys with 0 < x  < 17.8%," J. Appl. Phys., vol. 116, no. 22, 2014, doi: 10.1063/1.4904081.
S. Tixier et al., "Molecular beam epitaxy growth of GaAs_(1-x) Bi_x," Applied Physics Letters, vol. 82, no. 14, pp. 2245–2247, 2003, doi: 10.1063/1.1565499.
B. Fluegel, S. Francoeur, A. Mascarenhas, S. Tixier, E. C. Young, and T. Tiedje, "Giant spin-orbit bowing in GaAs_(1-x) Bi_x," Phys Rev Lett, vol. 97, no. 6, p. 067205, Aug 11 2006, doi: 10.1103/PhysRevLett.97.067205.
R. B. Lewis, M. Masnadi-Shirazi, and T. Tiedje, "Growth of high Bi concentration GaAs_(1-x) Bi_x by molecular beam epitaxy," Applied Physics Letters, vol. 101, no. 8, p. 082112, 2012, doi: 10.1063/1.4748172.
M. A. Stevens, K. A. Grossklaus, and T. E. Vandervelde, "Strain stabilization of far from equilibrium GaAsBi films," Journal of Crystal Growth, vol. 527, 2019, doi: 10.1016/j.jcrysgro.2019.125216.
M. Beaudoin et al., "Bandedge optical properties of MBE grown GaAsBi films measured by photoluminescence and photothermal deflection spectroscopy," Journal of Crystal Growth, vol. 425, pp. 245–249, 2015, doi: 10.1016/j.jcrysgro.2015.01.019.
A. Duzik, J. C. Thomas, J. M. Millunchick, J. Lång, M. P. J. Punkkinen, and P. Laukkanen, "Surface structure of bismuth terminated GaAs surfaces grown with molecular beam epitaxy," Surface Science, vol. 606, no. 15-16, pp. 1203–1207, 2012, doi: 10.1016/j.susc.2012.03.021.
R. N. Kini, A. J. Ptak, B. Fluegel, R. France, R. C. Reedy, and A. Mascarenhas, "Effect of Bi alloying on the hole transport in the dilute bismide alloy GaAs_(1-x) Bi_x," Physical Review B, vol. 83, no. 7, 2011, doi: 10.1103/PhysRevB.83.075307.
H. J. Osten, D. Knoll, B. Heinemann, H. Rucker, and B. Tillack, "Carbon doped SiGe heterojunction bipolar transistors for high frequency applications," in Proceedings of the 1999 Bipolar/BiCMOS Circuits and Technology Meeting (Cat. No.99CH37024), 28–28 Sept. 1999 1999, pp. 109–116, doi: 10.1109/BIPOL.1999.803538.
S. P. Watkins et al., "Heavily carbon-doped GaAsSb grown on InP for HBT applications," Journal of Crystal Growth, vol. 221, no. 1, pp. 59–65, 2000/12/01/ 2000, doi: 10.1016/S0022-0248(00)00649-7.
E. H. Hall, "On a New Action of the Magnet on Electric Currents," American Journal of Mathematics, vol. 2, pp. 287–292, 1879.
K. T. Tsen and H. Morkoç, "Picosecond Raman studies of the optical phonons in the Al_x Ga_(1-x) As layers of GaAs-Al_x Ga_(1-x) As multiple-quantum-well structures," Physical Review B, vol. 37, no. 12, pp. 7137–7139, 04/15/ 1988, doi: 10.1103/PhysRevB.37.7137.
R. Kumar, A. S. Vengurlekar, S. S. Prabhu, J. Shah, and L. N. Pfeiffer, "Measurements of frequency upconversion and picosecond excitation-correlation luminescence spectra in GaAs quantum wells and determination of time constants describing exciton dynamics," J. Appl. Phys., vol. 80, no. 10, pp. 5921–5931, 1996, doi: 10.1063/1.363821.
V. Pačebutas, R. Butkutė, B. Čechavičius, J. Kavaliauskas, and A. Krotkus, "Photoluminescence investigation of GaAs_(1-x) Bi_x/GaAs heterostructures," Thin Solid Films, vol. 520, no. 20, pp. 6415–6418, 2012, doi: 10.1016/j.tsf.2012.06.047.
W. Pan et al., "Optical properties and band bending of InGaAs/GaAsBi/InGaAs type-II quantum well grown by gas source molecular beam epitaxy," J. Appl. Phys., vol. 120, no. 10, 2016, doi: 10.1063/1.4962288.
N. A. Riordan et al., "Temperature and pump power dependent photoluminescence characterization of MBE grown GaAsBi on GaAs," Journal of Materials Science: Materials in Electronics, vol. 23, no. 10, pp. 1799–1804, 2012, doi: 10.1007/s10854-012-0665-1.
Y. P. Varshni, "Temperature dependence of the energy gap in semiconductors," Physica, vol. 34, no. 1, pp. 149–154, 1967/01/01/ 1967, doi: 10.1016/0031-8914(67)90062-6.
P. Lautenschlager, M. Garriga, S. Logothetidis, and M. Cardona, "Interband critical points of GaAs and their temperature dependence," Phys Rev B Condens Matter, vol. 35, no. 17, pp. 9174–9189, Jun 15 1987, doi: 10.1103/physrevb.35.9174.
I. Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan, "Band parameters for III–V compound semiconductors and their alloys," J. Appl. Phys., vol. 89, no. 11, pp. 5815–5875, 2001, doi: 10.1063/1.1368156.
C. D. Thurmond, "The Standard Thermodynamic Functions for the Formation of Electrons and Holes in Ge, Si, GaAs , and GaP," Journal of The Electrochemical Society, vol. 122, no. 8, p. 1133, 1975/08/01 1975, doi: 10.1149/1.2134410.
V. Swaminathan and A. T. Macrander, "Materials aspects of GaAs and InP based structures," 1991.
S. M. Sze and K. K. Ng, "Physics of Semiconductor Devices 3rd ed.," 2006.
D. Olego and M. Cardona, "Photoluminescence in heavily doped GaAs. I. Temperature and hole-concentration dependence," Physical Review B, vol. 22, no. 2, pp. 886–893, 07/15/ 1980, doi: 10.1103/PhysRevB.22.886.
J. Lindemuth and B. Dodrill, Hall Effect Measurement Handbook: A Fundamental Tool for Semiconductor Material Characterization. Lake Shore Cryotronics, Incorporated, 2020, p. 17.
S. A. Stockman, G. E. Höfler, J. N. Baillargeon, K. C. Hsieh, K. Y. Cheng, and G. E. Stillman, "Characterization of heavily carbon-doped GaAs grown by metalorganic chemical vapor deposition and metalorganic molecular beam epitaxy," J. Appl. Phys., vol. 72, no. 3, pp. 981–987, 1992, doi: 10.1063/1.351776.
A. Ferreira da Silva et al., "Electrical resistivity of acceptor carbon in GaAs," J. Appl. Phys., vol. 95, no. 5, pp. 2532–2535, 2004, doi: 10.1063/1.1645971.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98979-
dc.description.abstract本研究針對重摻雜碳的鉍砷化鎵(GaAsBi)樣品進行霍爾量測與光致發光(PL)特性分析,以探討其電性與光學行為,重摻雜碳的樣品摻雜濃度約在4×10^18(cm)^(-3)至6×10^19(cm)^(-3)的範圍內,另有一片無摻雜樣品載子濃度為3.7×10^17(cm)^(-3)。霍爾量測結果顯示所有樣品均呈p型導電性,且載子遷移率會隨TMBi flow及載子濃度的增加而提升。PL量測確認GaAs摻雜了Bi可有效縮減能隙,使得光譜中出現低於GaAs能隙之能量的波峰。進一步分析光譜,發現較高載子濃度的樣品多半具有雙波峰結構,而較低的載子濃度似乎較不容易出現雙波峰結構。後續針對有觀察到雙波峰的PL光譜進行雙高斯擬合,分析出高能量波峰對溫度變化不敏感,而低能量波峰則具溫度依賴性。本研究認為雙波峰的成因有兩種可能:第一種可能是高濃度摻雜導致雜質能帶(impurity band)產生,使光復合路徑除了有典型的band-to-band以外,還額外多出了band-to-impurity band的路徑,這兩種光復合路徑會分別產生高能量及低能量波峰。第二種可能為波向量不守恆,由於高濃度摻雜會在價帶額外注入許多電洞,使電洞分布的範圍不限於價帶頂部,還會擴及價帶下層,增加波向量不守恆發生的機率,當波向量守恆與波向量不守恆的光復合機制同時存在時,便會產生低能量及高能量波峰,使光譜上出現雙波峰結構。zh_TW
dc.description.abstractThis study investigates the electrical and optical properties of gallium arsenide bismide (GaAsBi) samples subjected to heavy carbon doping. Hall effect and photoluminescence (PL) measurements were performed to analyze carrier behavior and band structure characteristics. Seven samples were heavily doped with carbon, with doping concentrations ranging from approximately 4×10^18 (cm)^(-3) to 6×10^19(cm)^(-3), while one undoped sample exhibited a background concentration of 3.7×10^17(cm)^(-3).
Hall measurements confirmed that all samples exhibit p-type conductivity, and the hole mobility increases with higher TMBi and carbon flow rates. PL measurements revealed that bismuth incorporation effectively reduces the bandgap of GaAs, resulting in emission peaks at energies lower than the intrinsic GaAs bandgap. Further spectral analysis showed that samples with higher carrier concentrations tend to exhibit a dual-peak structure in their PL spectra, whereas samples with lower carrier concentrations are less likely to display such features.
To investigate the origin of the dual peaks, dual-Gaussian fitting was applied to the PL spectra. The results indicate that the high-energy peak is relatively insensitive to temperature changes, while the low-energy peak exhibits strong temperature dependence. Two mechanisms are proposed to explain this phenomenon. The first involves the formation of impurity bands due to heavy doping, which introduces an additional radiative recombination pathway band-to-impurity band alongside the conventional band-to-band transition. These two pathways correspond to the high- and low-energy peaks, respectively. The second mechanism is attributed to wave vector non-conservation. Heavy doping introduces a large number of holes into the valence band, expanding their distribution beyond the band edge and into deeper energy levels. This increases the likelihood of non-conserving transitions. When both conserving and non-conserving recombination mechanisms coexist, they give rise to distinct high- and low-energy peaks, resulting in the observed dual-peak structure in the PL spectra.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-20T16:31:06Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-08-20T16:31:06Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents致謝 I
中文摘要 II
Abstract III
目次 V
圖次 VII
表次 X
第一章 緒論 1
1.1 研究動機 1
1.2 論文架構 1
第二章 理論介紹 2
2.1 霍爾效應(Hall Effect) 2
2.2 傳輸線模型(Transmission Line Method) 5
2.3 光致發光(Photoluminescence) 7
2.4 Varshni方程式 8
2.5 波向量不守恆 10
第三章 樣品介紹與實驗架構 11
3.1 GaAsBi樣品結構與磊晶條件 11
3.2 變溫霍爾效應 12
3.2.1 霍爾量測元件(Hall Bar) 12
3.2.2 元件製程 15
3.2.3 製程可靠度檢驗(TLM檢驗) 19
3.2.4 量測架構 22
3.3 變溫光致發光 24
3.3.1 量測架構 24
3.3.2 光譜可靠度檢驗 27
第四章 實驗分析 32
4.1 變溫霍爾效應分析與討論 32
4.1.1 載子遷移率及載子濃度與溫度之關係 32
4.1.2 樣品生長條件與電性之關係討論 35
4.2 光致發光分析與討論 39
4.2.1 發光效應與溫度之關係 39
4.2.2 雙高斯擬合分析 41
第五章 結論 47
參考資料 49
-
dc.language.isozh_TW-
dc.subject波向量不守恆zh_TW
dc.subject重摻雜碳zh_TW
dc.subject光致發光zh_TW
dc.subject霍爾效應zh_TW
dc.subject鉍砷化鎵zh_TW
dc.subjectGaAsBien
dc.subjectwave vector non-conservationen
dc.subjectPhotoluminescenceen
dc.subjectHall effecten
dc.subjectHeavily carbon dopingen
dc.title重摻雜碳的GaAsBi霍爾效應及光致發光特性分析zh_TW
dc.titleCharacterization of Heavily Carbon-Doped GaAsBi: Hall Effect and Photoluminescence Analysisen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee何清華;金宇中;黃朝興zh_TW
dc.contributor.oralexamcommitteeChing-Hwa Ho;Yu-Jhong Jin;Chao-Sing Huangen
dc.subject.keyword重摻雜碳,鉍砷化鎵,霍爾效應,光致發光,波向量不守恆,zh_TW
dc.subject.keywordHeavily carbon doping,GaAsBi,Hall effect,Photoluminescence,wave vector non-conservation,en
dc.relation.page52-
dc.identifier.doi10.6342/NTU202504367-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2025-08-15-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept電子工程學研究所-
dc.date.embargo-lift2025-08-21-
顯示於系所單位:電子工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf4.48 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved