Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 大氣科學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98972
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor游政谷zh_TW
dc.contributor.advisorCheng-Ku Yuen
dc.contributor.author楊心宇zh_TW
dc.contributor.authorHsin-Yu Yangen
dc.date.accessioned2025-08-20T16:29:28Z-
dc.date.available2025-08-21-
dc.date.copyright2025-08-20-
dc.date.issued2025-
dc.date.submitted2025-08-14-
dc.identifier.citation潘之行,2021: 颱風外圍雨帶生成之觀測統計分析。國立臺灣大學大氣科學研究所碩士論文,109頁。
鄭秉恩,2022: 颱風外圍雨帶的對流特徵及其與颮線的相似度。國立臺灣大學大氣科學研究所碩士論文,94頁。
Anthes, R. A., 1982: Tropical Cyclones: Their Evolution, Structure and Effects. Meteor. Monogr ., No. 41, Amer. Meteor. Soc., 208 pp.
Barnes, G. M., and K. Sieckman, 1984: The environment of fast- and slow-moving tropical mesoscale convective cloud lines. Mon. Wea. Rev., 112, 1782–1794.
Bogner, P. B., G. M. Barnes, and J. L. Franklin, 2000: Conditional instability and shear for six hurricanes over the Atlantic Ocean. Wea. Forecasting, 15, 192–207.
Chang, P.-L., W.-T. Fang, P.-F. Lin, and M.-J. Yang, 2019: A Vortex-Based Doppler Velocity Dealiasing Algorithm for Tropical Cyclones. Journal of Atmospheric and Oceanic Technology, 36(8), 1521-1545.
Corbosiero, K. L. & Molinari, J., 2002: The effects of vertical wind shear on the distribution of convection in tropical cyclones. Mon. Weather Rev. 130, 2110–212.
Eastin, M. D., and M. C. Link, 2009: Miniature supercells in an offshore outer rainband of Hurricane Ivan (2004). Mon. Wea. Rev., 137, 2081–2104.
Gray, W. M., 1968: Global view of the origin of tropical disturbances and storms. Mon. Wea. Rev., 96, 669–700.
Houze, R. A., Jr., 2010: Clouds in tropical cyclones. Mon. Wea. Rev., 138, 293–344.
Jones, S. C., 1995: The evolution of vortices in vertical shear. I: Initially barotropic vortices. Quart. J. Roy. Meteor. Soc., 121 , 821–851.
Li, Q., Y. Wang, and Y. Duan, 2017: A numerical study of outer rainband formation in a sheared tropical cyclone. J. Atmos. Sci., 74, 203–227
Lee, W.-C., Bell, M. M., & Goodman, K. E. Jr. (2008). Supercells and mesocyclones in outer rainbands of Hurricane Katrina (2005). Geophysical Research Letters, 35, L16803.
Ligda, M. G. H., 1955: Hurricane squall lines. Bull. Amer. Meteor. Soc., 36, 340–342.
Molinari, J., D. M. Romps, D. Vollaro, and L. Nguyen, 2012: CAPE in tropical cyclones. J. Atmos. Sci., 69, 2452–2463.
Montgomery, M. T., and R. J. Kallenbach, 1997: A theory for vortex Rossby waves and its application to spiral bands and intensity changes in hurricanes. Quart. J. Roy. Meteor. Soc., 123, 435–465.
Rotunno, R., J. B. Klemp, and M. L. Weisman, 1988: A theory for strong, long-lived squall lines. J. Atmos. Sci., 45, 463–485.
Senn, H. V., and H. W. Hiser, 1959: On the origin of hurricane spiral rain bands. J. Meteor., 16, 419–426.
Shi, L., M. Olabarrieta, D. S. Nolan, & J. C. Warner, 2020: Tropical cyclone rainbands can trigger meteotsunamis. Nat. Commun. 11, 678.
Wang, Y., 2009: How do outer spiral rainbands affect tropical cyclone structure and intensity? J. Atmos. Sci., 66, 1250–1273.
Willoughby, H. E., F. D. Marks, and R. J. Feinberg, 1984: Stationary and moving convective bands in hurricanes. J. Atmos. Sci., 41, 3189–3211.
Willoughby, H. E., 1988: The dynamics of the tropical hurricane core. Aust. Meteor. Mag., 36, 183–191.
Xin, L., Recuter, G. & B. Larochelle, 1997: Reflectivity-rain rate relationship for convective rainshowers in Edmonton. Atmos. Ocean 35, 513–521.
Yu, C.-K., and N. A. Bond, 2002: Airborne Doppler observations of a cold front in the vicinity of Vancouver Island. Mon. Wea. Rev., 130, 2692–2708.
Yu, C.-K., and Y. Chen, 2011: Surface fluctuations associated with tropical cyclone rainbands observed near Taiwan during 2000–08. J. Atmos. Sci., 68, 1568–1585.
Yu, C.-K., C.-Y. Lin, L.-W. Cheng, J.-S. Luo, C.-C. Wu, and Y. Chen, 2018: The degree of prevalence of similarity between outer tropical cyclone rainbands and squall lines. Sci. Rep., 8, 8247.
Yu, C.-K., C.-Y. Lin, and J.-S. Luo, 2019: Tracking a long-lasting outer tropical cyclone rainband: Origin and convective transformation. J. Atmos. Sci., 76, 3267–3283.
Yu, C.-K., L.-W. Cheng, C.-C. Wu, and C.-L. Tsai, 2020: Outer Tropical cyclone rainbands associated with Typhoon Matmo (2014). Monthly Weather Review, 148(7), 2935–2952.
Yu, C.-K., C.-Y. Lin, and C.-H. Pun, 2023: Origin of outer tropical cyclone rainbands. Nat. Commun. 14, 706.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98972-
dc.description.abstract颱風雨帶在颱風中是除了眼牆以外風雨最強烈的區域之一。當雨帶位於距離颱風中心超過3倍最大風速半徑之外,通常被稱為外圍雨帶。儘管對於外圍雨帶之生成過程已有初步了解,但其降水強度會受哪些環境因子影響仍不清楚。本研究承襲 Yu et al.(2023)所建立之颱風外圍雨帶資料庫,針對2002至2019年間生成於廣闊海域之1029條雨帶進行統計分析,探討其初生期降水強度特徵與生成前環境條件之關聯性。資料來源包括中央氣象署四部S波段都卜勒氣象雷達、ERA5再分析資料,以及JTWC最佳颱風路徑資訊。統計結果顯示,雨帶降水強度與中高層環境相對濕度、低層輻合、上升運動呈現高度正相關,而相當位溫的垂直差異(θₑ deficit)與對流可用位能(CAPE)雖未達統計顯著水準,亦呈正相關趨勢。此外,位於颱風垂直風切下風側之雨帶亦較易發展出強降水。由於先前研究指出許多颱風外圍雨帶具有颮線(squall line)之氣流結構與降水特徵,本研究依雨帶垂直方向移速與降水梯度進行分類,分成2種類颮線雨帶,包括移速快且降雨較對流性的雨帶(SL1)與移速快但對流性較弱的雨帶(SL2);及2種非颮線雨帶,包括移速慢的對流性降水雨帶(NSL1)與移速慢且對流性較弱的雨帶(NSL2)。分析顯示SL1雨帶之低層垂直雨帶方向風切可能處於RKW理論(Rotunno-Klemp-Weisman theory)中冷池和風切平衡的最適狀態(optimal state),有助於強對流之發展與維持;而SL2雨帶降水強度較弱的原因可能是由於低層風切較冷池強,導致整體環境處於次理想狀態(suboptimal state),進而抑制上升運動的發展。不過,本研究缺乏冷池觀測資訊,這些推論的可靠性仍有待未來進一步探討與釐清。此外,非颮線雨帶移速較慢可能與其低層平行雨帶方向風切較大有關,而CAPE和θₑ deficit也可能對其降水對流度有所影響。zh_TW
dc.description.abstractTropical cyclone rainbands (TCRs) are prominent features of tropical cyclones (TCs) that, aside from the eyewall, often produce heavy precipitation and hazardous weather. Those located beyond three times the radius of maximum wind (RMW) are typically classified as outer TCRs. While their formation processes have been previously explored, the environmental factors governing their precipitation intensity remain unclear. This study builds on the TCR database established by Yu et al. (2023), analyzing 1029 outer TCRs over open ocean near Taiwan between 2002 and 2019. Using S-band Doppler radar from the Central Weather Administration (CWA), ERA5 reanalysis data from the European Centre for Medium-Range Weather Forecasts (ECMWF), and best track data from the Joint Typhoon Warning Center (JTWC), we examine the relationship between preformation environmental conditions and formative stage precipitation intensity. Results show strong positive correlations between outer TCR precipitation intensity and mid-to-upper-level relative humidity, low-level convergence, and upward motion. CAPE and vertical θₑ deficit also exhibit positive trends, though not statistically significant. Outer TCRs on the downshear side of the environmental wind shear vector are more likely to produce heavy precipitation. To further explore differences among outer TCRs with and without squall-line-like features, we classify them into four types based on propagation speed and precipitation gradient: two squall-line-like groups (SL1: fast-moving with strong convection; SL2: fast-moving but weak convection) and two non-squall-line-like groups (NSL1: slow-moving with strong convection; NSL2: slow-moving and weak). Analysis suggests that SL1 may exist in an optimal balance between cold pool strength and vertical shear, as described by RKW theory, favoring sustained deep convection. In contrast, SL2 cases may be in a suboptimal state with excessive shear, suppressing upward motion. NSL rainbands, though lacking dynamic squall-line structure, may still be influenced by strong CAPE and θₑ deficit, while their slower propagation could be linked to stronger band-parallel shear.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-20T16:29:28Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-08-20T16:29:28Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書 I
誌謝 II
摘要 III
Abstract IV
目次 VI
圖次 VIII
表次 XI
第一章 前言 1
1.1 文獻回顧 1
1.2 研究動機 3
第二章 研究方法與資料 4
2.1 資料來源 4
2.2 都卜勒氣象雷達資料介紹及處理 4
2.3 研究方法 6
第三章 颱風外圍雨帶初生期降水描述 10
3.1 颱風外圍雨帶降水強度的計算與統計 10
3.2 颱風外圍雨帶降水梯度的計算與統計 11
第四章 颱風雨帶環境與降水強度的關係 12
4.1 環境熱力參數 12
4.2 環境動力參數 14
第五章 類颮線與非颮線雨帶環境條件比較 16
5.1 類颮線雨帶動力探討 16
5.2非颮線雨帶發展強對流降水之環境因子 18
第六章 結論與未來展望 19
6.1 結論 19
6.2 未來展望 20
參考文獻 21
表 24
圖 44
-
dc.language.isozh_TW-
dc.subject降水強度zh_TW
dc.subject颱風外圍雨帶zh_TW
dc.subject低層垂直風切zh_TW
dc.subject颮線zh_TW
dc.subject環境條件zh_TW
dc.subjectenvironmental factorsen
dc.subjectsquall lineen
dc.subjectlow-level vertical wind shearen
dc.subjectprecipitation intensityen
dc.subjectouter tropical cyclone rainbandsen
dc.title颱風外圍雨帶降水特性與其環境條件之統計分析zh_TW
dc.titleStatistical Analysis of Precipitation Characteristics and Environmental Factors of Outer Tropical Cyclone Rainbandsen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee張保亮;鄧旭峰zh_TW
dc.contributor.oralexamcommitteePao-Liang Chang;Hsu-Feng Tengen
dc.subject.keyword颱風外圍雨帶,降水強度,環境條件,颮線,低層垂直風切,zh_TW
dc.subject.keywordouter tropical cyclone rainbands,precipitation intensity,environmental factors,squall line,low-level vertical wind shear,en
dc.relation.page69-
dc.identifier.doi10.6342/NTU202504334-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2025-08-15-
dc.contributor.author-college理學院-
dc.contributor.author-dept大氣科學系-
dc.date.embargo-lift2030-08-08-
顯示於系所單位:大氣科學系

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
  未授權公開取用
4.1 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved